Статті в журналах з теми "Sub-critical water"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Sub-critical water.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Sub-critical water".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Sherrit, Stewart, Aaron C. Noell, Anita Fisher, Mike C. Lee, Nobuyuki Takano, Xiaoqi Bao, Thomas C. Kutzer, and Frank Grunthaner. "A microfluidic sub-critical water extraction instrument." Review of Scientific Instruments 88, no. 11 (November 2017): 114101. http://dx.doi.org/10.1063/1.4999932.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

LIU, Shixi, Zhiyan PAN, Xia ZOU, Chunmian LIN, and Zanfang JIN. "DEPOLYMERIZATION OF POLYCARBONATE IN SUB-CRITICAL WATER." Acta Polymerica Sinica 011, no. 3 (March 23, 2011): 254–60. http://dx.doi.org/10.3724/sp.j.1105.2011.10042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Demirbas, A. "Sub- and Super-critical Water Depolymerization of Biomass." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 32, no. 12 (April 15, 2010): 1100–1110. http://dx.doi.org/10.1080/15567030802606111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

ETOH, Hideo. "New Food Technology with Sub-critical Water Extraction." KAGAKU TO SEIBUTSU 51, no. 7 (2013): 457–61. http://dx.doi.org/10.1271/kagakutoseibutsu.51.457.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Liao, Shu Qiong, Xiao Yu Peng, Xue Wang Zhang, Ke Lin Huang, Ben Wang, Ji Wen Gan, Qing Ruo Xie, Wei Jian Nong, and Ke Xian Li. "The Preparation of Micro-Molecular Dextran in Sub-Critical Water/CO2." Advanced Materials Research 712-715 (June 2013): 502–5. http://dx.doi.org/10.4028/www.scientific.net/amr.712-715.502.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Micro-molecular dextran was prepared in sub-critical water/CO2 by hydrolysis of dextran20. The obtained products were mainly characterized by FT-IR and GPC. Furthermore, the reaction temperature, reaction time, reaction pressure, solid-liquid radio and stirring speed were systematically investigated during the work. The optimum reaction conditions are as follows: the reaction temperature was 160°C; the reaction time was 60 min; the reaction pressure was 2.5MPa; the solid-liquid ratio was 0.6 and the stirring speed was 300r/min.
6

Liang, Xiaoxia, and Qiaojia Fan. "Application of Sub-Critical Water Extraction in Pharmaceutical Industry." Journal of Materials Science and Chemical Engineering 01, no. 05 (2013): 1–6. http://dx.doi.org/10.4236/msce.2013.15001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tanaka, Masatoshi. "Reclaiming of Food Wastes by Sub-critical Water Technology." RESOURCES PROCESSING 50, no. 4 (2003): 200–205. http://dx.doi.org/10.4144/rpsj.50.200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Suyama, Kanji, Masafumi Kubota, Masamitsu Shirai, and Hiroyuki Yoshida. "Degradation of crosslinked unsaturated polyesters in sub-critical water." Polymer Degradation and Stability 92, no. 2 (February 2007): 317–22. http://dx.doi.org/10.1016/j.polymdegradstab.2006.10.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Deguchi, Seiichi, Muneaki Ogawa, Wojciech Nowak, Marta Wesolowska, Saeko Miwa, Keisuke Sawada, Junki Tsuge, et al. "Development of super- and sub-critical water annealing processes." Powder Technology 249 (November 2013): 163–67. http://dx.doi.org/10.1016/j.powtec.2013.08.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Helden, Laurent, Timo Knippenberg, Li Tian, Aubin Archambault, Felix Ginot, and Clemens Bechinger. "Critical Casimir interactions of colloids in micellar critical solutions." Soft Matter 17, no. 10 (2021): 2737–41. http://dx.doi.org/10.1039/d0sm02021d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Chen, Jin Yang, Ru Yi Ruan, and Zhi Li. "Catalytic Oxidation of 4,4'-Dibromobiphenyl in Sub-Critical Water with Mn0.9-Co0.1-Ce-Oxide." Advanced Materials Research 282-283 (July 2011): 13–16. http://dx.doi.org/10.4028/www.scientific.net/amr.282-283.13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A complex mental oxide Mn0.9-Co0.1-Ce-oxide was prepared by co-precipitation-hydrothermal method and it was used as catalyst to oxidative degradation of 4,4- dibromobiphenyl (4,4’-DBB) in subcritical water. The optimization conditions is obtained as follows: 5% Mn0.9-Co0.1-Ce-oxidecatalyst, m(H2O2):m(4,4’-DBB)=200:1,temperature of 613K, reaction time of 20 minutes, and COD removal rate is more than 99 %. In the temperature range of 603–633 K, the degradation kinetics is studied and apparent activation energy is 35.92 and 46.69 kJ/mol for no catalyst and 5% Mn0.9-Co0.1-Ce-oxide, respectively.
12

