Добірка наукової літератури з теми "Thermal computations"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Thermal computations".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Thermal computations":

1

Aithal, S. M. "Charged Species Concentration in Combusting Mixtures Using Equilibrium Chemistry." Journal of Combustion 2018 (October 4, 2018): 1–11. http://dx.doi.org/10.1155/2018/9047698.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ionization in flames is of interest in the design and development of modern combustion devices. The identity and concentration of various charged species in reacting mixtures can play an important role in the diagnostics and control of such devices. Simplified chemistry computations that provide good estimates of ionic species in complex flow-fields can be used to model turbulent reacting flows in various combustion devices, greatly reducing the required computational resources for design and development studies. A critical assessment of the use of the equilibrium chemistry method to compute charged species concentration in combusting mixtures under various temperatures, pressures, and thermal disequilibrium conditions is presented. The use of equilibrium chemistry to compute charged species concentrations in propane-air mixtures performed by Calcote and King has been extended. A more accurate computational methodology that includes the effect of negative ions, chemi-ions (H3O+ and CHO+), and thermal nonequilibrium was investigated to evaluate the suitability of equilibrium computations for estimating charged species concentrations in reacting mixtures. The results show that equilibrium computations which include the effects of H3O+ and elevated electron temperatures can indeed explain the levels of ion concentrations observed in laboratory flame experiments under lean and near-stoichiometric conditions. Furthermore, under engine-like conditions at higher temperatures and pressures, equilibrium computations can be used to obtain useful estimates of charged species concentrations in modern combustion devices.
2

Moroz, Dmytro. "MODELING OF MAXIMALLY PARALLEL STRUCTURES OF ALGORITHMS FOR SOLVING THERMAL PROBLEMS." Modern Problems of Metalurgy, no. 24 (March 28, 2021): 98–109. http://dx.doi.org/10.34185/1991-7848.2021.01.10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The paper demonstrates the possibility of creating a maximum parallel form of computational algorithms to solve thermal problems and their mapping to the architecture of multiprocessor systems based on solving thermal problems of mathematical physics. It is shown that an effective tool for studying heat and mass transfer problems in metallurgical production could be parallel computing technologies on distributed cluster systems with a relatively low cost and reasonably easily scalable both in the number of processors and in the amount of RAM. Tridiagonal structure systems' parallelization was implemented by a numerical-analytical approach, which predetermined their maximally parallel algorithmic form. That approach is facilitated by the minimum possible implementation time of the developed algorithm on parallel computing systems. Furthermore, during the arithmetic expressions parallel computations, the developed algorithm separates the error in the output data from rounding operations. Thus, the parallelization of tridiagonal systems based on numerical-analytical discretization methods does not impose any restrictions on the topology of the mesh nodes of the computational domain.Furthermore, as applied to the parallel computation of arithmetic expressions, it separates the initial data error from a real PC's rounding operations. That approach eliminates the recurrent structure of computing the sought-for decision vectors, which, as a rule, leads to the round-off errors accumulation. Such a parallel form of the constructed algorithm is maximal and has the shortest possible implementation time of the algorithm on parallel computing systems. The developed approach to parallelizing the mathematical model is stable for various types of input data. It has the most parallel form and is distinguished by the minimum time for solving the problem as applied to multiprocessor computing systems. That is explained as follows. If it is hypothesized that one processor can be assigned to one processor and one processor can be assigned to one node of the computational mesh domain, the computations can be processed in parallel and simultaneously for all nodes of the computational mesh domain. The simulation process was implemented on a PC cluster. It follows from the simulation results analysis that the developed method for solving the heat conduction problem effectively minimizes residuals.
3

Sadrizadeh, Sasan. "Numerical Investigation of Thermal Comfort in an Aircraft Passenger Cabin." E3S Web of Conferences 111 (2019): 01027. http://dx.doi.org/10.1051/e3sconf/201911101027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study presents the results of a pilot numerical study of the thermal comfort in the aircraft passenger cabin. The computations have been performed using the Computational Fluid Dynamics (CFD) technique. The overall thermal comfort at temperatures of 15 °C – 20 °C was discussed based on the PMV (Predicted Mean Vote) and PPD (Predicted Percentage of Dissatisfied) indexes. Results indicate that the air velocity and its direction toward the passengers have a considerable impact on their thermal comfort. However, a small variation in temperature has a limited effect on thermal sensation and thus do not jeopardize the overall thermal comfort.
4

