Добірка наукової літератури з теми "Tool and die"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Tool and die".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Tool and die":

1

Tomlinson, R., T. Yokota, P. Jaggi, C. Kilburn, D. Bakken, B. D. Lipon, and M. Bullard. "P131: Emergency department falls risk management screening tool comparison." CJEM 18, S1 (May 2016): S121—S122. http://dx.doi.org/10.1017/cem.2016.305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Introduction: Emergency Department (ED) fall risk screening has been newly implemented in Alberta based on Accreditation Canada requirements. Two existing inpatient tools failed to include certain ED risk conditions. One tool graded unconsciousness as no risk for falling, and neither considered intoxication or sedation. This led to the development of a new fall risk management screening tool, the FRM (Tool1). This study compared Tool1 with inpatient utilized Schmid Fall Risk Assessment Tool (Tool2) and the validated Hendrich II Fall Risk Model (Tool3). Methods: Patients (≥17 years old) in a tertiary care adult ED with any of the following; history of falling in the last 12 months, elderly/frail, incontinence, impaired gait, mobility assist device, confusion/disorientation, procedural sedation, intoxication/sedated, or unconscious were included. Forms were randomized to score patients using different paired screening tools: Tool1 paired with either Tool2 or Tool3. Percent agreement (PA) between the tools based on identification of a patient at either risk/no risk for falling; higher PA indicating more tool homogeneity. Results: A total of 928 screening forms were completed within our 8-week study period; 452 and 443 comparing Tool1 to Tool2 and Tool1 to Tool3, respectively. Thirty-two forms included only Tool1 scores, excluding them from comparative analysis. The average patient age (n=895) was 64.8±21.4 years. Tool1 identified 66.4% of patients at risk, whereas Tool2 and Tool3 identified only 19.2% and 31.4%, respectively. Tool1 and 2 had a PA of 50.2%, whereas Tool1 and Tool3 had a PA of 65.9%. Conclusion: The FRM tool had higher agreement with the validated assessment tool, identifying patients at risk for falling but better identified patients presenting with intoxication, need for procedural sedation and unconsciousness. The other tools generally miss these common ED conditions, putting these patients at risk. Validation and reliability assessments of the FRM tool are warranted.
2

Bisiani, R., F. Lecouat, and V. Ambriola. "A tool to coordinate tools." IEEE Software 5, no. 6 (November 1988): 17–25. http://dx.doi.org/10.1109/52.10000.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bonifacio, M. E. R., and A. E. Diniz. "Correlating tool wear, tool life, surface roughness and tool vibration in finish turning with coated carbide tools." Wear 173, no. 1-2 (April 1994): 137–44. http://dx.doi.org/10.1016/0043-1648(94)90266-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sharma, Rishi. "Tool Life and Tool Wear for CBN and Alumina based Ceramic Tools." International Journal for Research in Applied Science and Engineering Technology 8, no. 8 (August 31, 2020): 537–42. http://dx.doi.org/10.22214/ijraset.2020.30870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bashir, Josefeena, and Yogeshwar Puri. "Research Tool." Scientific Journal of India 3, no. 1 (December 31, 2018): 70–75. http://dx.doi.org/10.21276/24565644/2018.v3.i1.24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Robinson, Rick E. "Capitalist tool, humanist tool." Design Management Journal (Former Series) 12, no. 2 (June 10, 2010): 15–19. http://dx.doi.org/10.1111/j.1948-7169.2001.tb00539.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Che-Haron, C. H., J. A. Ghani, and Y. Burhanuddin. "C-19 TOOL WEAR AND SURFACE INTEGRITY WHEN DRY TURNING OF HARDENED D2 TOOL STEEL(Session: MIM/Tool)." Proceedings of the Asian Symposium on Materials and Processing 2006 (2006): 66. http://dx.doi.org/10.1299/jsmeasmp.2006.66.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Abele, E., T. Grosch, and E. Schaupp. "Smart Tool*/Smart Tool - Intelligent sensor-based tool management." wt Werkstattstechnik online 106, no. 03 (2016): 106–10. http://dx.doi.org/10.37544/1436-4980-2016-03-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Im Kontext von Industrie 4.0 bietet eine Optimierung des Werkzeugmanagements zahlreiche Potentiale. Durch ein Track & Trace-System, welches in den gesamten Werkzeugkreislauf integriert wird, lässt sich der aktuelle Aufenthaltsort der Werkzeuge auf Individuumsebene in Echtzeit bestimmen. Eine im Werkzeughalter untergebrachte Sensorik liefert zusätzliche Informationen über den aktuellen Zustand der Werkzeuge, beispielsweise den Verschleiß.   In the context of the industrial internet (Industrie 4.0), tool management offers great potential. With a track&trace-system integrated in the whole tool cycle the current location of tools can be determined at individual level in real time. Furthermore, sensors placed in the tool holder provide information about the tool`s current condition, e.g. tool wear.
9