Liao, Shu Qiong, Xiao Yu Peng, Xue Wang Zhang, Ke Lin Huang, Ben Wang, Ji Wen Gan, Qing Ruo Xie, Wei Jian Nong, and Ke Xian Li. "Research on Kinetics of Hydrolysis Preparation of Micro-Molecular Dextran." Advanced Materials Research 748 (August 2013): 295–98. http://dx.doi.org/10.4028/www.scientific.net/amr.748.295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Micro-molecular dextran was prepared in sub-critical water and sub-critical Water/CO2by hydrolysis of dextran20. The obtained products were mainly characterized by GPC. The kinetics of hydrolysis of dextran20 has been studied in the temperature range of 423.15K-463.15K. It was found that the level of dextran20 hydrolysis in sub-critical water and sub-critical water/CO2was first level kinetics equation. The activation energy was also calculated. The results demonstrated that the molecular weight of micro-molecular dextran could be controlled.
13

Liu, C., K. Tobita, H. Utoh, Y. Someya, H. Takase, and N. Asakura. "Nuclear analysis of DEMO water-cooled blanket based on sub-critical water condition." Fusion Engineering and Design 86, no. 12 (December 2011): 2839–42. http://dx.doi.org/10.1016/j.fusengdes.2011.05.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Goto, Toshiharu, Mikitaka Kishita, Yin Sun, Takeshi Sako, and Idzumi Okajima. "Degradation of Polylactic Acid Using Sub-Critical Water for Compost." Polymers 12, no. 11 (October 22, 2020): 2434. http://dx.doi.org/10.3390/polym12112434.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Polylactic acid (PLA) is expected to replace many general-purpose plastics, especially those used for food packaging and agricultural mulch. In composting, the degradation speed of PLA is affected by the molecular weight, crystallinity, and microbial activity. PLA with a molecular weight of less than 10,000 has been reported to have higher decomposition rates than those with higher molecular weight. However, PLA degradation generates water-soluble products, including lactic acid, that decrease the pH of soil or compost. As acidification of soil or compost affects farm products, their pH should be controlled. Therefore, a method for determining suitable reaction conditions to achieve ideal decomposition products is necessary. This study aimed to determine suitable reaction conditions for generating preprocessed PLA with a molecular weight lower than 10,000 without producing water-soluble contents. To this end, we investigated the degradation of PLA using sub-critical water. The molecular weight and ratio of water-soluble contents (WSCs) affecting the pH of preprocessed products were evaluated through kinetic analysis, and crystallinity was analyzed through differential scanning calorimetry. Preprocessed PLA was prepared under the determined ideal conditions, and its characteristics in soil were observed. The results showed that the crystallization rate increased with PLA decomposition but remained lower than 30%. In addition, the pH of compost mixed with 40% of preprocessed PLA could be controlled within pH 5.4–5.5 over 90 days. Overall, soil mixed with the preprocessed PLA prepared under the determined ideal conditions remains suitable for plant growth.
15

