Добірка наукової літератури з теми "Superconducting multilayers"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Superconducting multilayers".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Superconducting multilayers"
Sidorenko, A. S. "Superconducting Fractal Multilayers." Fractals 05, supp02 (October 1997): 101–17. http://dx.doi.org/10.1142/s0218348x97000851.
Повний текст джерелаHegde, M. S., K. M. Satyalakshmi, S. Sundar Manoharan, and Dhananjay Kumar. "Superconducting and non-superconducting oxide multilayers." Materials Science and Engineering: B 32, no. 3 (July 1995): 239–45. http://dx.doi.org/10.1016/0921-5107(95)80026-3.
Повний текст джерелаAttanasio, C., L. Maritato, B. Engel, and C. M. Falco. "Superconducting spin-glass multilayers." Physica B: Condensed Matter 194-196 (February 1994): 1721–22. http://dx.doi.org/10.1016/0921-4526(94)91360-9.
Повний текст джерелаSong, S. N., B. Y. Jin, F. L. Du, and J. B. Ketterson. "Superconducting tunneling through multilayers." Superlattices and Microstructures 3, no. 5 (January 1987): 485–91. http://dx.doi.org/10.1016/0749-6036(87)90229-1.
Повний текст джерелаTachiki, Masashi, and Saburo Takahashi. "Theory of superconducting multilayers." Physica C: Superconductivity 153-155 (June 1988): 1702–7. http://dx.doi.org/10.1016/0921-4534(88)90457-1.
Повний текст джерелаNastasi, M., P. N. Arendt, R. Tesmer, C. J. Maggiore, R. C. Cordi, D. L. Bish, J. D. Thompson, et al. "Fabrication of oxide superconductors from multilayered metallic thin films." Journal of Materials Research 2, no. 6 (December 1987): 726–31. http://dx.doi.org/10.1557/jmr.1987.0726.
Повний текст джерелаPlehn, H., O. J. Wacker, and R. Kümmel. "Electronic structure of superconducting multilayers." Physical Review B 49, no. 17 (May 1, 1994): 12140–50. http://dx.doi.org/10.1103/physrevb.49.12140.
Повний текст джерелаTakahashi, S., T. Hirai, M. Machida, and M. Tachiki. "Phase diagram in superconducting multilayers." Physica C: Superconductivity 235-240 (December 1994): 2585–86. http://dx.doi.org/10.1016/0921-4534(94)92513-5.
Повний текст джерелаAarts, J., J. Meiressonne, H. Sprey, W. Maj, and P. Zagwijn. "Proximity effect in superconducting multilayers." Vacuum 41, no. 4-6 (January 1990): 1476–80. http://dx.doi.org/10.1016/0042-207x(90)93995-u.
Повний текст джерелаWANG, H. F., Y. Z. ZHANG, L. H. LIU, D. P. LI, G. Y. WANG, H. Y. TIAN та D. N. ZHENG. "TRANSPORT PROPERTIES OF La2-x1Srx1CuO4+δ/La2-x2Srx2CuO4+δ MULTILAYERS GROWN BY LASER ABLATION". International Journal of Modern Physics B 27, № 15 (4 червня 2013): 1362029. http://dx.doi.org/10.1142/s0217979213620294.
Повний текст джерелаДисертації з теми "Superconducting multilayers"
Sadki, El Hadi Smail. "Vortex matter in low temperature superconducting multilayers." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620238.
Повний текст джерелаKryukov, Sergiy A. "MAGNETIC PROPERTIES OF Nb/Ni SUPERCONDUCTING / FERROMAGNETIC MULTILAYERS." UKnowledge, 2012. http://uknowledge.uky.edu/physastron_etds/7.
Повний текст джерелаWong, André Wing Gai. "Ion implantation patterning of high temperature superconducting thin films and multilayers." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0001/NQ39005.pdf.
Повний текст джерелаLIU, LIYING. "EFFECT OF INTERFACE ROUGHNESS AND HEAT-TREATMENT OF THE SUPERCONDUCTING PROPERTIES OF NB/CO MULTILAYERS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2012. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=20721@1.