Krauss, Sven Stefan, Martin Rejzek, and Christian Hilbes. "Tool Qualification Considerations for Tools Supporting STPA." Procedia Engineering 128 (2015): 15–24. http://dx.doi.org/10.1016/j.proeng.2015.11.500.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chase, Philip G. "Tool-Making Tools and Middle Paleolithic Behavior." Current Anthropology 31, no. 4 (August 1990): 443–47. http://dx.doi.org/10.1086/203869.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Tool and die":

1

Vagnorius, Žydrunas. "Reliability of metal cutting tools: : Stochastic tool life modelling and optimization of tool replacement time." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for produksjons- og kvalitetsteknikk, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-11293.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This PhD thesis is based on six articles and proposes new approaches for modelling of the life of cutting tools and for determining the optimal tool replacement time. These issues are very closely related and play a critical role in machining economics. Replacing a tool too early means wasting of its potential and leads to high costs and reduced productivity. Late replacement poses a risk of wear-out and other types of tool failures, which can damage the component being produced and can cause expensive equipment downtimes. Therefore a lot of work has been done to develop models for predicting the life of a tool and to optimize its replacement time. Probably the best known of them is the Taylor’s tool life equation. Developed in 1906 Taylor’s equation expresses the tool life in terms of the cutting speed. Despite being over a century old, this model is still widely used in practice. However, Taylor’s equation has a few drawbacks. For example, it ignores the effect of other, though less important, process parameters such as the depth of cut and the feed. To walk around this issue several extensions of Taylor’s equation have been proposed and are discussed in this thesis. Nevertheless all these models share another common flaw. They assume that tool life is deterministic, i.e., that given the process parameters the exact time to wear-out can be calculated. Unfortunately, in real machining processes there are a lot of sources of variation that affect the rate of tool wear and influence its life. As a result, deterministic models rarely give accurate estimates and are only valid as approximations. To improve tool life predictions and assist process planners in choosing the optimal replacement time this PhD thesis proposes new methods. The underlying assumption is that tool life is a stochastic quantity and follows a certain probability distribution. With this in mind the reliability function is derived. Based on the physical analysis of machining processes it is assumed that a tool can fail due to the three main causes: (i) wear, (ii) internal defects and (iii) external stresses. Tool wear depends on a number of factors, including the characteristics of the tool itself, such as its material, geometry and coating, properties of the workpiece material, cutting parameters, rigidity of the machine tool and the efficiency of the cooling process. This last factor is particularly important as most of the tool wear mechanisms depend on temperature. Therefore in this PhD thesis a lot of attention is given to high pressure cooling, which is an effective way to reduce the temperature in the cutting zone. Internal defects are micro voids and cracks that develop inside the tool material during its manufacturing process or as a result of inappropriate handling. They act as stress concentrators and lead to shorter than normal tool life. External stresses are severe overloads that cause immediate tool failure regardless of its quality. They are random in nature and may originate from machine operator errors, failure of supporting equipment or some other external sources. Considering all three failure modes total tool reliability function is found. It is assumed that in a given batch a certain percentage of tools are “bad”, i.e., they contain internal defects, while the rest are “good”. The life of the normal tools is modelled by a two-parameter Weibull distribution. Failures due to internal defects are also accounted for by the Weibull distribution, but with different parameters. Then the life of a tool chosen at random is predicted by the mixture model. In addition, tools of both types can fail due to external stresses, the occurrence of which is model by a homogeneous Poisson process. The derived tool reliability function is used to determine the replacement time. Two models are proposed for this purpose. The first one is called the minimum acceptable reliability approach. The idea is to select such a replacement period that the reliability of the tool during it would not fall below a certain minimum level. We show that, when the reliability function is known, this can be done by using a simple graphical procedure. The second model is based on the age replacement policy, which attempts to balance the costs of preventive and failure provoked tool changes. To solve this optimization problem the total time on test (TTT) transform of the reliability function is introduced, and a method for estimating it form the experimental data is proposed. Then, as in case of the first model, the replacement time is found by employing a simple graphical procedure. For the above approach to be used in practice the expected costs of preventive and failure provoked replacements need to be known. It is shown that the former one can be determined by applying traditional formulas found in machining economics handbooks. The penalty cost, on the other hand, is not so well defined, and no good estimation models are available. Therefore, a new, probability tree-based approach is developed in this thesis. The relevance and the applicability of the proposed models is tested in a few experimental and case studies described in the appended articles. In Article 1 reliability of machining systems as a whole is investigated, and the stochastic nature of the processes involved is clearly shown. In Article 2 it is demonstrated that a two-parameter Weibull distribution can be used to model the tool life, and a simple replacement model based on the reliability function is proposed. In Article 3 a more generic tool life model is developed, but a two-parameter Weibull distribution is still found to be a good approximation. The replacement time is than found by employing an optimization procedure based on the age replacement policy. In Article 4 an approach for estimating the penalty cost, which is a key input to the age replacement model, is developed. Finally in Articles 5 and 6 it is shown that high pressure cooling can help to extend the tool life and possibly to reduce its variation, which is the main reason why probabilistic models are needed. Based on this experimental work and case studies the thesis concludes that stochastic approaches for tool life modelling and for determination of replacement time are relevant and applicable in practice. Therefore further work needs to be done to extend the use of these methods beyond the set-ups and conditions tested throughout the research described in this PhD thesis.
2