Marin, Timothy W., Charles D. Jonah, and David M. Bartels. "Reaction of OH* radicals with H2 in sub-critical water." Chemical Physics Letters 371, no. 1-2 (March 2003): 144–49. http://dx.doi.org/10.1016/s0009-2614(03)00064-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

ſirin, ÿzlem Z., Onur Demirkol, Dilek Akbaſlar, and E. Sultan Giray. "Clean and efficient synthesis of flavanone in sub-critical water." Journal of Supercritical Fluids 81 (September 2013): 217–20. http://dx.doi.org/10.1016/j.supflu.2013.05.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Deng, Sunhua, Zhijun Wang, Qiang Gu, Fanyu Meng, Junfeng Li, and Hongyan Wang. "Extracting hydrocarbons from Huadian oil shale by sub-critical water." Fuel Processing Technology 92, no. 5 (May 2011): 1062–67. http://dx.doi.org/10.1016/j.fuproc.2011.01.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Zhu, Guangyong, Xian Zhu, Qi Fan, and Xueliang Wan. "Recovery of biomass wastes by hydrolysis in sub-critical water." Resources, Conservation and Recycling 55, no. 4 (February 2011): 409–16. http://dx.doi.org/10.1016/j.resconrec.2010.12.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Sun, Youhong, Li He, Shijie Kang, Wei Guo, Qiang Li, and Sunhua Deng. "Pore Evolution of Oil Shale during Sub-Critical Water Extraction." Energies 11, no. 4 (April 4, 2018): 842. http://dx.doi.org/10.3390/en11040842.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Mohd Thani, Nurfatimah, Siti Mazlina Mustapa Kamal, Alifdalino Sulaiman, Farah Saleena Taip, Rozita Omar, and Shamsul Izhar. "Sugar Recovery from Food Waste via Sub-critical Water Treatment." Food Reviews International 36, no. 3 (July 15, 2019): 241–57. http://dx.doi.org/10.1080/87559129.2019.1636815.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Molino, A., M. Migliori, F. Nanna, P. Tarquini, and G. Braccio. "Semi-continuous biomass gasification with water under sub critical conditions." Fuel 112 (October 2013): 249–53. http://dx.doi.org/10.1016/j.fuel.2013.05.020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Ogunsola, Olubunmi M., and Norbert Berkowitz. "Extraction of oil shales with sub- and near-critical water." Fuel Processing Technology 45, no. 2 (November 1995): 95–107. http://dx.doi.org/10.1016/0378-3820(95)00036-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Kashimura, Nao, Jun-ichiro Hayashi, and Tadatoshi Chiba. "Degradation of a Victorian brown coal in sub-critical water." Fuel 83, no. 3 (February 2004): 353–58. http://dx.doi.org/10.1016/j.fuel.2003.07.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Ogunsola, O. M., and N. Berkowitz. "Extraction of oil shales with sub- and near-critical water." Fuel and Energy Abstracts 37, no. 3 (May 1996): 185. http://dx.doi.org/10.1016/0140-6701(96)88574-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Pasha, Ghufran Ahmed, and Norio Tanaka. "Critical Resistance Affecting Sub- to Super-Critical Transition Flow by Vegetation." Journal of Earthquake and Tsunami 13, no. 01 (February 2019): 1950004. http://dx.doi.org/10.1142/s1793431119500040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In order to design a vegetation structure to mitigate floods resulting from extreme events like tsunamis, vegetation density and thickness (width) are important parameters. Flow passing through vegetation faces great resistance, which results in a backwater rise on upstream (U/S) vegetation, increases the water slope inside the vegetation, and for some cases, forms a hydraulic jump downstream (D/S) of the vegetation, thus transforming a subcritical flow to supercritical [Pasha, G. A. and Tanaka, N. [2017] “Undular hydraulic jump formation and energy loss in a flow through emergent vegetation of varying thickness and density,” Ocean Eng. 141, 308–325.]. Like the concepts of critical velocity and critical slope, this paper introduces the concept of “critical resistance of vegetation,” which is defined as “resistance offered by vegetation that transforms a subcritical flow to supercritical.” An analytical approach to find the water depths U/S, inside, and D/S of vegetation is introduced and validated well by laboratory experiments. Critical resistance was determined against vegetation of variable densities ([Formula: see text], where [Formula: see text] of each cylinder in the cross-stream direction, [Formula: see text] of the cylinder), thicknesses (dn, where [Formula: see text] of a cylinder and [Formula: see text] of cylinders in a stream-wise direction per unit of cross-stream width), and the initial Froude number (Fro). A subcritical flow ([Formula: see text], without vegetation) was transformed to a supercritical flow (D/S vegetation) with a range of Froude numbers of 1.6–1.9, 1.1–1.2, and 0.85–0.98 against [Formula: see text] ratios of 0.25, 1.09, and 2.13, respectively, thus defining [Formula: see text] as the critical resistance. However, altering vegetation thickness did not change the results.
26