Повний текст джерелаNeste trabalho foram preparadas multi-camadas supercondutor(SC)/ ferromagneto(FM) Nb/Co via pulverização catódica (Magnetron Sputtering). O principal objetivo é estudar o efeito de diferentes espessuras da camada ferromagnética (Co) nas propriedades supercondutoras do Nb. Era esperado que, após tratamentos térmicos, as camadas de Co formassem um plano de nanopartículas magnéticas ordenadas, cujo efeito deve ser muito diferente das nanopartículas aleatoriamente orientadas e camadas magnéticas continuas. As microestruturas foram investigadas por Difração de Raios-X em baixos ângulos (LAXRD), Microscopia de Força Atômica (AFM) e Microscopia Eletrônica de Transmissão (TEM). Propriedades magnéticas e de transporte tem sido estudadas com o Sistema de Medição de Propriedade Físicas (PPMS), da empresa Quantum Design. As medidas magnéticas e de transporte mostram que, com o aumento da espessura das camadas de Co, a temperatura de transição supercondutora (Tc) aumenta significativamente para as amostras como preparadas. Foi relatado na literatura que quando a espessura das camadas magnéticas da ordem de alguns nanômetros, a Tc aumenta e diminui periodicamente com o aumento da espessura das camadas magnéticas. No entanto, nesta pesquisa, a espessura das camadas magnéticas é de dezenas de nanômetros, sendo muito maior do que este alcance e portanto, não pode ser explicado baseando-se no mesmo modelo. Propusemos que a rugosidade da interface entre as camadas de Co e Nb desempenha um papel importante para este comportamento. Os resultados de AFM e XRD mostram que a rugosidade máxima da interface é da ordem de 7 a 10 nm, o que é comparável à espessura de camadas de Co (de 5 a 20 nm). Introduzimos um parâmetro R igual a d, onde R é a rugosidade da interface e d é a espessura da camada magnética, para discutir o efeito da interface sobre as propriedades supercondutoras da nossa amostra. Quando delta maior que 1, a camada magnética pode ser considerada uma forma não-continua e somente quando delta menor que 1, as camadas magnéticas continuas podem ser formadas. Com base em observações de topografia de interfaces na nano-escala , podemos compreender que primeiro a rugosidade aumenta a área da interface, resultando em um efeito de proximidade mais forte, além de aumentar o efeito do campo de dispersão na Tc. Este efeito depende não somente da rugosidade, mas também da espessura da camada magnética. Verificou-se que o parâmetro determina o efeito das camadas magnéticas. As diferentes propriedades magnéticas abaixo da Tc para diferentes amostras também pode ser explicada por este modelo. Após o tratamento térmico, a Tc das amostras diminuiu e as propriedades magnéticas também se tornam piores do que as amostras como preparadas. Os resultados de TEM mostram que as camadas de Co estam interconectadas e depois do recozimento não há indícios de interdifusão entre as camadas Nb e Co. Mais medidas são necessárias para verificar se as camadas magnéticas podem induzir vórtices espontâneos, assim como para explicar a diferença entre as amostras com nanopartículas magnéticas ordenadas comparadas com aquelas orientadas aleatoriamente.
In this work we prepared Superconductor(SC)/ferromagnet(FM) Nb/Co multi-layers with magnetron-sputtering. The main purpose of this work is to study the effect of different shape of ferromagnetic layers on the superconducting properties of Nb. We expected that after annealing the Co layers can form in-plane ordered magnetic nanoparticles and the effect of ordered magnetic nanoparticles should be very different from randomly oriented nanoparticles and continues magnetic layers. The microstructures have been investigated by means of Low Angle X-ray Diffraction (LAXRD), Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM). Magnetic and transport properties have been studied with Physical Property Measurement System (PPMS) from Quantum Design. The magnetic and transport measurements show that with increase of the thickness of Co layers the superconducting transition temperature (Tc) signifficantly increases for the as-prepared samples. It was reported in the literature that when the thickness of the magnetic layers is in the range of several nanometers, Tc increases and decreases periodically with the increase of the thickness of the magnetic layers. In our samples, however, the thickness of the magnetic layers (several tens nanometers) is much larger than that range and therefore, cannot be explained within the same model. We proposed that the roughness of the interface between Co and Nb layers plays an important role for this behavior. The AFM and LAXRD results show that the maxim roughness of the interface is in the range of 7 until 10 nm, which is comparable to the thickness of Co layers (5 until 20 nm). We introduced one parameter R equal d, where R is the roughness of the interface and d is the thickness of the magnetic layer, to discuss the effect of the interface on the superconducting properties of our sample. When delta more 1, the magnetic layer may be in a non-continues form and only when delta less1 continues magnetic layers can be formed. Based upon nano-scale observations of interfaces topography we can understand that the roughness first increases the area of the interface, which gives stronger proximity effect and, second, enhances the effect of the stray eld on Tc. This effect depends not only the roughness but also the thickness of the magnetic layer. It was found out that the parameter determines the effect of the magnetic layers. The different magnetic properties below Tc for different samples can also be explained by this model. After annealing, Tc of the samples decreased and magnetic properties also became worse than the as-prepared samples. The TEM results show that the Co layers is interconnected and after annealing there is no indication of interdiffusion between Nb and Co layers. More measurements are needed to see if the magnetic layers can induce spontaneous vortices and what the difference is between samples with ordered and randomly oriented magnetic nano-particles.
SANTOS, Flávia Portela. "Estudo das propriedades supercondutoras em multicamadas de Nb, Pb, e Sn." Universidade Federal de Pernambuco, 2015. https://repositorio.ufpe.br/handle/123456789/17342.
Повний текст джерелаMade available in DSpace on 2016-07-12T19:37:30Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese_FlaviaPortela_2015.pdf: 24722134 bytes, checksum: ecaec07cae254145230ae32ad7de71e3 (MD5) Previous issue date: 2015-03-26
CAPES
O estudo em sistemas de multicamadas supercondutoras alcan cou grande interesse na pesquisa de novos materiais, pois al em de apresentarem ampla aplicabilidade tecnol ogica, oferecem fascinantes possibilidades de observar novos fen^omenos na supercondutividade. Esta ultima caracter stica e a de maior motiva c~ao para esta tese, uma vez que pouco ainda se tem reportado a respeito da supercondutividade em multicamadas constitu das por supercondutor(S)/supercondutor(S0). Neste trabalho, estudamos tr^es novos sistemas nanoestruturados formados por supercondutores elementares, de baixa temperatura cr tica, tais como ni obio (Nb), chumbo (Pb) e estanho (Sn), a saber, a tricamada Nb(5)/Pb(500)/Nb(50) e as multicamadas Nb(100)/[Sn(50)/Nb(50)]7 e Cr(10)/Nb(100)/[Sn(50)/Nb(50)]7, onde o termo entre par^enteses indica a espessura da referida camada em nan^ometros e os colchetes indicam que a estrutura Nb/Sn e repetida 7 vezes. Para compara c~ao, tamb em s~ao analisados lmes de refer^encia de Nb, Pb e Sn. Os lmes e as multicamadas foram crescidos a temperatura ambiente por deposi c~ao via sputtering, utilizando fontes DC e RF. As amostras foram caracterizadas por difra c~ao de raios X de baixo ^angulo, microscopia eletr^onica de varredura e por microscopia de for ca at^omica. As propriedades supercondutoras foram estudadas atrav es de medidas magn eticas e de transporte el etrico. Magnetiza c~ao e resistividade foram medidas como fun c~oes da temperatura e do campo magn etico aplicado perpendicular e paralelamente as camadas. Os tr^es sistemas apresentaram transi c~oes supercondutoras abruptas, tanto na magnetiza c~ao quanto na resistividade em fun c~ao da temperatura, com os valores de TC obtidos de 7,2 K para o Nb/Pb/Nb, 5,2 K para o Nb/[Sn/Nb]7 e 3,7 K para o Cr/Nb/[Sn/Nb]7. As propriedades supercondutoras dos lmes de Pb, Nb e Sn, tais como TC, 0Hc2 e comprimentos caracter sticos apresentaram coer^encia com os valores reportados na literatura, con rmando a boa qualidade das camadas. Flux jumps s~ao observados nos loops de histerese em todos os sistemas, os quais s~ao atribu dos a instabilidades termomagn eticas. A amostra Nb/Pb/Nb apresentou uma curvatura positiva na depend^encia de 0Hc2(T), indicando que a supercondutividade ocorre preferencialmente na camada de Pb para T > T e preferencialmente na camada de Nb para T < T , de acordo com a teoria de Takahashi-Tachiki. Os comprimentos caracter sticos s~ao calculados, classi cando as multicamadas como supercondutores do tipo II. Veri camos grande in u^encia do material magn etico Cr na supercondutividade da multicamada, causando a diminui c~ao da temperatura cr tica do sistema e modi cando o comportamento dos campos cr ticos inferior e superior. A depend^encia de 0Hc1(T), em todos os sistemas, revelou um comportamento n~ao convencional, que e atribu do a uma manifesta c~ao de sistemas multicomponentes com componentes espacialmente separadas.
The study of superconducting multilayers systems has achieved much interest in the research of new materials. Besides their wide technological applicability, these structures o er fascinating possibilities to observe new phenomena in superconductivity. The latter characteristic is the fundamental motivation for this thesis, since a little has been reported about multilayers constituted of superconductor(S)/superconductor(S0). In this work, we have studied three new nanostructured systems formed by low critical temperature conventional superconductors, such as niobium (Nb), lead (Pb) and tin (Sn): the trilayer Nb(5)/Pb(500)/Nb(50) and the multilayers Nb(100)/[Sn(50)/Nb(50)]7 and Cr(10)/Nb(100)/[Sn(50)/Nb(50)]7. The term in parenthesis indicates the thickness of the layer in nanometers and the brackets that Nb/Sn structure is repeated 7 times. For comparison, the reference lms of Nb, Pb and Sn were also analyzed. The thin lms and multilayers were growth at room temperature via sputtering deposition, by using DC and RF sources. The samples were characterized for small angle X ray di raction, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The superconducting properties were investigated through magnetic and electric transport measurements. The magnetization and resistivity were obtained as functions of temperature and magnetic eld applied both perpendicularly and parallel to the layers. All the multilayers systems have showed sharp superconducting transitions in the dependence of magnetization and resistivity with the temperature. The multilayers critical temperatures were found to be 7.2 K for Nb/Pb/Nb, 5.2 K for Nb/[Sn/Nb]7 and 3.7 K for Cr/Nb/[Sn/Nb]7. The superconducting properties of reference lms Pb, Nb and Sn, such as critical temperature, upper critical eld and characteristic lengths were consistent with the literature values, con rming the good quality of the samples. In the three systems ux jumps were observed, which are attributed to thermomagnetic instabilities. The Ginzburg-Landau parameter is estimated, classifying the multilayers as type II superconductors. In the case of Nb/Pb/Nb sample, it presented an upward curvature in the 0Hc2(T) diagrams, which is a signature of superconductivity nucleation in the each layer, in accordance with Takahashi-Tachiki theory for multilayered systems. We found out a noticeable in uence of the magnetic material Cr on the multilayer superconducting properties, reducing the critical temperature of the system and modifying the lower and upper critical elds behavior. The dependence of 0Hc1(T), of all the multilayers, revealed a non-conventional behavior feature, which is consistent with a multicomponent behavior with spatially separated components.
Li, Quan. "AC loss characteristics of monolayer and multilayer superconducting power transmission cables." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609500.
Повний текст джерелаYi, Ge. "Single-crystal superconducting Pb nanowires and nanostructures." Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266955.
Повний текст джерела楊曄 and Ye Yang. "Microstructure characterization of high Tc superconducting thin films and multilayer Josephson junctions." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31220186.
Повний текст джерелаYang, Ye. "Microstructure characterization of high Tc superconducting thin films and multilayer Josephson junctions /." Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19471099.
Повний текст джерелаZhao, Yue. "Fabrication and characterization of superconducting PLD MgB2 thin films." Access electronically, 2005. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20060719.121046/index.html.
Повний текст джерелаКниги з теми "Superconducting multilayers"
Ivan, Bozovic, and Society of Photo-optical Instrumentation Engineers., eds. Superconducting superlattices and multilayers: 24-25 January 1994, Los Angeles, California. Bellingham, Wash., USA: SPIE, 1994.
Знайти повний текст джерелаЧастини книг з теми "Superconducting multilayers"
Attanasio, C., C. Coccorese, L. Maritato, I. Mercaldo, and M. Salvato. "Superconducting Properties of Nb/CuMn Multilayers." In Fluctuation Phenomena in High Temperature Superconductors, 415–23. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5536-6_35.
Повний текст джерелаHaindl, Silvia. "More Interfaces: Multilayers and Heterostructures with Fe-Based Superconductors." In Iron-Based Superconducting Thin Films, 235–52. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75132-6_5.
Повний текст джерелаMiura, Masashi. "Nanostructured Oxide Superconducting Films Prepared by Metal Organic Deposition." In Oxide Thin Films, Multilayers, and Nanocomposites, 3–26. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14478-8_1.
Повний текст джерелаKaneko, Satoru, Uli Hiller, Jon M. Slaughter, Charles M. Falco, Corrado Coccorese, and Luigi Maritato. "Structure and Superconducting Properties of Nb/Pd Multilayers." In Advances in Superconductivity XI, 1137–40. Tokyo: Springer Japan, 1999. http://dx.doi.org/10.1007/978-4-431-66874-9_267.
Повний текст джерелаMiryala, Santosh. "Design and Development of High-T c Superconducting Train Model Using Bulk Nanocomposite GdBa2Cu3O y." In Oxide Thin Films, Multilayers, and Nanocomposites, 97–106. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14478-8_6.
Повний текст джерелаHidaka, Hiroaki, and Hiroshi Yamamura. "The Stress-Strain Relationship for Multilayers of the High Tc Superconducting Oxides." In Advances in Superconductivity, 581–86. Tokyo: Springer Japan, 1989. http://dx.doi.org/10.1007/978-4-431-68084-0_98.
Повний текст джерелаNojima, Tsutomu, Masayuki Kinoshita, Yoshinori Kuwasawa, and Shigeru Nakano. "Anisotropy of Critical Current and 2D Mixed State in Superconducting Nb/NbZr Multilayers." In Advances in Superconductivity V, 497–500. Tokyo: Springer Japan, 1993. http://dx.doi.org/10.1007/978-4-431-68305-6_111.
Повний текст джерелаSingh, Shiv Jee, Muralidhar Miryala, and Paolo Mele. "Fabrication of (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy Superconducting Thin Films by Pulsed Laser Ablation of Melt-Textured Targets." In Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites, 223–32. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74073-3_10.
Повний текст джерелаBorukhovich, Arnold S., and Alexey V. Troshin. "Creation and Research of Properties of Multilayers and Superconducting Tunnel Transitions with the Participation of EuO." In Europium Monoxide, 121–38. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76741-3_5.
Повний текст джерелаWitanachchi, S., D. T. Shaw, H. S. Kwok, E. Narumi, Y. Z. Zhu, and S. Patel. "Multilayer Flexible Oxide Superconducting Tapes." In Superconductivity and Applications, 665–75. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-7565-4_66.
Повний текст джерелаТези доповідей конференцій з теми "Superconducting multilayers"
Ruck, Ben J., S. Brown, and H. J. Trodahl. "Superconducting properties of Ta/Ge multilayers." In Photonics West '96, edited by Ivan Bozovic and Davor Pavuna. SPIE, 1996. http://dx.doi.org/10.1117/12.250278.
Повний текст джерелаNarumi, E., J. Lee, S. Patel, and D. T. Shaw. "Superconducting behavior of YBa2Cu3O6.8/Bi2Sr2CanCun+1 multilayers." In Superconductivity and its applications. AIP, 1992. http://dx.doi.org/10.1063/1.43605.
Повний текст джерелаZhao, Bai Ru, B. T. Liu, Yingzhang Lin, Z. Hao, E. Z. Luo, Z. Xie, I. H. Wilson, and B. Xu. "Growth and features of high-T c superconducting multilayers and heterostructures." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Ivan Bozovic and Davor Pavuna. SPIE, 1998. http://dx.doi.org/10.1117/12.332441.
Повний текст джерелаTakahashi, Saburo, Toshio Hirai, and Masashi Tachiki. "Mechanism for the peak effect of critical current in superconducting multilayers." In OE/LASE '94, edited by Ivan Bozovic. SPIE, 1994. http://dx.doi.org/10.1117/12.179154.
Повний текст джерелаKuwasawa, Yoshinori, Tsutomu Nojima, Eisaku Touma, Masaki Fukuhara, and Shigeru Nakano. "Influence of crystalline orientation on the superconducting properties in V/Cr-multilayers." In OE/LASE '94, edited by Ivan Bozovic. SPIE, 1994. http://dx.doi.org/10.1117/12.179164.
Повний текст джерелаBruynseraede, Yvon, Vitaly V. Metlushko, K. Temst, M. Baert, E. Rosseel, M. J. Van Bael, and Victor V. Moshchalkov. "Confinement of the flux-line lattice in nanostructured superconducting films and multilayers." In Photonics West '96, edited by Ivan Bozovic and Davor Pavuna. SPIE, 1996. http://dx.doi.org/10.1117/12.250246.
Повний текст джерелаLomatch, Susanne. "Theory and application of Josephson-coupled multilayers as switching devices in superconducting electronics." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Ivan Bozovic and Davor Pavuna. SPIE, 1998. http://dx.doi.org/10.1117/12.332460.
Повний текст джерелаMercaldo, Lucia V., Carmine Attanasio, and Luigi Maritato. "Systematic analysis of the critical temperature oscillations in superconducting (Nb)/spin-glass (CuMn) multilayers." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Ivan Bozovic and Davor Pavuna. SPIE, 1998. http://dx.doi.org/10.1117/12.332446.
Повний текст джерелаBraccini, Valeria, Daniele Marre, Giuseppe Grassano, and Antonio S. Siri. "Superconducting artificial multilayers based on (Ba,Ca)/CuO 2 grown by pulsed laser ablation." In AeroSense 2000, edited by Davor Pavuna and Ivan Bozovic. SPIE, 2000. http://dx.doi.org/10.1117/12.397859.
Повний текст джерелаGray, Kenneth E., J. F. Hettinger, and Dennis Kim. "Effects of interlayer coupling on the magnetic and transport properties of superconducting multilayers and high-temperature superconductors." In OE/LASE '94, edited by Ivan Bozovic. SPIE, 1994. http://dx.doi.org/10.1117/12.179151.
Повний текст джерелаЗвіти організацій з теми "Superconducting multilayers"
Gonczy, J., W. Boroski, and R. Niemann. Multilayer Insulation (Mli) in the Superconducting Super Collider: A Practical Engineering Approach to Physical Parameters Governing Mli Thermal Performance. Office of Scientific and Technical Information (OSTI), March 1989. http://dx.doi.org/10.2172/1151491.
Повний текст джерелаWhitlow, G., J. Bowker, W. Lovic, F. List, and D. Kroeger. High critical current silver-Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8{minus}x} superconducting multilayer ribbons produced by rolling. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10119506.
Повний текст джерела