Holland, Suzi. "Knowledge management tool selection." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/11955.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dawson (2009) suggested a twelve step methodology for implementing knowledge management solutions following research which showed that implementing knowledge management solutions was not as successful as expected. This thesis investigates the third of this twelve step methodology which requires finding a knowledge management solution in the context of the problem. The aim of the research is to determine a methodology that will provide a systematic way for managers to select an appropriate knowledge management tool given a particular working environment. Two organisations are investigated to confirm that there is a need for a systematic methodology for selecting knowledge management tools and how a methodology may help in achieving selecting an appropriate tool. This investigation is carried out using case studies, action research and interviews and results in discovering that organisations do not have a systematic method for selecting tools which leads to tools being selected haphazardly and not always successfully. Two tools are developed to aid a manager in selecting a knowledge management tool: the House of Knowledge Management Tool Selection and the Knowledge Management Tool Classification Grid. The House tool helps to identify the knowledge problem being solved and evaluates all potential knowledge management tools against the problem. The barriers to the potential success of the tools are also examined. The grid identifies potential tools by classifying them against knowledge problems. The two tools are further refined and developed using the two organisations as case studies to demonstrate how and when the tools can be used. This leads to development of the Barrier House and the Evaluation Grid. A framework and associated methodology are then developed that can be used as a guide to using the tools, offering a systematic approach to selecting knowledge management tools given any environment and thus accomplishing the aim of the thesis.
3

Tipaji, Pradeep Kumar. "E-design tools for friction stir welding: cost estimation tool." Diss., Rolla, Mo. : University of Missouri-Rolla, 2007. http://scholarsmine.mst.edu/thesis/pdf/Tipaji_09007dcc8043f642.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (M.S.)--University of Missouri--Rolla, 2007.
Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed February 5, 2008) Includes bibliographical references (p. 29-31).
4