Gron, Liz U., Jeanna E. LaCroix, Cortney J. Higgins, Karen L. Steelman, and Amanda S. Tinsley. "Heck reactions in hydrothermal, sub-critical water: water density as an important reaction variable." Tetrahedron Letters 42, no. 49 (December 2001): 8555–57. http://dx.doi.org/10.1016/s0040-4039(01)01860-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Liu, C., and K. Tobita. "Hydraulic analysis of the water-cooled blanket based on the sub-critical water condition." Fusion Engineering and Design 85, no. 7-9 (December 2010): 979–82. http://dx.doi.org/10.1016/j.fusengdes.2009.11.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Mustafa, Daanish, and Sarah J. Halvorson. "Critical Water Geographies: From Histories to Affect." Water 12, no. 7 (July 15, 2020): 2001. http://dx.doi.org/10.3390/w12072001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Water resource geography has undergone a considerable transformation since its original moorings in engineering and the pure sciences. As this Special Issue demonstrates, many intellectual and practical gains are being made through a politicized practice of water scholarship. This work by geographers integrates a critical social scientific perspective on agency, power relations, method and most importantly the affective/emotional aspects of water with profound familiarity and expertise across sub-disciplines and regions. Here, the ‘critical’ aspects of water resource geography imply anti-positivist epistemologies pressed into the service of contributing to social justice and liberation from water-related political and material struggles. The five papers making up this Special Issue address these substantive and theoretical concerns across South and West Asia, Sub-Saharan Africa and North America.
29

Wu, Jiewei, Wenlu Li, and John D. Fortner. "Photoenhanced oxidation of C60aggregates (nC60) by free chlorine in water." Environmental Science: Nano 4, no. 1 (2017): 117–26. http://dx.doi.org/10.1039/c6en00230g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
While there have been a number of fundamental studies focused on the physical and biological behaviors of C60aggregates (nC60) in model environmental and engineered systems, the aqueous reactivity of C60(as nC60) is much less understood and remains a critical gap in accurate life cycle modeling.
30

Schuller, Reidar B., Sampath J. Munaweera, Staale Selmer-Olsen, and Trond Solbakken. "Critical and Sub-critical Oil/Gas/Water Mass Flow Rate Experiments and Predictions For Chokes." SPE Production & Operations 21, no. 03 (August 1, 2006): 372–80. http://dx.doi.org/10.2118/88813-pa.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Li, Yi Zhe, Hua Wang, and Gui Rong Bao. "Dynamic Model of Rapeseed Oil Hydrolysis Reaction in Sub-Critical Water." Advanced Materials Research 860-863 (December 2013): 510–13. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.510.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Experiments of Rapeseed Oil Hydrolysis Reaction in Sub-Critical Water (250-300°C, 5-60min) are Conducted in this Paper. Results Show that the Best Conditions for Rapeseed Oil Hydrolysis are Reaction Temperature 290°C, Oil-Water Volume Ratio 1:3, Reaction Time 40min, and Conversion Rate 98.9%. Meanwhile, Kinetic Analysis of this Hydrolysis Reaction is Presented. we Learn that Hydrolysis Reaction Order is 0.7778, Activation Energy is 55.34kJ/mol and the Dynamic Model is .
32

Wang, Baofeng, Wen Li, Haokan Chen, Baoqing Li, and Gang Wang. "The removal of mercury from coal via sub-critical water extraction." Fuel Processing Technology 87, no. 5 (May 2006): 443–48. http://dx.doi.org/10.1016/j.fuproc.2005.11.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Li, Qinghai, Fuxin Li, Aihong Meng, Zhongchao Tan, and Yanguo Zhang. "Thermolysis of scrap tire and rubber in sub/super-critical water." Waste Management 71 (January 2018): 311–19. http://dx.doi.org/10.1016/j.wasman.2017.10.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Hirosaka, Kazuma, Kenji Koido, Masato Fukayama, Kazuhiro Ouryoji, and Tatsuya Hasegawa. "Experimental and numerical study of ethanol oxidation in sub-critical water." Journal of Supercritical Fluids 44, no. 3 (April 2008): 347–55. http://dx.doi.org/10.1016/j.supflu.2007.09.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Missopolinou, Doukeni, Costas Tsioptsias, Charalambos Lambrou, and Costas Panayiotou. "Selective extraction of oxygenated compounds from oregano with sub-critical water." Journal of the Science of Food and Agriculture 92, no. 4 (October 17, 2011): 814–20. http://dx.doi.org/10.1002/jsfa.4652.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Wu, Xiuyun, Junmei Liang, Yulong Wu, Husheng Hu, Shaobin Huang, and Kejing Wu. "Co-liquefaction of microalgae and polypropylene in sub-/super-critical water." RSC Advances 7, no. 23 (2017): 13768–76. http://dx.doi.org/10.1039/c7ra01030c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Suzuki, Akira. "Treatment of hazardous organic materials by sub-critical and supercritical water." Proceedings of the 1992 Annual Meeting of JSME/MMD 2003 (2003): 735–38. http://dx.doi.org/10.1299/jsmezairiki.2003.0_735.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

SHOJI, Tetsuo. "Sub-Critical Crack Growth and Structural Integrity of Light Water Reactor." Journal of the Society of Mechanical Engineers 89, no. 807 (1986): 165–71. http://dx.doi.org/10.1299/jsmemag.89.807_165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Yuksel, Asli, Mitsuru Sasaki, and Motonobu Goto. "Complete degradation of Orange G by electrolysis in sub-critical water." Journal of Hazardous Materials 190, no. 1-3 (June 2011): 1058–62. http://dx.doi.org/10.1016/j.jhazmat.2011.02.083.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Esteban, M. B., A. J. García, P. Ramos, and M. C. Márquez. "Sub-critical water hydrolysis of hog hair for amino acid production." Bioresource Technology 101, no. 7 (April 2010): 2472–76. http://dx.doi.org/10.1016/j.biortech.2009.11.054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Yuan, Pei-Qing, Ying Liu, Fan Bai, Liang Xu, Zhen-Min Cheng, and Wei-Kang Yuan. "Hydration of cyclohexene in sub-critical water over WO –ZrO2 catalysts." Catalysis Communications 12, no. 8 (March 2011): 753–56. http://dx.doi.org/10.1016/j.catcom.2011.01.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Pourali, Omid, Feridoun Salak Asghari, and Hiroyuki Yoshida. "Sub-critical water treatment of rice bran to produce valuable materials." Food Chemistry 115, no. 1 (July 2009): 1–7. http://dx.doi.org/10.1016/j.foodchem.2008.11.099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Deng, Sunhua, Zhijun Wang, Yan Gao, Qiang Gu, Xuejun Cui, and Hongyan Wang. "Sub-critical water extraction of bitumen from Huadian oil shale lumps." Journal of Analytical and Applied Pyrolysis 98 (November 2012): 151–58. http://dx.doi.org/10.1016/j.jaap.2012.07.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Onwudili, Jude A., and Paul T. Williams. "Flameless incineration of pyrene under sub-critical and supercritical water conditions." Fuel 85, no. 1 (January 2006): 75–83. http://dx.doi.org/10.1016/j.fuel.2005.06.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Latawiec, Agnieszka E., Annika L. Swindell, and Brian J. Reid. "Environmentally friendly assessment of organic compound bioaccessibility using sub-critical water." Environmental Pollution 156, no. 2 (November 2008): 467–73. http://dx.doi.org/10.1016/j.envpol.2008.01.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Cheng, Leming, Lu Liu, and X. Philip Ye. "Acrolein Production from Crude Glycerol in Sub- and Super-Critical Water." Journal of the American Oil Chemists' Society 90, no. 4 (December 11, 2012): 601–10. http://dx.doi.org/10.1007/s11746-012-2189-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Gulamussen, Noor Jehan, André Marques Arsénio, Nelson Pedro Matsinhe, and Louis Cornelis Rietveld. "Water reclamation for industrial use in sub-Saharan Africa – a critical review." Drinking Water Engineering and Science 12, no. 2 (October 1, 2019): 45–58. http://dx.doi.org/10.5194/dwes-12-45-2019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. The increasing world population and growth of industrial development lead to growing water scarcity that, combined with deficient sanitation services, represents serious challenges, particularly in regions like sub-Saharan Africa. Water reclamation is a promising approach to reduce water scarcity, serving as a driving force for better sanitation services and protecting the environment by treating sewage and redistributing for the benefit of other water-dependent applications (e.g., industries). This paper aims to give an overview of the global trends on water reclamation, with a focus on industrial use, and to derive lessons for implementation of water reclamation projects in sub-Saharan Africa. Findings show that extensive experience exists in technology and management practices that can allow successful implementation of water reclamation projects in the region. Under the conditions of deficient sanitation services and low levels of technical expertise, the main challenge is to develop a framework that can facilitate the integration of social and technological methodologies and help in introducing water reclamation in water allocation planning, including the development of specific legislation for industrial water use and disposal.
48

Xing, Lu Yao, Jin Yang Chen, Zhi Lian Li, Lei Chen, and Cheng Sheng Chen. "Amino Acids Preparation from Hydrolysis of Corn Residue in Sub-Critical Water." Advanced Materials Research 781-784 (September 2013): 1985–88. http://dx.doi.org/10.4028/www.scientific.net/amr.781-784.1985.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Hydrolysis of corn residue, one of major by-products after the extraction of starch, in sub-critical water to produce amino acids was conducted in this paper. The quality and quantity analysis of amino acids in hydrolysate were carried out by Amino Acid Analyzer (Biological Liquid Chromatography), and the main amino acid of arginine were obtained. The effects of Solid-water ratio, reaction temperature and time on the yield of the arginine were investigated. It was found that the optimum hydrolysis conditions for arginine preparation from the corn residue in sub-critical water are as follows: solid-water ratio 0.05, reaction temperature 473K and reaction time 1h, and the yield of arginine 10.23%. The results show that the sub-critical water hydrolysis process has the advantages of high efficiency, simple process and friendly to environment.
49

Cao, Feng, Duanyang Li, Ruiping Deng, Lijian Huang, Daocheng Pan, Jianmin Wang, Song Li, and Gaowu Qin. "Synthesis of small Fe2O3 nanocubes and their enhanced water vapour adsorption–desorption properties." RSC Advances 5, no. 103 (2015): 84587–91. http://dx.doi.org/10.1039/c5ra12456e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Eltareb, Ali, Gustavo E. Lopez, and Nicolas Giovambattista. "Nuclear quantum effects on the thermodynamic, structural, and dynamical properties of water." Physical Chemistry Chemical Physics 23, no. 11 (2021): 6914–28. http://dx.doi.org/10.1039/d0cp04325g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The properties of H2O and D2O are investigated using PIMD simulations atT≥ 210 K,P= 1 bar. Anomalous maxima in thermodynamic response functions are found, supporting the presence of a liquid–liquid critical point atP> 0.

До бібліографії