Yan, Yihuan, Xiangdong Li, and Jiyuan Tu. "Effects of manikin model simplification on CFD predictions of thermal flow field around human bodies." Indoor and Built Environment 26, no. 9 (June 7, 2016): 1185–97. http://dx.doi.org/10.1177/1420326x16653500.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Simplified computational thermal manikins are beneficial to the computational efficiency of computational fluid dynamics simulations. However, the criterion of how to simplify a computational thermal manikin is still absent. In this study, three simplified computational thermal manikins (CTMs 2, 3 and 4) were rebuilt based on a detailed 3D scanned manikin (CTM 1) using different simplification approaches. Computational fluid dynamics computations of the human thermal plume in a quiescent indoor environment were conducted. The predicted airflow field using CTM 1 agreed well with the experimental observations from the literature. Although the simplified computational thermal manikins did not significantly affect the airflow predictions in the bulk regions, they strongly influenced the predicted airflow patterns near the computational thermal manikins. The predictive error of the computational thermal manikin was strongly related to the simplification approach. The computational thermal manikins generated from the surface-smoothing approach (CTM 2) was very close to CTM 1, while the required mesh elements for a stable numerical solution dropped by over 75%. Comparatively, the predictive errors of CTMs 3 and 4 were considerable in the near-body regions. This study has illustrated the importance of keeping the key body features when simplifying a computational thermal manikin. The surface-smoothing-based simplification method was shown to be a promising approach.
5

Boisse, P., A. Gasser, and J. Rousseau. "Computations of refractory lining structures under thermal loadings." Advances in Engineering Software 33, no. 7-10 (July 2002): 487–96. http://dx.doi.org/10.1016/s0965-9978(02)00064-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Veyhl, Christoph, Thomas Fiedler, Tobias Herzig, Andreas Öchsner, Timo Bernthaler, Irina V. Belova, and Graeme E. Murch. "Thermal Conductivity Computations of Sintered Hollow Sphere Structures." Metals 2, no. 2 (May 30, 2012): 113–21. http://dx.doi.org/10.3390/met2020113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Paya, Bernard, Virgiliu Fireteanu, Alexandru Spahiu, and Christophe Guérin. "3D magneto‐thermal computations of electromagnetic induction phenomena." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 22, no. 3 (September 2003): 744–55. http://dx.doi.org/10.1108/03321640310475164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Boggs, S., Jinbo Kuang, H. Andoh, and S. Nishiwaki. "Electro-thermal-mechanical computations in ZnO arrester elements." IEEE Transactions on Power Delivery 15, no. 1 (2000): 128–34. http://dx.doi.org/10.1109/61.847240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Holden, John T. "Improved Thermal Computations for Artificially Frozen Shaft Excavations." Journal of Geotechnical and Geoenvironmental Engineering 123, no. 8 (August 1997): 696–701. http://dx.doi.org/10.1061/(asce)1090-0241(1997)123:8(696).

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ziegeler, Nils J., Peter W. Nolte, and Stefan Schweizer. "Quantitative Performance Comparison of Thermal Structure Function Computations." Energies 14, no. 21 (October 28, 2021): 7068. http://dx.doi.org/10.3390/en14217068.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The determination of thermal structure functions from transient thermal measurements using network identification by deconvolution is a delicate process as it is sensitive to noise in the measured data. Great care must be taken not only during the measurement process but also to ensure a stable implementation of the algorithm. In this paper, a method is presented that quantifies the absolute accuracy of network identification on the basis of different test structures. For this purpose, three measures of accuracy are defined. By these metrics, several variants of network identification are optimized and compared against each other. Performance in the presence of noise is analyzed by adding Gaussian noise to the input data. In the cases tested, the use of a Bayesian deconvolution provided the best results.