Walkup, Kristina Ralene. "Comprehension of tools by orangutans causality, tool properties, and manufacture /." [Ames, Iowa : Iowa State University], 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vestin, Simon, and Daniel Svensson. "KlarSynt Tools : A tool for automating configurations of test environments." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-32336.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Preparing dedicated environments for testing often requires time consuming, manual configurations to be made on databases and the Windows Registry. A proposed Windows application could improve the efficiency and accuracy of such settings by automating the processes and providing a user-friendly graphical user interface. On behalf of Ninetech, a consulting company, such an application was therefore developed - KlarSynt Tools. This application was to enhance the company's previous methods of configuring test environments by removing the need of manual tasks and the use of an unoptimized tool called Verktyg. In the development of the application features such as connecting to servers, retrieving data from databases, and automatic configurations of the Windows Registry was implemented. Problems such as automating manual tasks had to be dealt with for providing accuracy of the configurations. The usage of development patterns such as MVVM was also utilized in the project to provide flexibility in the program code, and in that way prepare the software for future development. Finally, user-friendliness was integrated into the application interface to provide efficiency in the usage of the application. This project resulted in that a Windows application was developed to accurately and efficiently configure settings to a database and the Windows Registry. The developed application showed to significantly reduce the number of steps required and the time taken to perform the configurations in the old process.
6

Srinivasan, Anush. "Scoreboard Tool." Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/1287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Uppu, Srinivasa Aditya. "JForlan tool." Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Panneerselvam, Madhumalar. "Pedigree tool /." Online version of thesis, 2008. http://hdl.handle.net/1850/11185.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Haney, Anna. "Expedite Tool." Digital Commons at Loyola Marymount University and Loyola Law School, 2016. https://digitalcommons.lmu.edu/etd/392.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wolvers, Adrianus Hendrikus Cornelis. "Integrating requirements authoring and design tools for heterogeneous and multicore embedded systems. : Using the iFEST Tool Integration Framework." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-18712.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In today’s practical reality there are many different tools being used in their respective phases of thesystem development lifecycle. Every tool employs its own underlying metamodel and these metamodelstend to vary greatly in size and complexity, making them difficult to integrate. One solution to overcomethis problem is to build a tool integration framework that is based on a single, shared metamodel.The iFEST project aims to specify and develop such a tool integration framework for tools used in thedevelopment of heterogeneous and multi-core embedded systems. This framework is known as the iFESTTool Integration Framework or iFEST IF.The iFEST IF uses Web services based on the Open Services for Lifecycle Collaboration (OSLC)standards and specifications to make the tools within the tool chain communicate with each other. Tovalidate the framework, an industrial case study called ‘Wind Turbine’, using several embedded systemstools, has been carried out. Tools used to design, implement and test a controller for a wind turbine havebeen integrated in a prototype tool chain. To expose tools’ internal data through Web services, a tooladaptor is needed. This work reports on the development of such a tool adaptor for the RequirementsManagement module of HP Application Lifecycle Management (ALM), one of the tools used in the WindTurbine industrial case study. A generalization of the challenges faced while developing the tool adaptoris made. These challenges indicate that, despite having a tool integration framework, tool integration canstill be a difficult task with many obstacles to overcome. Especially when tools are not developed with tool integration in mind from the start.
Idag existerar det en mängd olika verktyg som kan appliceras i respektive fas isystemutvecklings livscykel. Varje verktyg använder sin egna underliggande metamodell. Dessametamodeller kan variera avsevärt i både storlek och komplexitet, vilket gör dem svåra attintegrera. En lösning på detta problem är att bygga ett ramverk för verktygsintegration sombaseras på en enda, gemensam metamodell.iFEST-projektets mål är att specificera och utveckla ett ramverk för verktygsintegration förverktyg som används i utvecklingen av heterogena och multi-core inbyggda system. Dettaramverk benämns iFEST Tool Integration Framework eller iFEST IF.iFEST IF använder webbtjänster baserade på en standard som kallas OSCL, Open Services forLifecycle Collaboration samt specifikationer som gör att verktygen i verktygskedjan kankommunicera med varandra. För att validera ramverket har en fallstudie vid namn ”WindTurbine” gjorts med flertal inbyggda systemverktyg. Verktyg som används för att designa,implementera och testa en styrenhet för vindturbiner har integrerats i prototyp av enverktygskedja. För att bearbeta och behandla intern data genom webbtjänster behövs enverktygsadapter. Detta arbete redogör utvecklingen av en verktygsadapter förkravhanteringsmodulen HP Application Lifecycle Management (ALM), ett av de verktyg somanvänts i fallstudien av vindturbinen. En generalisering av de utmaningar som uppstod underutvecklingen av verktygsadaptern har genomförts. Dessa utmaningar indikerar att, trots att detfinns ett ramverk för verktygsintegration så är verktygsintegration fortfarande vara en svåruppgift att få bukt med. Detta gäller särskilt när verktyg inte är utvecklade med hänsyn tillverktygsintegration från början.
ARTEMIS iFEST

