Добірка наукової літератури з теми "Stochastic approximation techniques"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Stochastic approximation techniques".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Stochastic approximation techniques"
Worden, Lee, Ira B. Schwartz, Simone Bianco, Sarah F. Ackley, Thomas M. Lietman, and Travis C. Porco. "Hamiltonian Analysis of Subcritical Stochastic Epidemic Dynamics." Computational and Mathematical Methods in Medicine 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/4253167.
Повний текст джерелаBosch, Paul. "A Numerical Method for Two-Stage Stochastic Programs under Uncertainty." Mathematical Problems in Engineering 2011 (2011): 1–13. http://dx.doi.org/10.1155/2011/840137.
Повний текст джерелаSengul, Suleyman, Zafer Bekiryazici, and Mehmet Merdan. "Wong-Zakai method for stochastic differential equations in engineering." Thermal Science 25, Spec. issue 1 (2021): 131–42. http://dx.doi.org/10.2298/tsci200528014s.
Повний текст джерелаCapobianco, Enrico. "Computationally Efficient Atomic Representations for Nonstationary Stochastic Processes." International Journal of Wavelets, Multiresolution and Information Processing 01, no. 03 (September 2003): 325–51. http://dx.doi.org/10.1142/s0219691303000177.
Повний текст джерелаNajim, K., and E. Ikonen. "Distributed logic processors trained under constraints using stochastic approximation techniques." IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 29, no. 4 (July 1999): 421–26. http://dx.doi.org/10.1109/3468.769763.
Повний текст джерелаVande Wouwer, A., C. Renotte, and M. Remy. "Application of stochastic approximation techniques in neural modelling and control." International Journal of Systems Science 34, no. 14-15 (November 2003): 851–63. http://dx.doi.org/10.1080/00207720310001640296.
Повний текст джерелаJaakkola, Tommi, Michael I. Jordan, and Satinder P. Singh. "On the Convergence of Stochastic Iterative Dynamic Programming Algorithms." Neural Computation 6, no. 6 (November 1994): 1185–201. http://dx.doi.org/10.1162/neco.1994.6.6.1185.
Повний текст джерелаMontes, Francisco, and Jorge Mateu. "On the MLE for a spatial point pattern." Advances in Applied Probability 28, no. 2 (June 1996): 339. http://dx.doi.org/10.1017/s0001867800048382.
Повний текст джерелаSUN, XU, XINGYE KAN, and JINQIAO DUAN. "APPROXIMATION OF INVARIANT FOLIATIONS FOR STOCHASTIC DYNAMICAL SYSTEMS." Stochastics and Dynamics 12, no. 01 (March 2012): 1150011. http://dx.doi.org/10.1142/s0219493712003614.
Повний текст джерелаSchweiger, Regev, Eyal Fisher, Elior Rahmani, Liat Shenhav, Saharon Rosset, and Eran Halperin. "Using Stochastic Approximation Techniques to Efficiently Construct Confidence Intervals for Heritability." Journal of Computational Biology 25, no. 7 (July 2018): 794–808. http://dx.doi.org/10.1089/cmb.2018.0047.
Повний текст джерелаДисертації з теми "Stochastic approximation techniques"
Krishnaswamy, Ravishankar. "Approximation Techniques for Stochastic Combinatorial Optimization Problems." Research Showcase @ CMU, 2012. http://repository.cmu.edu/dissertations/157.
Повний текст джерелаMhanna, Elissa. "Beyond gradients : zero-order approaches to optimization and learning in multi-agent environments." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG123.
Повний текст джерелаThe rise of connected devices and the data they produce has driven the development of large-scale applications. These devices form distributed networks with decentralized data processing. As the number of devices grows, challenges like communication overhead and computational costs increase, requiring optimization methods that work under strict resource constraints, especially where derivatives are unavailable or costly. This thesis focuses on zero-order (ZO) optimization methods are ideal for scenarios where explicit function derivatives are inaccessible. ZO methods estimate gradients based only on function evaluations, making them highly suitable for distributed and federated learning environments where devices collaborate to solve global optimization tasks with limited information and noisy data. In the first chapter, we address distributed ZO optimization for strongly convex functions across multiple agents in a network. We propose a distributed zero-order projected gradient descent algorithm that uses one-point gradient estimates, where the function is queried only once per stochastic realization, and noisy function evaluations estimate the gradient. The chapter establishes the almost sure convergence of the algorithm and derives theoretical upper bounds on the convergence rate. With constant step sizes, the algorithm achieves a linear convergence rate. This is the first time this rate has been established for one-point (and even two-point) gradient estimates. We also analyze the effects of diminishing step sizes, establishing a convergence rate that matches centralized ZO methods' lower bounds. The second chapter addresses the challenges of federated learning (FL) which is often hindered by the communication bottleneck—the high cost of transmitting large amounts of data over limited-bandwidth networks. To address this, we propose a novel zero-order federated learning (ZOFL) algorithm that reduces communication overhead using one-point gradient estimates. Devices transmit scalar values instead of large gradient vectors, lowering the data sent over the network. Moreover, the algorithm incorporates wireless communication disturbances directly into the optimization process, eliminating the need for explicit knowledge of the channel state. This approach is the first to integrate wireless channel properties into a learning algorithm, making it resilient to real-world communication issues. We prove the almost sure convergence of this method in nonconvex optimization settings, establish its convergence rate, and validate its effectiveness through experiments. In the final chapter, we extend the ZOFL algorithm to include two-point gradient estimates. Unlike one-point estimates, which rely on a single function evaluation, two-point estimates query the function twice, providing a more accurate gradient approximation and enhancing the convergence rate. This method maintains the communication efficiency of one-point estimates, where only scalar values are transmitted, and relaxes the assumption that the objective function must be bounded. The chapter demonstrates that the proposed two-point ZO method achieves linear convergence rates for strongly convex and smooth objective functions. For nonconvex problems, the method shows improved convergence speed, particularly when the objective function is smooth and K-gradient-dominated, where a linear rate is also achieved. We also analyze the impact of constant versus diminishing step sizes and provide numerical results showing the method's communication efficiency compared to other federated learning techniques
Bakhous, Christine. "Modèles d'encodage parcimonieux de l'activité cérébrale mesurée par IRM fonctionnelle." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00933426.
Повний текст джерелаManganas, Spyridon. "A Novel Methodology for Timely Brain Formations of 3D Spatial Information with Application to Visually Impaired Navigation." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1567452284983244.
Повний текст джерелаBen, Hammouda Chiheb. "Hierarchical Approximation Methods for Option Pricing and Stochastic Reaction Networks." Diss., 2020. http://hdl.handle.net/10754/664348.
Повний текст джерелаPsaros, Andriopoulos Apostolos. "Sparse representations and quadratic approximations in path integral techniques for stochastic response analysis of diverse systems/structures." Thesis, 2019. https://doi.org/10.7916/d8-xcxx-my55.
Повний текст джерелаКниги з теми "Stochastic approximation techniques"
Workshop on Randomization and Approximation Techniques in Computer Science (1997 Bologna, Italy). Randomization and approximation techniques in computer science: International Workshop RANDOM '97, Bologna, Italy, July 11-12,1997 : proceedings. New York: Springer, 1997.
Знайти повний текст джерелаWorkshop on Randomization and Approximation Techniques in Computer Science (1997 Bologna, Italy). Randomization and approximation techniques in computer science: International workshop RANDOM'97, Bologna, Italy, July 11-12, 1997 : proceedings. Berlin: Springer, 1997.
Знайти повний текст джерелаAndriopoulos, Apostolos Psaros. Sparse representations and quadratic approximations in path integral techniques for stochastic response analysis of diverse systems/structures. [New York, N.Y.?]: [publisher not identified], 2019.
Знайти повний текст джерелаЧастини книг з теми "Stochastic approximation techniques"
Kall, P., A. Ruszczyński, and K. Frauendorfer. "Approximation Techniques in Stochastic Programming." In Springer Series in Computational Mathematics, 33–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-61370-8_2.
Повний текст джерелаChawla, Shuchi, and Tim Roughgarden. "Single-Source Stochastic Routing." In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 82–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11830924_10.
Повний текст джерелаBarbierato, Enrico, Marco Gribaudo, and Daniele Manini. "Fluid Approximation of Pool Depletion Systems." In Analytical and Stochastic Modelling Techniques and Applications, 60–75. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43904-4_5.
Повний текст джерелаMarti, K. "Stochastic Programming: Numerical Solution Techniques by Semi-Stochastic Approximation Methods." In Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty, 23–43. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2111-5_3.
Повний текст джерелаNikolova, Evdokia. "Approximation Algorithms for Reliable Stochastic Combinatorial Optimization." In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 338–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15369-3_26.
Повний текст джерелаAlaei, Saeed, MohammadTaghi Hajiaghayi, and Vahid Liaghat. "The Online Stochastic Generalized Assignment Problem." In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 11–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40328-6_2.
Повний текст джерелаNeupane, Thakur, Zhen Zhang, Curtis Madsen, Hao Zheng, and Chris J. Myers. "Approximation Techniques for Stochastic Analysis of Biological Systems." In Computational Biology, 327–48. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17297-8_12.
Повний текст джерелаGupta, Anupam, MohammadTaghi Hajiaghayi, and Amit Kumar. "Stochastic Steiner Tree with Non-uniform Inflation." In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 134–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74208-1_10.
Повний текст джерелаSo, Anthony Man–Cho, Jiawei Zhang, and Yinyu Ye. "Stochastic Combinatorial Optimization with Controllable Risk Aversion Level." In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 224–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11830924_22.
Повний текст джерелаBortolussi, Luca. "Limit Behavior of the Hybrid Approximation of Stochastic Process Algebras." In Analytical and Stochastic Modeling Techniques and Applications, 367–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13568-2_26.
Повний текст джерелаТези доповідей конференцій з теми "Stochastic approximation techniques"
Nakamura, Tomoki, Kazutaka Tomida, Shouta Kouno, Hidetsugu Irie, and Shuichi Sakai. "Stochastic Iterative Approximation: Software/hardware techniques for adjusting aggressiveness of approximation." In 2021 IEEE 39th International Conference on Computer Design (ICCD). IEEE, 2021. http://dx.doi.org/10.1109/iccd53106.2021.00023.
Повний текст джерелаRai, Prashant, Mathilde Chevreuil, Anthony Nouy, and Jayant Sen Gupta. "A Regression Based Non-Intrusive Method Using Separated Representation for Uncertainty Quantification." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82301.
Повний текст джерелаJabŁonka, Anna, and Radosław Iwankiewicz. "Moment Equations and Modified Closure Approximation Techniques for Nonlinear Dynamic Systems under Renewal Impulse Process Excitations." In Proceedings of the 8th International Conference on Computational Stochastic Mechanics (CSM 8). Singapore: Research Publishing Services, 2018. http://dx.doi.org/10.3850/978-981-11-2723-6_30-cd.
Повний текст джерелаLuo, Liang, Zhi-Qin Zhao, and Xiao-Pin Li. "A Novel Surveillance Video Processing Using Stochastic Low-Rank And Generalized Low-Rank Approximation Techniques." In 2018 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2018. http://dx.doi.org/10.1109/icmlc.2018.8527059.
Повний текст джерелаKretzschmar, Florian, Matthias Beggiato, and Alois Pichler. "Detection of Discomfort in Autonomous Driving via Stochastic Approximation." In 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1002437.
Повний текст джерелаHe, Li, Qi Meng, Wei Chen, Zhi-Ming Ma, and Tie-Yan Liu. "Differential Equations for Modeling Asynchronous Algorithms." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/307.
Повний текст джерелаTo, C. W. S. "Large Nonlinear Random Responses of Spatially Non-Homogeneous Stochastic Shell Structures." In ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/detc2006-99261.
Повний текст джерелаMarti, K. "Approximation and Derivatives of Probability Functions in Probabilistic Structural Analysis and Design." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0048.
Повний текст джерелаChen, Weizhe, Zihan Zhou, Yi Wu, and Fei Fang. "Temporal Induced Self-Play for Stochastic Bayesian Games." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/14.
Повний текст джерелаHou, Bo-Jian, Lijun Zhang, and Zhi-Hua Zhou. "Storage Fit Learning with Unlabeled Data." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/256.
Повний текст джерелаЗвіти організацій з теми "Stochastic approximation techniques"
Potamianos, Gerasimos, and John Goutsias. Stochastic Simulation Techniques for Partition Function Approximation of Gibbs Random Field Images. Fort Belvoir, VA: Defense Technical Information Center, June 1991. http://dx.doi.org/10.21236/ada238611.
Повний текст джерела