Дисертації з теми "Thermal computations":

1

Gowreesunker, Baboo Lesh Singh. "Phase change thermal enery storage for the thermal control of large thermally lightweight indoor spaces." Thesis, Brunel University, 2013. http://bura.brunel.ac.uk/handle/2438/7649.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Energy storage using Phase Change Materials (PCMs) offers the advantage of higher heat capacity at specific temperature ranges, compared to single phase storage. Incorporating PCMs in lightweight buildings can therefore improve the thermal mass, and reduce indoor temperature fluctuations and energy demand. Large atrium buildings, such as Airport terminal spaces, are typically thermally lightweight structures, with large open indoor spaces, large glazed envelopes, high ceilings and non-uniform internal heat gains. The Heating, Ventilation and Air-Conditioning (HVAC) systems constitute a major portion of the overall energy demand of such buildings. This study presented a case study of the energy saving potential of three different PCM systems (PCM floor tiles, PCM glazed envelope and a retrofitted PCM-HX system) in an airport terminal space. A quasi-dynamic coupled TRNSYS®-FLUENT® simulation approach was used to evaluate the energy performance of each PCM system in the space. FLUENT® simulated the indoor air-flow and PCM, whilst TRNSYS® simulated the HVAC system. Two novel PCM models were developed in FLUENT® as part of this study. The first model improved the phase change conduction model by accounting for hysteresis and non-linear enthalpy-temperature relationships, and was developed using data from Differential Scanning Calorimetry tests. This model was validated with data obtained in a custom-built test cell with different ambient and internal conditions. The second model analysed the impact of radiation on the phase change behaviour. It was developed using data from spectrophotometry tests, and was validated with data from a custom-built PCM-glazed unit. These developed phase change models were found to improve the prediction errors with respect to conventional models, and together with the enthalpy-porosity model, they were used to simulate the performance of the PCM systems in the airport terminal for different operating conditions. This study generally portrayed the benefits and flexibility of using the coupled simulation approach in evaluating the building performance with PCMs, and showed that employing PCMs in large, open and thermally lightweight spaces can be beneficial, depending on the configuration and mode of operation of the PCM system. The simulation results showed that the relative energy performance of the PCM systems relies mainly on the type and control of the system, the night recharge strategy, the latent heat capacity of the system, and the internal heat gain schedules. Semi-active systems provide more control flexibility and better energy performance than passive systems, and for the case of the airport terminal, the annual energy demands can be reduced when night ventilation of the PCM systems is not employed. The semi-active PCM-HX-8mm configuration without night ventilation, produced the highest annual energy and CO2 emissions savings of 38% and 23%, respectively, relative to a displacement conditioning (DC) system without PCM systems.
2