Книги з теми "Tool and die":

1

Dodds, Steve. Tools: A tool-by-tool guide to choosing and using 150 home essentials. Buffalo, NY: Firefly Books, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Slater, David Michael. The tool. Edina, Minn: Red Wagon, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tobias, Jerry. Imma tool. Bloomfield Hills, Mich. (P.O. Box 503, Bloomfield Hills 48013): Teddy Bear Press, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kim, Yong-ok. Tool Nonŏ. 8th ed. Sŏul: Tʻongnamu, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Perkins, John. Tool sharpening. London: Bloomsbury, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pollack, Herman W. Tool design. 2nd ed. Englewood Cliffs, N.J: Prentice-Hall, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Graves, Sarah. Tool & die. Thorndike, Me: Center Point, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mosley, Mark. Tool management. Salford: University of Salford, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Duffy, Tim. Tool kit. Danvers, Mass: Boyd & Fraser Pub., 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Roberts, G. A. Tool steels. 5th ed. Materials Park, OH: ASM International, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Tool and die":

1

Alpar, Andre, Markus Koczy, and Maik Metzen. "SEO-Tools – vom kostenlosen Tool bis zum Profi-Tool." In SEO - Strategie, Taktik und Technik, 355–99. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-02235-8_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yan, Jiwang, Yoshihiko Murakami, and J. Paulo Davim. "Tool Design, Tool Wear and Tool Life." In Springer Series in Advanced Manufacturing, 117–49. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84628-368-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Weik, Martin H. "tool." In Computer Science and Communications Dictionary, 1797. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_19745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Klocke, Fritz, and Aaron Kuchle. "Cutting Tool Materials and Tools." In RWTHedition, 95–196. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11979-8_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Frodeman, Robert. "The Tool of Our Tools." In Transhumanism, Nature, and the Ends of Science, 5–18. New York : Taylor & Francis, 2019. | Series: Routledge studies in contemporary philosophy; 123: Routledge, 2019. http://dx.doi.org/10.4324/9780429199363-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sheikh-Ahmad, Jamal Y. "Tool Materials and Tool Wear." In Machining of Polymer Composites, 111–41. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-68619-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hosseini, Ali, and Hossam A. Kishawy. "Cutting Tool Materials and Tool Wear." In Materials Forming, Machining and Tribology, 31–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43902-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ruiz, Marcela. "Tool support." In TraceME: A Traceability-Based Method for Conceptual Model Evolution, 271–77. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89716-5_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Díaz, Oscar. "Tool Support." In Active Rules in Database Systems, 127–45. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4419-8656-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hargitai, Henrik. "Tool Marks." In Encyclopedia of Planetary Landforms, 1–2. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9213-9_624-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Tool and die":

1

van der Meulen, Peter, Marty Petraitis, and Patrick Pannese. "Tool-to-Tool Interface Standardization." In 2008 IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC). IEEE, 2008. http://dx.doi.org/10.1109/asmc.2008.4529028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bechmann, Dominique, and Hubert Peyré. "Deformation multi-tool combining existing deformation tools." In the sixth ACM symposium. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/376957.376997.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Asplund, Fredrik, Matthias Biehl, Jad El-khoury, Daniel Frede, and Martin Törngren. "Tool Integration, from Tool to Tool Chain with ISO 26262." In SAE 2012 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2012. http://dx.doi.org/10.4271/2012-01-0026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Grunbacher, Paul, Rick Rabiser, and Deepak Dhungana. "Product Line Tools are Product Lines Too: Lessons Learned from Developing a Tool Suite." In 2008 23rd IEEE/ACM International Conference on Automated Software Engineering. IEEE, 2008. http://dx.doi.org/10.1109/ase.2008.46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nair, Lakshmi, Jonathan Balloch, and Sonia Chernova. "Tool Macgyvering: Tool Construction Using Geometric Reasoning." In 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019. http://dx.doi.org/10.1109/icra.2019.8793257.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Van Look, L., Joost Bekaert, Peter De Bisschop, Jeroen Van de Kerkhove, Geert Vandenberghe, Koen Schreel, Jasper Menger, Guido Schiffelers, Edwin Knols, and Rob Willekers. "Tool-to-tool optical proximity effect matching." In SPIE Advanced Lithography. SPIE, 2008. http://dx.doi.org/10.1117/12.772598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jones, David R., Andre Cooman, John Dyck, Gerry Flatekval, and Horst Gotowik. "Pipeline Isolation Tool." In 1998 2nd International Pipeline Conference. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/ipc1998-2016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Maintenance procedures conducted on pipelines often require isolation of a section of the line. Valve replacement, tie ins, pipe replacement are a few examples of procedures which normally require the pipeline to be taken out of service and drained down, or solid material stops intrusively applied to the pipeline. Pipeline isolation tools have been available and applied for many years; these tools required pressure differential or tethered control to activate and deactivate the isolating mechanism. While these tools were applied with success, there was no way to accurately monitor this early generation of tool for performance and determine with reliability whether the tool was properly set. These tools had the capability of performing one task, once the tool had completed its task, it was removed from the pipeline and readied for its next application. A new isolation tool has been developed and proven for pipeline application and this paper will discuss the Multi-Set Isolation Tool (Iso-Tool), its unique features, development and application.
8

Dianati, Seb. "THE USEFULNESS OF DIGITAL TOOLS FOR WEB BASED BYOD FLIPPED INSTRUCTION: STUDENT PERCEPTIONS OF A POLLING TOOL; A CANVAS TOOL AND AN ANNOTATION TOOL." In 11th International Conference on Education and New Learning Technologies. IATED, 2019. http://dx.doi.org/10.21125/edulearn.2019.0444.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ploederederm, E., S. Boyd, I. Campbell, R. Taylor, and R. Thall. "Tool interfaces." In the conference. New York, New York, USA: ACM Press, 1988. http://dx.doi.org/10.1145/76619.76628.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

"Tool Demos." In 2009 5th IEEE International Workshop on Visualizing Software for Understanding and Analysis (VISSOFT). IEEE, 2009. http://dx.doi.org/10.1109/vissof.2009.5336424.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Tool and die":

1

Schulz, Martin. Tools and Tool Support for the Exascale Era. Office of Scientific and Technical Information (OSTI), March 2011. http://dx.doi.org/10.2172/1117936.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wegand, John, Keith Lucas, Andrew Seelinger, Luke Davis, and Edgar Bellinger. Express Tool Delivery Service/Virtual Tool Crib. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada389544.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wattel, C. J., M. Sopov, and M. A. P. M. van Asseldonk. Finance for resilience tool : a rapid assessment tool. Wageningen: Wageningen Centre for Development Innovation, 2021. http://dx.doi.org/10.18174/543746.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rittner, Christian Michael. CCS Tool Training. Office of Scientific and Technical Information (OSTI), May 2018. http://dx.doi.org/10.2172/1438353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Woods, Mel, Saskia Coulson, Raquel Ajates, Mara Balestrini, Sihana Bejtullahu, Stefano Bocconi, Gijs Boerwinkel, et al. Empathy Timeline Tool. University of Dundee, October 2020. http://dx.doi.org/10.20933/100001177.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Woods, Mel, Saskia Coulson, Raquel Ajates, Mara Balestrini, Sihana Bejtullahu, Stefano Bocconi, Gijs Boerwinkel, et al. Future Newspaper Tool. University of Dundee, October 2020. http://dx.doi.org/10.20933/100001179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Woods, Mel, Raquel Ajates, Nil Gulari, Saskia Coulson, and GROW Consortium. Co-Evaluation Tool. University of Dundee, October 2020. http://dx.doi.org/10.20933/100001180.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Woods, Mel, Saskia Coulson, and Raquel Ajates. Data Postcards Tool. University of Dundee, October 2020. http://dx.doi.org/10.20933/100001181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Variansyah, Ilham, Jin Whan Bae, Benjamin R. Betzler, and Germina Ilas. Metaheuristic Optimization Tool. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1608209.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Newcomer, Joe. Tool Interface Technology. Fort Belvoir, VA: Defense Technical Information Center, March 1987. http://dx.doi.org/10.21236/ada181156.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії