Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Super resolution spectroscopy.

Статті в журналах з теми "Super resolution spectroscopy"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Super resolution spectroscopy".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Harris, T. D., R. D. Grober, J. K. Trautman, and E. Betzig. "Super-Resolution Imaging Spectroscopy." Applied Spectroscopy 48, no. 1 (1994): 14A—21A. http://dx.doi.org/10.1366/0003702944027589.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tomita, Motohiro, Hiroki Hashiguchi, Takuya Yamaguchi, Munehisa Takei, Daisuke Kosemura, and Atsushi Ogura. "Super-Resolution Raman Spectroscopy by Digital Image Processing." Journal of Spectroscopy 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/459032.

Повний текст джерела
Анотація:
We demonstrate the results of a strain (stress) evaluation obtained from Raman spectroscopy measurements with the super-resolution method (the so-called super-resolution Raman spectroscopy) for a Si substrate with a patterned SiN film (serving as a strained Si sample). To improve the spatial resolution of Raman spectroscopy, we used the super-resolution method and a high-numerical-aperture immersion lens. Additionally, we estimated the spatial resolution by an edge force model (EFM) calculation. One- and two-dimensional stress distributions in the Si substrate with the patterned SiN film were
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Candela, Alberto, David R. Thompson, David Wettergreen, et al. "Probabilistic Super Resolution for Mineral Spectroscopy." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 08 (2020): 13241–47. http://dx.doi.org/10.1609/aaai.v34i08.7030.

Повний текст джерела
Анотація:
Earth and planetary sciences often rely upon the detailed examination of spectroscopic data for rock and mineral identification. This typically requires the collection of high resolution spectroscopic measurements. However, they tend to be scarce, as compared to low resolution remote spectra. This work addresses the problem of inferring high-resolution mineral spectroscopic measurements from low resolution observations using probability models. We present the Deep Gaussian Conditional Model, a neural network that performs probabilistic super resolution via maximum likelihood estimation. It als
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Buckin, Vitaly, and Evegny Kudryashov. "Super sonic: High-resolution ultrasonic spectroscopy." Biochemist 24, no. 4 (2002): 25–27. http://dx.doi.org/10.1042/bio02404025.

Повний текст джерела
Анотація:
High-resolution ultrasonic spectrometry is a novel analytical technique with enormous potential for the investigation of a wide range of samples and dynamic processes. The non-destructive technique is based on measuring the changes that take place to ultrasonic waves as they pass through materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Graefe, Christian T., David Punihaole, Celina M. Harris, Michael J. Lynch, Ryan Leighton, and Renee R. Frontiera. "Far-Field Super-Resolution Vibrational Spectroscopy." Analytical Chemistry 91, no. 14 (2019): 8723–31. http://dx.doi.org/10.1021/acs.analchem.9b01731.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lim, Alane. "Machine learning method puts the “super” in super-resolution spectroscopy." Scilight 2021, no. 49 (2021): 491108. http://dx.doi.org/10.1063/10.0009031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

DeLisle, Charles F., H. Bhagya Mendis, and Justin L. Lorieau. "Super resolution NOESY spectra of proteins." Journal of Biomolecular NMR 73, no. 3-4 (2019): 105–16. http://dx.doi.org/10.1007/s10858-019-00231-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Matsuo, T., and H. Matsuda. "A super-high-resolution tandem mass spectrometer." International Journal of Mass Spectrometry and Ion Processes 91, no. 1 (1989): 27–40. http://dx.doi.org/10.1016/0168-1176(89)80107-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Winterauer, Dominik J., Daniel Funes-Hernando, Jean-Luc Duvail, Saïd Moussaoui, Tim Batten, and Bernard Humbert. "Sub-Micron Spatial Resolution in Far-Field Raman Imaging Using Positivity-Constrained Super-Resolution." Applied Spectroscopy 73, no. 8 (2019): 902–9. http://dx.doi.org/10.1177/0003702819832355.

Повний текст джерела
Анотація:
Raman microscopy is a valuable tool for detecting physical and chemical properties of a sample material. When probing nanomaterials or nanocomposites the spatial resolution of Raman microscopy is not always adequate as it is limited by the optical diffraction limit. Numerical post-processing with super-resolution algorithms provides a means to enhance resolution and can be straightforwardly applied. The aim of this work is to present interior point least squares (IPLS) as a powerful tool for super-resolution in Raman imaging through constrained optimization. IPLS’s potential for super-resoluti
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jeong, Dokyung, and Doory Kim. "Super‐resolution fluorescence microscopy‐based single‐molecule spectroscopy." Bulletin of the Korean Chemical Society 43, no. 3 (2022): 316–27. http://dx.doi.org/10.1002/bkcs.12471.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Boschetti, Alice, Andrea Taschin, Paolo Bartolini, et al. "Spectral super-resolution spectroscopy using a random laser." Nature Photonics 14, no. 3 (2019): 177–82. http://dx.doi.org/10.1038/s41566-019-0558-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Winterauer, Dominik J., Daniel Funes-Hernando, Jean-Luc Duvail, Saïd Moussaoui, Tim Batten, and Bernard Humbert. "Nanoscale Spatial Resolution in Far-Field Raman Imaging Using Hyperspectral Unmixing in Combination with Positivity Constrained Super-Resolution." Applied Spectroscopy 74, no. 7 (2020): 780–90. http://dx.doi.org/10.1177/0003702820920688.

Повний текст джерела
Анотація:
This work introduces hyper-resolution (HyRes), a numerical approach for spatial resolution enhancement that combines hyperspectral unmixing and super-resolution image restoration (SRIR). HyRes yields a substantial increase in spatial resolution of Raman spectroscopy while simultaneously preserving the undistorted spectral information. The resolving power of this technique is demonstrated on Raman spectroscopic data from a polymer nanowire sample. Here, we demonstrate an achieved resolution of better than 14 nm, a more than eightfold improvement on single-channel image-based SRIR and [Formula:
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Thompson, Shelby, Mychele Jorns, and Dimitri Pappas. "Synthesis and Characterization of Dye-Doped Au@SiO2 Core-Shell Nanoparticles for Super-Resolution Fluorescence Microscopy." Applied Spectroscopy 76, no. 11 (2022): 1367–74. http://dx.doi.org/10.1177/00037028221121357.

Повний текст джерела
Анотація:
Dye-doped nanoparticles have been investigated as bright, fluorescent probes for localization-based super-resolution microscopy. Nanoparticle size is important in super-resolution microscopy to get an accurate size of the object of interest from image analysis. Due to their self-blinking behavior and metal-enhanced fluorescence (MEF), Ag@SiO2 and Au@Ag@SiO2 nanoparticles have shown promise as probes for localization-based super-resolution microscopy. Here, several noble metal-based dye-doped core-shell nanoparticles have been investigated as self-blinking nanomaterial probes. It was observed t
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Pavlovetc, Ilia M., Kyle Aleshire, Gregory V. Hartland, and Masaru Kuno. "Approaches to mid-infrared, super-resolution imaging and spectroscopy." Physical Chemistry Chemical Physics 22, no. 8 (2020): 4313–25. http://dx.doi.org/10.1039/c9cp05815j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Liu, Biao, Rongping Tan, Baogao Tan, Chenhui Huang, and Keqin Yang. "Super-Resolution Reconstruction Algorithm-Based MRI Diagnosis of Prostate Cancer and Evaluation of Treatment Effect of Prostate Specific Antigen." Concepts in Magnetic Resonance Part A 2022 (October 15, 2022): 1–7. http://dx.doi.org/10.1155/2022/5447347.

Повний текст джерела
Анотація:
MRI of prostate cancer (PCa) was performed using a projection onto convex sets (POCS) super-resolution reconstruction algorithm to evaluate and analyze the treatment of prostate-specific antigen (PSA) and provide a theoretical reference for clinical practice. A total of 110 patients with PCa were selected as the study subjects. First, the modified POCS algorithm was used to reconstruct the MRI images, and the gradient interpolation algorithm was used instead of the traditional bilinear algorithm to preserve the edge information. The diagnostic and therapeutic effects of MRI examination, PSA ex
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Jia, Haina, Te-Wei Tsai, and Shoujun Xu. "Probing drug-DNA interactions using super-resolution force spectroscopy." Applied Physics Letters 113, no. 19 (2018): 193702. http://dx.doi.org/10.1063/1.5045787.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Park, Sang Mok, Michelle A. Visbal-Onufrak, Md Munirul Haque, et al. "mHealth spectroscopy of blood hemoglobin with spectral super-resolution." Optica 7, no. 6 (2020): 563. http://dx.doi.org/10.1364/optica.390409.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Yang, Zhu, Wang, Yang, Wu, and Li. "Super-Resolution Reconstruction of Cell Pseudo-Color Image Based on Raman Technology." Sensors 19, no. 19 (2019): 4076. http://dx.doi.org/10.3390/s19194076.

Повний текст джерела
Анотація:
Raman spectroscopy visualization is a challenging task due to the interference of complex background noise and the number of selected measurement points. In this paper, a super-resolution image reconstruction algorithm for Raman spectroscopy is studied to convert raw Raman data into pseudo-color super-resolution imaging. Firstly, the Raman spectrum data of a single measurement point is measured multiple times to calculate the mean value to remove the random background noise, and innovatively introduce the Retinex algorithm and the median filtering algorithm which improve the signal-to-noise ra
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Obeng, Eugene M., Elvina C. Dullah, Michael K. Danquah, Cahyo Budiman, and Clarence M. Ongkudon. "FRET spectroscopy—towards effective biomolecular probing." Analytical Methods 8, no. 27 (2016): 5323–37. http://dx.doi.org/10.1039/c6ay00950f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Enderlein, Joerg. "From Single-Molecule Spectroscopy to Super-Resolution Microscopy: Super-Resolution Optical Fluctuation Imaging and Metal-Induced Energy Transfer." Biophysical Journal 110, no. 3 (2016): 6a. http://dx.doi.org/10.1016/j.bpj.2015.11.079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Offroy, Marc, Yves Roggo, Peyman Milanfar, and Ludovic Duponchel. "Infrared chemical imaging: Spatial resolution evaluation and super-resolution concept." Analytica Chimica Acta 674, no. 2 (2010): 220–26. http://dx.doi.org/10.1016/j.aca.2010.06.025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Minami, Kei-Ichiroh, Hiroaki Okayama, and Satoshi Kawata. "Super-Dynamic-Range and Super-Quantization Methods for FT-IR Spectra." Applied Spectroscopy 47, no. 4 (1993): 441–45. http://dx.doi.org/10.1366/0003702934334903.

Повний текст джерела
Анотація:
Numerical methods are proposed for expanding the dynamic range and increasing the quantization resolution of Fourier transform infrared spectrum data. In these methods, an interferogram is oversampled at a rate higher than the Nyquist sampling rate. From the oversampled interferogram data, the full-range interferogram or the lost quantization bits are recovered by using the Gerchberg-Papoulis iterative algorithm, incorporating constraints on the amplitude range of the interferogram and on the band limitation and non-negativity of the spectrum. Experimental results for IR absorption spectra of
Стилі APA, Harvard, Vancouver, ISO та ін.
23

KOUWENBERG, J. J. M., G. J. KREMERS, J. A. SLOTMAN, et al. "Alpha particle spectroscopy using FNTD and SIM super-resolution microscopy." Journal of Microscopy 270, no. 3 (2018): 326–34. http://dx.doi.org/10.1111/jmi.12686.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Li, Shucheng, Lirong Qiu, Yun Wang, Han Cui, and Weiqian Zhao. "Super-resolution radially polarized pupil-filtering confocal Raman spectroscopy technology." Measurement Science and Technology 31, no. 3 (2019): 035903. http://dx.doi.org/10.1088/1361-6501/ab599f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Boschetti, A., L. Pattelli, R. Torre, and D. S. Wiersma. "Perspectives and recent advances in super-resolution spectroscopy: Stochastic and disordered-based approaches." Applied Physics Letters 120, no. 25 (2022): 250502. http://dx.doi.org/10.1063/5.0096519.

Повний текст джерела
Анотація:
Spectroscopic applications are characterized by the constant effort to combine high spectral resolution with large bandwidth. A trade-off typically exists between these two aspects, but the recent development of super-resolved spectroscopy techniques is bringing new opportunities into this field. This is particularly relevant for all applications where compact and cost-effective instruments are needed such as in sensing, quality control, environmental monitoring, or biometric authentication, to name a few. These unconventional approaches exploit several strategies for spectral investigation, t
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Eliet, Sophie, Arnaud Cuisset, Francis Hindle, Jean-Francois Lampin, and Romain Peretti. "Broadband Super-Resolution Terahertz Time-Domain Spectroscopy Applied to Gas Analysis." IEEE Transactions on Terahertz Science and Technology 12, no. 1 (2022): 75–80. http://dx.doi.org/10.1109/tthz.2021.3120029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Zhang, Zhengyang, Samuel J. Kenny, Margaret Hauser, Wan Li, and Ke Xu. "Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy." Nature Methods 12, no. 10 (2015): 935–38. http://dx.doi.org/10.1038/nmeth.3528.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Khorasaninejad, M., W. T. Chen, J. Oh, and F. Capasso. "Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy." Nano Letters 16, no. 6 (2016): 3732–37. http://dx.doi.org/10.1021/acs.nanolett.6b01097.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Jia, Haina, Yuhong Wang, and Shoujun Xu. "Super-resolution force spectroscopy reveals ribosomal motion at sub-nucleotide steps." Chemical Communications 54, no. 46 (2018): 5883–86. http://dx.doi.org/10.1039/c8cc02658k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Shi, Songyue, Xiaoxia Gong, Yan Mu, Kevin Finch, and Gerardo Gamez. "Geometric super-resolution on push-broom hyperspectral imaging for plasma optical emission spectroscopy." Journal of Analytical Atomic Spectrometry 33, no. 10 (2018): 1745–52. http://dx.doi.org/10.1039/c8ja00235e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Lewis, Aaron, Dmitry Lev, Daniel Sebag, et al. "The optical near-field: super-resolution imaging with structural and phase correlation." Nanophotonics 3, no. 1-2 (2014): 3–18. http://dx.doi.org/10.1515/nanoph-2014-0007.

Повний текст джерела
Анотація:
AbstractAn overview of near-field optics is presented with a focus on the fundamental advances that have been made in the field since its inception 30 years ago. A focus is placed on the advancements that have been achieved in instrumentation. These advances have led to a greater generality of use with ultra-low mechanical and optical noise and the ultimate in force sensitivity with near-field optical probes. An emphasis is placed on the importance of fully integrating near-field optics with other imaging and spectroscopic modalities including Raman spectroscopy and electron/ion beam imaging.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Duponchel, Ludovic, Peyman Milanfar, Cyril Ruckebusch, and Jean-Pierre Huvenne. "Super-resolution and Raman chemical imaging: From multiple low resolution images to a high resolution image." Analytica Chimica Acta 607, no. 2 (2008): 168–75. http://dx.doi.org/10.1016/j.aca.2007.12.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Chatterjee, Krishnendu, Feby Wijaya Pratiwi, Frances Camille M. Wu, Peilin Chen, and Bi-Chang Chen. "Recent Progress in Light Sheet Microscopy for Biological Applications." Applied Spectroscopy 72, no. 8 (2018): 1137–69. http://dx.doi.org/10.1177/0003702818778851.

Повний текст джерела
Анотація:
The introduction of light sheet fluorescence microscopy (LSFM) has overcome the challenges in conventional optical microscopy. Among the recent breakthroughs in fluorescence microscopy, LSFM had been proven to provide a high three-dimensional spatial resolution, high signal-to-noise ratio, fast imaging acquisition rate, and minuscule levels of phototoxic and photodamage effects. The aforementioned auspicious properties are crucial in the biomedical and clinical research fields, covering a broad range of applications: from the super-resolution imaging of intracellular dynamics in a single cell
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Yoshida, Shawn, and Lydia Kisley. "Super-resolution fluorescence imaging of extracellular environments." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 257 (August 2021): 119767. http://dx.doi.org/10.1016/j.saa.2021.119767.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Eggeling, Christian. "Super-resolution optical microscopy of lipid plasma membrane dynamics." Essays in Biochemistry 57 (February 6, 2015): 69–80. http://dx.doi.org/10.1042/bse0570069.

Повний текст джерела
Анотація:
Plasma membrane dynamics are an important ruler of cellular activity, particularly through the interaction and diffusion dynamics of membrane-embedded proteins and lipids. FCS (fluorescence correlation spectroscopy) on an optical (confocal) microscope is a popular tool for investigating such dynamics. Unfortunately, its full applicability is constrained by the limited spatial resolution of a conventional optical microscope. The present chapter depicts the combination of optical super-resolution STED (stimulated emission depletion) microscopy with FCS, and why it is an important tool for invest
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Schrum, Kimberley F., Seung Hyeon Ko, and Dor Ben-Amotz. "Description and Theory of a Fiber-Optic Confocal and Super-Focal Raman Microspectrometer." Applied Spectroscopy 50, no. 9 (1996): 1150–55. http://dx.doi.org/10.1366/0003702963905187.

Повний текст джерела
Анотація:
A fiber-optic bundle, placed in the imaging plane of a microspectrometer, functions as a variable-size pinhole. This arrangement allows for conventional confocal measurements to be made by collecting the signal from the central fiber. On the other hand, measurements arising from a larger focal volume are made by integrating the signal from the entire bundle. This new “super-focal” imaging technique yields larger imaging depth without any loss in spectral resolution. The instrument design and performance are described, as well as geometric optics calculations which accurately predict the depth
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Mankar, Rupali, Chalapathi Charan Gajjela, Farideh Foroozandeh Shahraki, Saurabh Prasad, David Mayerich, and Rohith Reddy. "Multi-modal image sharpening in fourier transform infrared (FTIR) microscopy." Analyst 146, no. 15 (2021): 4822–34. http://dx.doi.org/10.1039/d1an00103e.

Повний текст джерела
Анотація:
Multi-modal fusion improves spatial resolution of FTIR images beyond diffraction-limit that improves classification of histology classes. Enhanced spatial details are comparable to O-PTIR which is a super-resolution spectroscopic imaging technology.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Jovanovic-Talisman, Tijana, and Vladana Vukojevic. "Super-resolution fluorescence imaging and correlation spectroscopy: Principles and examples of application." Journal of the Serbian Chemical Society 78, no. 11 (2013): 1671–88. http://dx.doi.org/10.2298/jsc130815102j.

Повний текст джерела
Анотація:
Self-organization of cell-surface receptors in structurally distinct domains in the plasma membrane is of vital interest for correct cellular signaling. However, this dynamic process is difficult to study in cells with sufficiently high temporal and spatial resolution. We present here two quantitative high-resolution methods with single-molecule sensitivity, Fluorescence Correlation Spectroscopy (FCS) and pair-correlation Photoactivated Localization Microscopy (pcPALM), which enable nondestructive study of receptor diffusion and lateral organization at the nanoscale level. We introduce here th
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Kuwahara, Masashi, Takayuki Shima, Paul Fons, and Junji Tominaga. "In-situRaman Scattering Spectroscopy for a Super Resolution Optical Disk during Readout." Applied Physics Express 2 (August 7, 2009): 082402. http://dx.doi.org/10.1143/apex.2.082402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Di Russo, Enrico, Pradip Dalapati, Jonathan Houard, et al. "Super-resolution Optical Spectroscopy of Nanoscale Emitters within a Photonic Atom Probe." Nano Letters 20, no. 12 (2020): 8733–38. http://dx.doi.org/10.1021/acs.nanolett.0c03584.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Bokor, Nándor, Keiichi Inoue, Satoshi Kogure, Masaaki Fujii, and Makoto Sakai. "Visible-super-resolution infrared microscopy using saturated transient fluorescence detected infrared spectroscopy." Optics Communications 283, no. 3 (2010): 509–14. http://dx.doi.org/10.1016/j.optcom.2009.10.032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Bokor, Nandor, and Yoshinori Iketaki. "New Design Method for a Phase Plate in Super-Resolution Fluorescence Microscopy." Applied Spectroscopy 68, no. 3 (2014): 353–61. http://dx.doi.org/10.1366/13-07249.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Borsch, M., C. P. Schmid, L. Weigl, et al. "Super-resolution lightwave tomography of electronic bands in quantum materials." Science 370, no. 6521 (2020): 1204–7. http://dx.doi.org/10.1126/science.abe2112.

Повний текст джерела
Анотація:
Searching for quantum functionalities requires access to the electronic structure, constituting the foundation of exquisite spin-valley–electronic, topological, and many-body effects. All-optical band-structure reconstruction could directly connect electronic structure with the coveted quantum phenomena if strong lightwaves transported localized electrons within preselected bands. Here, we demonstrate that harmonic sideband (HSB) generation in monolayer tungsten diselenide creates distinct electronic interference combs in momentum space. Locating these momentum combs in spectroscopy enables su
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Turner, J. L., and S. C. Beck. "An Introverted Starburst: Gas and SSC Formation in NGC 5253." Symposium - International Astronomical Union 217 (2004): 208–9. http://dx.doi.org/10.1017/s0074180900197517.

Повний текст джерела
Анотація:
High resolution Brackett line spectroscopy with the Keck Telescope reveals relatively narrow recombination lines toward the embedded young super star cluster nebula in NGC 5253. The gas within this nebula is almost certainly gravitationally bound by the massive and compact young star cluster.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Fang, Yi-Fan, Yi-Lan Li, Xiao-Ming Li, and Ji-Long Liu. "Super-Resolution Imaging Reveals Dynamic Reticular Cytoophidia." International Journal of Molecular Sciences 23, no. 19 (2022): 11698. http://dx.doi.org/10.3390/ijms231911698.

Повний текст джерела
Анотація:
CTP synthase (CTPS) can form filamentous structures termed cytoophidia in cells in all three domains of life. In order to study the mesoscale structure of cytoophidia, we perform fluorescence recovery after photobleaching (FRAP) and stimulated emission depletion (STED) microscopy in human cells. By using an EGFP dimeric tag as a tool to explore the physical properties of cytoophidia, we find that cytoophidia are dynamic and reticular. The reticular structure of CTPS cytoophidia may provide space for other components, such as IMPDH. In addition, we observe CTPS granules with tentacles.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Yao, Chunyan, Jianwei Zhang, Guang Wu, and Houxiang Zhang. "Motion Analysis of Live Objects by Super-Resolution Fluorescence Microscopy." Computational and Mathematical Methods in Medicine 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/859398.

Повний текст джерела
Анотація:
Motion analysis plays an important role in studing activities or behaviors of live objects in medicine, biotechnology, chemistry, physics, spectroscopy, nanotechnology, enzymology, and biological engineering. This paper briefly reviews the developments in this area mostly in the recent three years, especially for cellular analysis in fluorescence microscopy. The topic has received much attention with the increasing demands in biomedical applications. The tasks of motion analysis include detection and tracking of objects, as well as analysis of motion behavior, living activity, events, motion s
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Laine, Romain F., Gabriele S. Kaminski Schierle, Sebastian van de Linde, and Clemens F. Kaminski. "From single-molecule spectroscopy to super-resolution imaging of the neuron: a review." Methods and Applications in Fluorescence 4, no. 2 (2016): 022004. http://dx.doi.org/10.1088/2050-6120/4/2/022004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Moerner, W. E. (William E. ). "Nobel Lecture: Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy." Reviews of Modern Physics 87, no. 4 (2015): 1183–212. http://dx.doi.org/10.1103/revmodphys.87.1183.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Kisley, Lydia, Rachel Brunetti, Lawrence J. Tauzin, et al. "Characterization of Porous Materials by Fluorescence Correlation Spectroscopy Super-resolution Optical Fluctuation Imaging." ACS Nano 9, no. 9 (2015): 9158–66. http://dx.doi.org/10.1021/acsnano.5b03430.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Yan, Rui, Seonah Moon, Samuel J. Kenny, and Ke Xu. "Spectrally Resolved and Functional Super-resolution Microscopy via Ultrahigh-Throughput Single-Molecule Spectroscopy." Accounts of Chemical Research 51, no. 3 (2018): 697–705. http://dx.doi.org/10.1021/acs.accounts.7b00545.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!