Mahrukh, Mahrukh. "Computational modelling of thermal spraying processes." Thesis, Cranfield University, 2016. http://dspace.lib.cranfield.ac.uk/handle/1826/10039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The main aim of this project is to model the effects of varied injection parameters on the gas dynamics and droplet dynamics of the HVSFS and SP- HVOFS processes for improving the droplet breakup and evaporation to enhance the nanoparticles heating and deposition efficiency. Thermal spraying processes are widely used to generate thermal-, corrosion-, and wear-resistant layers over the machine parts, to increase the durability of the equipment under severe environmental conditions. The liquid feedstock is used to achieve nanostructured coatings. It is used either in the form of a suspension or a solution precursor. The suspension is a mixture of solid nanoparticles suspended in a liquid medium consisting, for instance, of water, ethanol, or isopropanol. This dispersion mechanism in a liquid carrier provides adequate flowability to the nanoparticles, which cannot be handled by conventional gas- based feeding systems, whereas the solution precursor is mixed at the molecular level; hence, more uniform phase composition and properties are expected in the sprayed coatings as compared to the suspension and conventional powder spraying. Firstly, experiments are conducted to analyse the effects of different precursor concentrations, solvent types and injection nozzles on the size and morphology of synthesized nanoparticles. The results indicate that the particle size increased with increasing precursor concentration due to the variations in the physical properties of the mixture solution. The higher precursor concentrations had an adverse effect on the droplet atomization and evaporation process that led to bigger size particle formation. The use of aqueous solvent has some limits and with higher precursor concentration the surface tension increases that resulted in the reduction of droplets’ disintegration, and thus bigger size precursor droplets generate larger nanoparticles. A mixture of aqueous-organic solvents and pure organic precursors are preferred to improve the process efficiency of the nanoparticles size and morphology. Furthermore, the nanoparticles size can be controlled by using liquid feedstock atomization before injecting into the HVOF torch. A new effervescent injection nozzle is designed and compared to different types of existing injection nozzles, to see the variations in the droplet disintegration, and its effects on the performance of the HVOF torch processes. It is detected that the atomization would result in smaller size particles with homogeneous morphology. In a numerical study, different droplet injection types are analysed to see their effects on the gas and droplet dynamics inside the HVOF torch. The group-type injection (GTI) and effervescent-type atomization (ETI) are used effectively to overcome the heat losses and delays in the droplet evaporation. These approaches reduce the thermal and kinetic energy losses in the suspension-fed-HVOF torch, thereby improving the coating formation. The effects of using multicomponent water-ethanol mixture injection in the HVOF torch are also modelled, and its impact on the droplet breakup and evaporation are studied. The organic solvents have a low heat of vaporization and surface tension, and can effectively be used in the HVOF spraying process over the water-based solvents. Furthermore, nanoparticles are suspended in the liquid feedstock and injected into the HVOF torch. The effect of increasing nanoparticles’ concentration in the feedstock and its consequence on the gas dynamics, droplet breakup and evaporation are analysed. The augmentation in the nanoparticles loading in the suspension droplets can decrease the droplet breakup and evaporation rate because the required heat of vaporization increases significantly. Moreover, the size of injection droplet affects the droplet fragmentation process; bigger sized droplets observed a delay in their evaporation that resulted in coating porosity. The results suggest that smaller droplet sizes are preferred in coating applications involving a higher concentration of nanoparticles with high melting point. Further, the gas flow rates (GFRs) are regulated to control the droplet dispersion, atomization and evaporation inside the solution precursor fed-HVOF torch. The size of the droplet diameter is decreased by an increment in the GFR, as higher combustion rates increase the combustion flame enthalpy and kinetic energy. Moreover, the increase in the oxygen/fuel flow rates dilutes the injected precursor. It reduces ZrO2 concentration in the process and decreases the rate of particle collision; as a result, non-agglomerated nanoparticles can be obtained.
3

Jang, Tai Seung. "Thermophysiologic issues in computational human thermal models /." free to MU campus, to others for purchase, 2003. http://wwwlib.umi.com/cr/mo/fullcit?p1418034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bhatnagar, Himanshu. "Computational Modeling of Failure in Thermal Barrier Coatings under Cyclic Thermal Loads." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1230741103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Seijas, Bellido Juan Antonio. "Computational studies of thermal transport in functional oxides." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/669787.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Esta Tesis recoge los trabajos computacionales que hemos realizado en el campo de la física de la materia condensada, enfocados en las propiedades de transporte térmico del Titanato de Plomo (PbTiO3) y el Óxido de Zinc (ZnO), ambos materiales representativos de muchos otros óxidos funcionales aislantes. El primero ha sido modelado usando un potencial de segundos principios, esto es, un potencial parametrizado mediante cálculos de primeros principios, que captura algunos efectos cuánticos que pueden ser relevantes en el material. Hemos modelado el segundo usando el potencial de Buckingham, una expresión analítica simple que parece describir el comportamiento del ZnO de forma bastante aproximada a los experimentos.
This Thesis collects the computational works we have done in the field of condensed matter physics, focused on the thermal transport properties of the Lead Titanate (PbTiO3) and the Zinc Oxide (ZnO), both representative materials of many other insulating functional oxides. The first has been modeled using a second-principles potential, that is, a potential parameterized from first-principles calculations, which captures some quantum effects that can be relevant in the material. We have modeled the second one using the Buckingham's potential, a simple analytical expression that seems to describe the behavior of ZnO in a fairly approximate agreement with experiments.
6

Barakat, Magdi H. "Computation of indoor airflow for thermal comfort in residential buildings." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/23308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Negrão, Cezar O. R. "Conflation of computational fluid dynamics and building thermal simulation." Thesis, University of Strathclyde, 1995. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The present work is a contribution towards the integration of building simulation tools in order to better represent the complexity of the real world. It attempts to overcome certain shortfalls of contemporary simulation applications with respect to indoor air flows. As a result, the evaluation of building energy consumption and indoor air quality is expected to be improved. Advanced fluid flow models (as employed within Building Thermal Simulation - BTS - and Computational Fluid Dynamics - CFD) with different degrees of detail were investigated and their modelling deficiencies identified. The CFD technique which defines the fluid flow on a micro scale was integrated into BTS in which fluid flow is described in a larger scale. The resulting combined approach strengthens the modelling potential of each methodology by overcoming their specific deficiencies. BTS's inability to predict air flow property gradients within a single space was surmounted and the difficult of estimating CFD boundary conditions are now supplied by BTS. The conflation approach is expected to be employed where gradients of indoor air flow properties can be considered crucial to the evaluation of thermal comfort and energy consumption. The BTS environment, ESP-r, was elected to perform the current work and a new CFD program, dfs, was specifically developed for the analysis of three-dimensional, turbulent, transient air flow. Finally, the two approaches were integrated. The integration work focuses on the CFD boundary conditions where the interactions of BTS and CFD take place; these occur at the inside zone surfaces and at the zone openings. Three conflation approaches were devised addressing different degrees of complexity and sophistication. The first one, involving the two types of zone boundaries, corresponds to a simple approach where the BTS and CFD systems exchange information without any direct interaction. The second approach consists of three other schemes to handle the thermal coupling at the internal zone surfaces. The third approach comprises coupling between the nodal network approach as employed by the BTS environment, and the continuity and momentum equations in the CFD technique. A validation methodology consisting of analytical validation, intermodel comparison and empirical validation is described and applied. The technique is shown to be adequate for modelling indoor air flows when compared to existing models. Three situations, covering the different types of air flows encountered within buildings are discussed to demonstrate the combined method's applicability when compared with the nodal network approach. Finally, general conclusions are presented and some possible future work is identified showing that the developed methodology is very promising.
8

Johansson, Emma. "The thermal comfort of the cockpit: A pilot's experience." Thesis, KTH, Optimeringslära och systemteori, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-203773.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Saab takes great measures to ensure that the cockpit is a great working environment for the pilot. This paper aims to expand the knowledge of thermal comfort by assembling Saab’s atmosphere-, cabin and pilot-models. In order to ensure the viability of the assembled model, a qualitative study was performed with test pilots. The interviews were reduced to a few flight cases, which were tested in the assembled model to verify that the thermal discomforts that the pilots experience could be accurately predicted. Furthermore, a prediction of comfort, according to European standards, was implemented. From the interviews situations when the pilot feel discomfort could be identified, two flight cases situations and one ground case. The model simulate how the thermal environment affect the pilot, hence only the two flight cases could be analyzed. The result from the model shows the temperature in those body parts that the pilots have expressed are uncomfortable. Predicted Mean Vote, PMV, predicts comfort on a 6-degree scale, given environment parameters such as pressure and temperature. The Predicted Percentage Dissatisfied, PPD, describes the number of people, in percent, who are uncomfortable at a given PMV. These measures of comfort were used to compute the comfort in the different parts of the body. The model simulation agrees with the pilot’s experiences in some of the body parts, but not all of them. By taking the humidity into account the simulation result may be more accurate. The humidity increases the PPD value in case 2 when the humidity increases. Finally, in order to adopt the comfort analysis presented in this paper, the model had to be revised, and updated with increased detail.
Saab gör stora satsningar för att säkerställa att cockpiten är en god arbetsplats för piloten. Den här rapporten syftar till att öka kunskapen om termisk komfort genom att kombinera Saabs atmosfärs-, kabin-, och pilotmodeller. För att kunna verifiera att den kombinerade modellen beskriver verkligheten genomfördes en kvalitativ studie med testpiloter. Intervjuerna reducerades till ett par flyg-scenarier, som sedan testades i den kombinerade modellen. Detta för att kunna verifiera att de upplevda obekvämligheterna kunde förutspås. Den kombinerade modellen utökades med en prediktion av bekvämligheten enligt Europeisk standard. Ur intervjuerna kunde situationer identifieras då piloterna känner termiskt obehag. Av dessa situationer är två flygfall och ett markfall, där piloten befinner sig utanför cockpit. Modellen simulerar hur piloten påverkas av den termiska miljön i kabin, på grund av detta kunde inte markfallet analyseras. Modellsimuleringen resulterade i figurer som visar temperaturen i kroppsdelar som piloterna har uttryck känns obehagliga. Predicted Mean Vote, PMV, förutspår komfort på en 6-gradig skala givet omgivningsparametrar så som tryck och temperatur. Predicted Percentage Dissatisfied, PPD, beskriver hur stor andel, i procent, som upplever obehag vid ett givet PMV. Dessa mått på komfort användes för att beräkna komforten i de olika kroppsdelarna. Modellsimuleringen av pilotkomforten stämmer överens med det piloterna nämnde till viss del. I vissa kroppsdelar stämmer det inte överens. Då modellen inte tar hänsyn till fuktighet vid beräkning av kroppstemperaturer kan detta vara en anledning till varför den inte stämmer helt. Fuktigheten påverkar PMV och PPD beräkningarna och i fall 2 visar det sig att PPD ökar med en ökad fuktighet. Slutligen, behöver modellens ses över, och detaljgraden ökas, för att den här rapportens metoder skall vara användbara vid tillverkningen av flygplan.
9

Eriksson, Christoffer. "Thermal design optimization by geometric parameterization of heat sources." Thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-328011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this master thesis, a thermal design optimization has been performed. By solvingthe two dimensional steady state conduction convection equation using the finiteelement method in a unit square domain with a source term corresponding tocomponents heated by resistive heating, the objective functional was formulated as aminimization of the combination of a low temperature and small temperaturedifferences inside the domain. The design parameters are based on geometricproperties such as length, width, angle or position of the heat sources. The heatsources were parameterized by combining two smooth exponential functions thatexplicitly depended on the position and size of the heat source. The problem wasthen solved as a PDE constrained optimization problem using MATLAB's built infunction fmincon. Three different 1D test cases were implemented to investigate how the solverbehaved and that the parameterization was correctly implemented. Then the solverwas extended to 2D and three heat sources were placed in the domain. The optimalangle of rotation of the sources where the heat transfer was governed by conductionand convection were found. This was followed by an optimal placement of two heatsources in the domain. Three cases with a different convective field in each case wereinvestigated. In the last examples, four heat sources were placed inside the domain.One geometric property of each heat source was allowed to change. The fourdifferent parameters were length, width, angle of rotation and position. Themotivation was to test the functionality of the solver using different design parameterswith different sensitivities. The results showed that the derived objective functional fullfilled the purpose tominimize the temperature and temperature deviation from the mean temperature,respectively. In the 1D cases it was concluded that there exist several local minimawhen adding a heat source and a heat sink of unequal magnitude. Optimal angles ofthree heat sources in 2D showed a trivial solution and fast convergence. The optimalplacement of two heat sources converged rapidly when the forced convection was setto zero. When adding convection the number of iterations increased and the optimalplacement was highly dependent of the type of convective field and boundaryconditions. When constructing a non symmetric problem the optimization loopedover several random initial positions in order to find the best optimal solution. Forthe last examples, narrow bounds were used and the solver converged rapidly. Evenhere, the type of convective field highly affected the optimal solution.
10

Xiang, Yetao. "Experimental and computational investigation of building integrated PV thermal air system combined with thermal storage." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/42743/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Issues from global warming with increased CO2 emissions have been to a main concern over world. As an example in the UK, the energy demand in the domestic sector has risen by 17% in 2010 compared with that of 1970. Applying renewable energy is widely agreed to be the most effective and promising way to solve the problem where solar energy and photovoltaic technology have been greatly developing from the last century. Photovoltaic combines with Phase Change Material (PV/PCM) system is a hybrid solar system which uses phase change material to reduce the PV temperature and to store energy for other applications. This thesis aims to investigate the performance of a designed building integrated photovoltaic thermal system (BIPVT) with PCM as thermal storage for building applications. The research objectives are to increase the building integrated photovoltaic (BIPV) efficiency by incorporating PCM while utilising the stored heat in PCM for controlling indoor conditions and reduce the total building energy consumption. The research starts with solar energy convection technologies including solar thermal and solar photovoltaic. Then a combined technology named photovoltaic thermal system (PVT) was introduced and discussed. Research work on a different type of PVT using water and air as thermal energy medium was further reviewed and discussed. An analytical approach investigation was presented on a PVT system and the results were used to design the experiment work on PV/PCM configuration. Experiments have been carried out on a prototype PV/PCM air system using monocrystalline photovoltaic modules. Transient simulations of the system performance have also been performed using a commercial computational fluid dynamics (CFD) package based on the finite volume method. The results from simulation were validated by comparing with experimental results. The results indicated that PCM is effective in limiting temperature rise in PV device and the heat from PCM can enhance night ventilation and decrease the building energy consumption to achieve indoor thermal comfort for certain periods of time. An entire building energy simulation with designed PV/PCM air system was also carried out under real weather condition of Nottingham, UK and Shanghai, China. The result also shows a market potential of PV/PCM system and a payback time of 11 years in the UK condition if using electrical heater.

Книги з теми "Thermal computations":

1

Ellison, Gordon N. Thermal Computations for Electronics. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ellison, Gordon N. Thermal computations for electronic equipment. Malabar, Fla: R.E. Krieger, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ellison, Gordon N. Thermal computations for electronics: Conductive, radiative, and convective air cooling. Boca Raton, FL: CRC Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Arts, Tony. Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade: A test case for inviscid and viscous flow computations. Rhode Saint Genese, Belgium: von Karman Institute for Fluid Dynamics, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bottoni, Maurizio. Physical Modeling and Computational Techniques for Thermal and Fluid-dynamics. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-79717-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tatum, Kenneth E. Computation of thermally perfect properties of oblique shock waves. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Paterson, Duncan. Flash Computation and EoS Modelling for Compositional Thermal Simulation of Flow in Porous Media. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11787-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Eslami, M. Reza. Theory of Elasticity and Thermal Stresses: Explanations, Problems and Solutions. Dordrecht: Springer Netherlands, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kuridan, Ramadan Muftah. Computational neutron transport and thermal-hydraulics feedback and transient models for the safe integral reactor concept. Birmingham: University of Birmingham, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Saravanos, D. A. Optimal fabrication processes for unidirectional metal-matrix composites: A computational simulation. [Washington, D.C.]: NASA, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Thermal computations":

1

Ellison, Gordon N. "Thermal Radiation Heat Transfer." In Thermal Computations for Electronics, 197–237. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ellison, Gordon N. "Introduction." In Thermal Computations for Electronics, 1–19. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ellison, Gordon N. "Conduction I: Basics." In Thermal Computations for Electronics, 239–68. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ellison, Gordon N. "Conduction II: Spreading Resistance." In Thermal Computations for Electronics, 269–300. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ellison, Gordon N. "Additional Mathematical Methods." In Thermal Computations for Electronics, 301–23. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ellison, Gordon N. "Thermodynamics of Airflow." In Thermal Computations for Electronics, 21–28. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ellison, Gordon N. "Airflow I: Forced Flow in Systems." In Thermal Computations for Electronics, 29–57. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ellison, Gordon N. "Airflow II: Forced Flow in Ducts, Extrusions, and Pin Fin Arrays." In Thermal Computations for Electronics, 59–77. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ellison, Gordon N. "Airflow III: Buoyancy Driven Draft." In Thermal Computations for Electronics, 79–85. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ellison, Gordon N. "Forced Convective Heat Transfer I: Components." In Thermal Computations for Electronics, 87–110. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Thermal computations":

1

Zeidan, Dia, Lucy T. Zhang, and Eric Goncalves. "CAVITATING BUBBLY FLOW COMPUTATIONS BY MEANS OF MIXTURE BALANCE EQUATIONS." In 3rd Thermal and Fluids Engineering Conference (TFEC). Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/tfec2018.mph.021541.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lós Reis, João Henrique, and Luiz Antonio Alcântara Pereira. "PARTICLE-PARTICLE INTERACTIONS IN PARALLEL COMPUTATIONS FOR HEAT TRANSFER PROBLEMS." In 16th Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2016. http://dx.doi.org/10.26678/abcm.encit2016.cit2016-0062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bouchez, Marc, F. Cheuret, P. Grenard, J. A. Redford, N. D. Sandham, G. T. Roberts, A. Passaro, D. Baccarella, M. Dalenbring, and J. Smith. "Material-Aero-Thermal Interaction Computations in the ATLLAS European Programme." In 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-4670.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Khalil, Essam E., Osama AbdelLatif, Ahmed A. Attia, and Mahmoud G. Yehia. "On the Computations of Thermal Behaviour of Shell and Tube Heat Exchanger." In 12th International Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-3768.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

AUERBACH, I., D. BENSON, and G. WRIGHT, JR. "Evaluation of thermal and kinetic properties suitable for high heating rate computations." In 22nd Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-1512.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Balland, Morgan, Olivier Verseux, and Marie-Josephe Esteve. "Aero-Thermal Computations With Experimental Comparison Applied to Aircraft Engine Nacelle Compartment." In ASME Turbo Expo 2005: Power for Land, Sea, and Air. ASMEDC, 2005. http://dx.doi.org/10.1115/gt2005-68995.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A joint Airbus & Snecma study on aero-thermal methodology applied to nacelle compartment is presented. Both partners have used their own simulation tools and compared their results with a real engine configuration to highlight the temperature heterogeneities on the engine casing and characterize equipment thermal fields. From the CFD, the structure of the flow has been consolidated in a cavity without equipments. The impact of equipment items on flow behavior has been studied in a second step. From a thermal aspect, the weight of both radiative and convective transfers has been estimated. Comparisons with engine thermocouple data show that the difference on average metal temperatures per station is less than 10% whereas the temperature gradient are underestimated in a range of [10–30]°C.
7

Bouchard, Cedrick, and Julien Sylvestre. "Highly parallel computations of creep deformation in flip-chip interconnections." In 2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, 2017. http://dx.doi.org/10.1109/eurosime.2017.7926259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shankaran, Gokul V., M. Baris Dogruoz, and Ryan Magargle. "Using state-space models for accurate computations of transient thermal behavior of electronic packages." In 2014 IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2014. http://dx.doi.org/10.1109/itherm.2014.6892389.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cai, Chunpeicai, Danny Liu, and Kun Xu. "A Two-Dimensional GasKinetic BGK Scheme for Hypersonic Thermal Non-Equilibirum Flow Computations." In 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-7961.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

TEODOSIU, CATALIN, RALUCA TEODOSIU, and VIOREL ILIE. "The angular discretization impact of thermal radiation computations on heat transfer in rooms." In Fourth International Conference on Advances in Civil, Structural and Mechanical Engineering - CSM 2016. Institute of Research Engineers and Doctors, 2016. http://dx.doi.org/10.15224/978-1-63248-093-4-33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Thermal computations":

1

Viecelli, J. A. Thermal blooming threshold computations with a Markov model of velocity turbulence. Office of Scientific and Technical Information (OSTI), November 1988. http://dx.doi.org/10.2172/6285080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Feierl, Lukas, and Peter Luidolt. Automated monitoring, failure detection of key components, control strategies and self-learning controls of key components. IEA SHC Task 55, September 2020. http://dx.doi.org/10.18777/ieashc-task55-2020-0005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Keefer, R. H., and L. W. Keeton. Review of computational thermal-hydraulic modeling. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/291150.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Caruso, A., I. Flour, O. Simonin, and C. Cherbonnel. Detailed thermal-hydraulic computation into a containment building. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/107791.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tencer, John, Kevin Thomas Carlberg, Marvin E. Larsen, and Roy E. Hogan. Advanced Computational Methods for Thermal Radiative Heat Transfer. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1330205.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gallis, Michail A., Charles R. Bryan, Patrick Vane Brady, John Robert Torczynski, and Carlton, F. Brooks. Computational investigation of thermal gas separation for CO2 capture. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/972886.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Guo, Shengmin, Shizhong Yang, and Ebrahim Khosravi. Computational Design and Experimental Validation of New Thermal Barrier Systems. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1133123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Guo, Shengmin, Shizhong Yang, and Ebrahim Khosravi. Computational Design and Experimental Validation of New Thermal Barrier Systems. Office of Scientific and Technical Information (OSTI), December 2011. http://dx.doi.org/10.2172/1133135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Guo, Shengmin, Shizhong Yang, and Ebrahim Khosravi. Computational Design and Experimental Validation of New Thermal Barrier Systems. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1133136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Davison, Scott, Nicholas Alger, Daniel Zack Turner, Samuel Ramirez Subia, Brian Carnes, Mario J. Martinez, Patrick K. Notz, et al. Computational thermal, chemical, fluid, and solid mechanics for geosystems management. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1029788.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії