Добірка наукової літератури з теми "Symmetric fuzzy-metric space"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Symmetric fuzzy-metric space".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Symmetric fuzzy-metric space"

1

Gupta, Vishal, Manu Verma, and Mohammad Saeed Khan. "Some Modified Fixed Point Results in V-Fuzzy Metric Spaces." Advances in Fuzzy Systems 2019 (March 27, 2019): 1–10. http://dx.doi.org/10.1155/2019/6923937.

Повний текст джерела
Анотація:
The present research paper focuses on the existence of fixed point in V-fuzzy metric space. The presentation of V-fuzzy metric space in n-tuple encourages us to define different mapping in the symmetric V-fuzzy metric space. Here, the properties of fuzzy metric space are extended to V-fuzzy metric space. The introduction of notion for pair of mappings (f,g) on V-fuzzy metric space called V-weakly commuting of type Vf and V-R weakly commuting of type Vf is given. This proved fixed point theorem in V-fuzzy metric space employing the effectiveness of E.A. property and CLRg property. For the justi
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mathuraiveeran, Jeyaraman, R. Pandiselvi Selvi, and D. Poovaragavan. "Common Fixed Point Theorems In Anti Fuzzy Metric Spaces." Journal of Mathematical Analysis and Modeling 4, no. 1 (2023): 106–14. http://dx.doi.org/10.48185/jmam.v4i1.664.

Повний текст джерела
Анотація:
This article introduces the innovative concept of anti-fuzzy metric spaces and utilizes the property (E.A.) and Common limit range property of $\mathfrak{Q}$, we demonstrate the existence and uniqueness of a common fixed point in symmetric anti fuzzy metric spaces in this study. We discuss some novel ideas for a few mappings named R-weakly commuting of type $(\mathfrak{\mathfrak{J_P}})$ and weakly commuting of type $(\mathfrak{\mathfrak{J_P}})$ on an anti fuzzy metric space.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wu, Hsien-Chung. "Using the Supremum Form of Auxiliary Functions to Study the Common Coupled Coincidence Points in Fuzzy Semi-Metric Spaces." Axioms 10, no. 1 (2021): 5. http://dx.doi.org/10.3390/axioms10010005.

Повний текст джерела
Анотація:
This paper investigates the common coupled coincidence points and common coupled fixed points in fuzzy semi-metric spaces. The symmetric condition is not necessarily satisfied in fuzzy semi-metric space. Therefore, four kinds of triangle inequalities are taken into account in order to study the Cauchy sequences. Inspired by the intuitive observations, the concepts of rational condition and distance condition are proposed for the purpose of simplifying the discussions.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wu, Hsien-Chung. "Asymptotically Coupled Coincidence Points and Asymptotically Coupled Fixed Points in Fuzzy Semi-Metric Spaces." Axioms 11, no. 12 (2022): 688. http://dx.doi.org/10.3390/axioms11120688.

Повний текст джерела
Анотація:
Asymptotically coupled coincidence points and asymptotically coupled fixed points in fuzzy semi-metric spaces are studied in this paper. The fuzzy semi-metric space is taken into account, which lacks symmetric conditions. In this case, the desired results are separately investigated based on four different types of triangle inequalities. The uniqueness of asymptotically coupled coincidence points cannot be guaranteed, and it can only be addressed in a weak sense of uniqueness. However, the uniqueness of asymptotically coupled fixed points can be guaranteed using different arguments.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rasham, Tahair, Farhan Saeed, Ravi P. Agarwal, Aftab Hussain, and Abdelbsset Felhi. "Symmetrical Hybrid Coupled Fuzzy Fixed-Point Results on Closed Ball in Fuzzy Metric Space with Applications." Symmetry 15, no. 1 (2022): 30. http://dx.doi.org/10.3390/sym15010030.

Повний текст джерела
Анотація:
In this research, we establish some new fixed-point results for a symmetric coupled dominated fuzzy mapping satisfying a new advanced contraction on a closed ball in the setting of complete fuzzy metric spaces. In addition, the new notion of hybrid fuzzy-graph-dominated mappings introduced in fuzzy metric spaces achieves some new advanced fuzzy fixed-point problems. Some new definitions and illustrative examples are given to validate our new findings. Lastly, to demonstrate the originality of our new results, we present an application to the Fredholm-type integral equation.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhong, Yu, Alexander Šostak, and Fu-Gui Shi. "Pointwise k-Pseudo Metric Space." Mathematics 9, no. 19 (2021): 2505. http://dx.doi.org/10.3390/math9192505.

Повний текст джерела
Анотація:
In this paper, the concept of a k-(quasi) pseudo metric is generalized to the L-fuzzy case, called a pointwise k-(quasi) pseudo metric, which is considered to be a map d:J(LX)×J(LX)⟶[0,∞) satisfying some conditions. What is more, it is proved that the category of pointwise k-pseudo metric spaces is isomorphic to the category of symmetric pointwise k-remote neighborhood ball spaces. Besides, some L-topological structures induced by a pointwise k-quasi-pseudo metric are obtained, including an L-quasi neighborhood system, an L-topology, an L-closure operator, an L-interior operator, and a pointwi
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fernandez, Jerolina, Hüseyin Işık, Neeraj Malviya, and Fahd Jarad. "$ N_b $-fuzzy metric spaces with topological properties and applications." AIMS Mathematics 8, no. 3 (2022): 5879–98. http://dx.doi.org/10.3934/math.2023296.

Повний текст джерела
Анотація:
<abstract><p>Our aim is to introduce the notion of $ N_{b} $-fuzzy metric space (FMS). We also define quasi $ N $-FMS, and pseudo $ N_{b} $-FMS with examples and counterexamples and prove a decomposition theorem for pseudo $ N_{b} $-FMS. We prove various theorems related to the convergence of sequences and analyze topology of symmetric $ N_{b} $-FMS. At last, we provide an application of $ q $-contraction mapping as a Banach contraction principle (BCP) in the structure of symmetric $ N_{b} $-FMS and applied it in the solution of integral equations and linear equations.</p>&lt
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Saurabh, Manro. "BRAIN Journal - On Unique Common Fixed Point Theorems for Three and Four Self Mappings in Symmetric Fuzzy Metric Space." Brain Journal 1, no. 4 (2010): 74–79. https://doi.org/10.5281/zenodo.1037336.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ishtiaq, Umar, Fahad Jahangeer, Mubariz Garayev, and Ioan-Lucian Popa. "Existence and Uniqueness Results for Fuzzy Bipolar Metric Spaces." Symmetry 17, no. 2 (2025): 180. https://doi.org/10.3390/sym17020180.

Повний текст джерела
Анотація:
In this paper, we present the concept of (Υ,Ω)-iterativemappings in the setting of fuzzy bipolar metric space. The symmetric property in fuzzy bipolar metric spaces guarantees that the distance between any two elements remains invariant under permutation, ensuring consistency and uniformity in measurement regardless of the order in which the elements are considered. Furthermore, we prove several best proximity point results by utilizing (Υ,Ω)-fuzzy bipolar proximal contraction, (Υ,Ω)-Reich–Rus–Ciric type proximal contraction, (Υ,Ω)-Kannan type proximal contraction and (Υ,Ω)-Hardy–Rogers type c
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shukla, Satish, Shweta Rai та Rahul Shukla. "Some Fixed Point Theorems for α-Admissible Mappings in Complex-Valued Fuzzy Metric Spaces". Symmetry 15, № 9 (2023): 1797. http://dx.doi.org/10.3390/sym15091797.

Повний текст джерела
Анотація:
This paper discusses some properties of complex-valued fuzzy metric spaces and introduces the α-admissible mappings in the setting of complex-valued fuzzy metric spaces. We establish fixed point theorems for mappings satisfying symmetric contractive conditions with control functions. The results of this paper generalize, extend, and improve several results from metric, fuzzy metric, and complex-valued fuzzy metric spaces. Several examples are presented that verify and illustrate the new concepts, claims, and results.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!