Добірка наукової літератури з теми "Top-down and bottom-up interactions"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Top-down and bottom-up interactions".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Top-down and bottom-up interactions"
McQueen, Donald J., John R. Post, and Edward L. Mills. "Trophic Relationships in Freshwater Pelagic Ecosystems." Canadian Journal of Fisheries and Aquatic Sciences 43, no. 8 (August 1, 1986): 1571–81. http://dx.doi.org/10.1139/f86-195.
Повний текст джерелаIngber, Lester. "Statistical mechanics of neocortical interactions: EEG eigenfunctions of short-term memory." Behavioral and Brain Sciences 23, no. 3 (June 2000): 403–5. http://dx.doi.org/10.1017/s0140525x00273251.
Повний текст джерелаZhong, Zhiwei, Xiaofei Li, Dean Pearson, Deli Wang, Dirk Sanders, Yu Zhu, and Ling Wang. "Ecosystem engineering strengthens bottom-up and weakens top-down effects via trait-mediated indirect interactions." Proceedings of the Royal Society B: Biological Sciences 284, no. 1863 (September 20, 2017): 20170894. http://dx.doi.org/10.1098/rspb.2017.0894.
Повний текст джерелаSivaloganathan, Darshan M., and Mark P. Brynildsen. "Phagosome–Bacteria Interactions from the Bottom Up." Annual Review of Chemical and Biomolecular Engineering 12, no. 1 (June 7, 2021): 309–31. http://dx.doi.org/10.1146/annurev-chembioeng-090920-015024.
Повний текст джерелаYoung, Richard, and Brian Yandell. "TOP-DOWN VERSUS BOTTOM-UP ANALYSES OF INTERLANGUAGE DATA." Studies in Second Language Acquisition 21, no. 3 (September 1999): 477–88. http://dx.doi.org/10.1017/s0272263199003058.
Повний текст джерелаMechelli, A. "Where Bottom-up Meets Top-down: Neuronal Interactions during Perception and Imagery." Cerebral Cortex 14, no. 11 (May 13, 2004): 1256–65. http://dx.doi.org/10.1093/cercor/bhh087.
Повний текст джерелаMcMains, S., and S. Kastner. "Interactions of Top-Down and Bottom-Up Mechanisms in Human Visual Cortex." Journal of Neuroscience 31, no. 2 (January 12, 2011): 587–97. http://dx.doi.org/10.1523/jneurosci.3766-10.2011.
Повний текст джерелаM'hamdi, Ahmed, and Mohamed Nemiche. "Bottom-Up and Top-Down Approaches to Simulate Complex Social Phenomena." International Journal of Applied Evolutionary Computation 9, no. 2 (April 2018): 1–16. http://dx.doi.org/10.4018/ijaec.2018040101.
Повний текст джерелаSharoh, Daniel, Tim van Mourik, Lauren J. Bains, Katrien Segaert, Kirsten Weber, Peter Hagoort, and David G. Norris. "Laminar specific fMRI reveals directed interactions in distributed networks during language processing." Proceedings of the National Academy of Sciences 116, no. 42 (September 30, 2019): 21185–90. http://dx.doi.org/10.1073/pnas.1907858116.
Повний текст джерелаZhang, Jian, Hong Qian, Marco Girardello, Vincent Pellissier, Scott E. Nielsen, and Jens-Christian Svenning. "Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity." Proceedings of the Royal Society B: Biological Sciences 285, no. 1883 (July 25, 2018): 20180949. http://dx.doi.org/10.1098/rspb.2018.0949.
Повний текст джерелаДисертації з теми "Top-down and bottom-up interactions"
Grellmann, Doris. "Top-down and bottom-up effects in a Fennoscandian tundra community." Doctoral thesis, Umeå universitet, Institutionen för ekologi, miljö och geovetenskap, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-96883.
Повний текст джерелаDiss. (sammanfattning) Umeå : Umeå universitet, 2001, härtill 6 uppsstser.
digitalisering@umu
Garrett, James Samuel. "Interaction of Top-Down and Bottom-Up Search with Magnocellular- and Parvocellular-Mediated Stimuli." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1464278964.
Повний текст джерелаFreier, Livia. "The development of bottom-up and top-down interaction in the processing of goal-directed action." Thesis, Birkbeck (University of London), 2016. http://bbktheses.da.ulcc.ac.uk/176/.
Повний текст джерелаHan, Peng. "Effets bottom-up et top-down des variations de fertilisation et d'irrigation sur des réseaux tri-trophiques en agroécosystèmes." Thesis, Nice, 2014. http://www.theses.fr/2014NICE4057/document.
Повний текст джерелаThe “Plant-herbivorous insect-natural enemy” system provides an ideal basic model to understand how the plant-inhabiting arthropod communities are structured and how various mechanisms (i.e. direct and indirect interactions) contribute to shape the community structure. In agro-ecosystems, top-down forces encompass the controlling effects that arthropod organisms of the higher trophic level (e.g., predators) have on species at the next lower level (e.g., prey). Arthropod communities may also be influenced by bottom-up forces induced by environmental variations (e.g. fertilization or irrigation regimes) or plant traits (plant insect-resistance or plant-adaptive traits). Furthermore, bottom-up forces may affect top-down forces on herbivores either directly (e.g., effects on omnivorous predator) or mediated by the intermediate herbivorous insects. In this context, the aims of the PhD study were to disentangle how variations in resource inputs (i.e. nitrogen and water availability) affect interactions among plant, herbivores and their natural enemies at both the individual (life-history traits) and population (population dynamic) levels. The studies were carried out on two agrosystems based on tomato and cotton. On tomato, the system 'Solanum lycopersicum L - leafminer Tuta absoluta - omnivorous predator Macrolphis pygmaeus' was used under laboratory and greenhouse conditions in France. We found strong evidence of bottom-up effects of nitrogen and/or water inputs on the herbivore and the omnivorous predator. Feeding ecology of the predator was also strongly influenced by water availability
Henzell-Thomas, J. "Learning from informative text : Prediction protocols as a means of accessing the interaction between top-down and bottom-up processes." Thesis, Lancaster University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371079.
Повний текст джерелаQuevreux, Pierre. "Conséquences des interactions entre voies vertes et brunes sur la stabilité des réseaux trophiques." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC142/document.
Повний текст джерелаThe aim of this thesis is to understand the implications of the relationships between green and brown food webs on the stability and functioning of food webs. The interactions between these two food webs, based respectively on photosynthesis and the consumption of dead organic matter, are essential for the functioning of ecosystems: one produces organic matter from mineral nutrients and the other one recycles the nutrients contained in dead organic matter. I address this by using two theoretical models and an experimental study. My first model shows that the feedback loop induced by nutrient cycling in an exclusively green food web has a stabilising effect on species dynamics in a food chain and an enrichment effect due to the excretion of nutrients that are available again for primary producers. However, only the enrichment effect, which is destabilising, persists in a food web model. My second model integrates a true brown food web and shows that this food web is more destabilised than the green food web when nutrient availability increases. This effect is amplified if most of nutrients are excreted as detritus that destabilises the brown food web through an enrichment effect. This model also shows that consumer survival is improved when they can consume prey from both green and brown food webs. My experiment in aquatic mesocosms enabled me to study the cascading effects between green and brown food webs thanks to light filtration (direct manipulation of the green food web), the addition of dissolved organic carbon (direct manipulation of the brown food web) and the addition of fish (manipulation of food web structure). We did not observe any cascading effects of the green food web on the brown food web and vice versa, probably because of a too low addition of dissolved carbon. The fish had a strong effect on both green and brown food webs with positive effects on phytoplankton when light is filtered because of the decreased nutrient limitation thanks to fish excretion, an increased concentration of dissolved organic carbon and a change in the metabolic profile of the benthic bacterial community. An additional model shows that the plasticity of metabolic rate, that is the ability of organisms to increase or decrease their metabolic rate depending on resource availability in order to optimise their energy budget, stabilises species dynamics in a food chain model by decreasing biomass time variability. Such a stabilising effect results in increase of species persistence in a complex food web model. This thesis is an additional step to better link community ecology to functional ecology, thus improving our understanding of the consequences on food web stability of major ecosystem processes such as the nutrient cycling and the effects of food web structure on ecosystem functioning
Filiz, Nur. "Impacts Of Nutrients On Periphyton Growth And Periphyton-macroinvertebrates Interactions In Shallow Lakes: A Mesocosm Experiment." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614911/index.pdf.
Повний текст джерелаdry mass and fish&rsquo
abundance were measured. Moreover at the end of the experiment epiphyton was also measured. Three kajak cores were taken from sediment for macroinvertebrates at the end of the experiment and identified. All physical features of mesocosm enclosures and PVI data were recorded for every 2 weeks. Periphyton biomass was higher concentrations in HN enclosures than LN tanks. Only dry mass of periphyton biomass showed the opposite because of the marl deposition in LN tanks. This finding was also reinforced by epiphyton samples which was taken at the end of the experiment. LN enclosures had the more abundance of macroinvertebrate. The groups we found in sediment which had big grazer effect on periphyton such as gastropods and Chironomidae. Grazer experiment showed that grazer effect on periphyton increased in time. Although this raise, periphyton growth also increased in LN enclosures with nutrient increasing. This may be indicate that nutrient effect has a stronger effect than grazer pressure on periphyton. As it is explained before in the beginning of the experiment all of the conditions were the same except nutrient level. Thus, bottom-up effect changed the top-down control and at the end of the experiment we saw the more periphyton less macroinvertebrate and more fish in HN tanks while the opposite was seen in LN tanks.
Giacaglia, Giuliano Pezzolo. "Integrating bottom-up and top-down information." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/91813.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 69-70).
In this thesis I present a framework for integrating bottom-up and top-down computer vision algorithms. I developed this framework, which I call the Map-Dictionary Pixel framework, because my intuition is that there is a need for tools that make it easier to build computer vision systems that mimic the way human visual systems process information. In particular, we humans humans create models of objects around us, and we use these models, top-down, to interpret, analyze and discern objects in the information that comes bottom-up from the visual world. After introducing my Map-Dictionary Pixel framework, I demonstrate how it empowers computer vision algorithms. I implement two different systems that extract the pixels of the image that correspond to a human. Even though each system uses different sets of algorithms, both use Map-Dictionary Pixel framework as the connecting pipeline. The two implementations demonstrate the utility of the Map-Dictionary Pixel framework and provide an example of how it can be used.
by Giuliano Pezzolo Giacaglia.
M. Eng.
ROCHA, Cacilda Michele Cardoso. "O papel de macrófitas submersas na estrutura e interações entre fitoplâncton e zooplâncton em reservatórios." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/18683.
Повний текст джерелаMade available in DSpace on 2017-05-02T13:54:54Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação_Cacilda Rocha.pdf: 2113838 bytes, checksum: 349b3a96b2897b76b15485e6fd1e6f54 (MD5) Previous issue date: 2016-02-29
CAPES
Macrófitas submersas promovem atributos das comunidades zooplanctônicas mediante estrutura física, transparência da água, habitat, e abrigo de predadores. Enquanto competem por luz e nutrientes, afetando negativamente o crescimento do fitoplâncton atuando nas interações de controle base-topo e promovendo efeito de controle topo-base do zooplâncton. Pouco foi investigado sobre o papel da vegetação submersa nas interações do zooplâncton e fitoplâncton em áreas sobre influência de reservatório no semiárido brasileiro. Nesse sentido, de maneira a identificar principais lacunas e perspectivas para estudos futuros sobre as macrófitas e interações tróficas enfatizando buscas por estudos realizados na América do Sul, realizamos uma análise cienciométrica, e acreditamos que o número de artigos na área exibirá uma tendência crescente ao longo dos anos, onde a América do Sul apresentará participação significativa tanto no número de publicações quanto na cooperação internacional. Além disso, com a finalidade de investigar se nas áreas com pressões pelos usos em reservatório e solo, plantas submersas são afetadas positivamente, e estruturam riqueza e abundância para o zooplâncton, e suas interações afetam negativamente o fitoplâncton durante quatro períodos, coletamos evidências de efeitos de controle base-topo e topo-base de macrófitas sobre o plâncton. Para tanto, comparamos atributos de comunidades e nutrientes dissolvidos em bancos de plantas na zona litorânea e centros correspondendo à pelágica. Para análise Cienciométrica, acessamos publicações usando base de dados internacional entre 1980 a 2015. A coleta do material no campo mediante navegação pelas áreas em distâncias superiores de 3.5km, com coletas simultâneas da cobertura vegetal, comunidades planctônicas e nutrientes nitrogenados e fósforo total dissolvido. Áreas de cobertura das plantas submersas foram estimadas por medição da proporção de presença e ausência de espécies em 24 pontos em transectos paralelos às margens em área superior a 3.5 km. Coletamos 24 amostras do fitoplâncton e de nutrientes. Para o zooplâncton, realizamos amostragem composta da coluna d’água na vertical e horizontal através de arrastos totalizando 48 amostras. A Cienciometria mostrou que o número de pesquisas sobre essas interações tróficas cresceram nos últimos anos na América do Sul, com contribuições do Brasil, Argentina e Uruguai. O conhecimento sobre as interações tróficas em tem norteado abordagens técnicas e pesquisas científicas em países temperados para melhorar a qualidade da água e restaurar lagos e reservatórios eutrofizados, mas a América do Sul avançou pouco. Constamos que o maior volume de artigos indexados tratou sobre a dinâmica e estrutura das assembléias aquáticas, teias e interações tróficas, para as quaias reservatórios e áreas alagadas receberam pouca atenção. Grande número de estudoscontemplam toda comunidade aquática e interações entre macrófitas, fitoplâncton zooplâncton e peixes. Com relação à pesquisa de campo, a macrófitas ocorreram em alta densidade e cobertura vegetal em 12 pontos por baía (60%; 70%) a diferentes profundidades (2m a 6m). Nas baías, fósforo (médias= 0.03 e 0.05 mg/L) e nitrogênio (0.4 e 0.9 mg/L) apresentaram baixas concentrações. A transparência de Secchi foi alta nas duas baías (>3.8). O fitoplâncton teve riqueza de 17 táxons, dos quais Cyanophyta e Bacillariophyta foram mais representativos. Baixas densidades registradas refletiram nos baixos valores clorofilaa (médias= 9 e 12 µg/l). O zooplâncton apresentou alta dissimilaridade na riqueza (97 spp.) dos Rotifera, Cladocera e Copepoda e abundância relativa, com densidades variando significativamente na zona pelágica (24 a 2013 ind./m³) e litorânea (28 a 1260 ind./m³) de ambas as baías. Nesse contexto, confrontando esses resultados com os dados encontrados da vegetação, juntamente com as baixas concentrações de nutrientes dissolvidos, clorofila-a e alta transparência da água (Secchi), há forte indício da ocorrência de interações com controles base-topo e topo-base sobre o fitoplâncton. Nossos dados suportam a hipótese de prováveis efeitos dessas interações estejam contribuindo para a manutenção das condições de transparência da água nas baías, favorecendo baixa riqueza e biomassa algal. Uma vez que o conhecimento sobre as interações tróficas, particularmente as que ocorrem em cascata tem sido desenvolvido com sucesso em na reestruturação e restauração da qualidade da água em diversos países. Esta pesquisa contribui para o conhecimento das interações mediadas pelas macrófitas, sobre o zooplâncton e fitoplâncton em áreas de influência de reservatórios. Contudo, estudos na área das interações tróficas mediadas pelas macrófitas poderão ser direcionados de maneira a atenuar assimetrias internacionais, encorajando o aumento da produtividade científica na América do Sul. Esforços para restaurar as baías no entorno do reservatório no Brasil poderão ser despendidos usando técnicas combinadas para aumentar a qualidade da água e incrementar atributos das comunidades aquáticas.
Submerged macrophytes promote attributes of planktonic communities by physical structure, water transparency, habitat, and shelter from predators. As they compete for light and nutrients, affecting negatively the phytoplankton growing, mediated bottom-up and topdown control interactions of zooplankton. Little has been investigated on the role of submerged vegetation in the interactions of zooplankton and phytoplankton in areas of reservoir influence in the Brazilian semiarid region. In order to identify major gaps and perspectives for future studies of macrophytes and trophic interactions, emphasizing searches for studies in South America, we conducted a scientometric analysis. We believe that the number of articles in the area show an increasing tendency to over the years, where South America will present significant participation in both the number of publications and in international cooperation. In order to investigate the impact of land use areas surrounding reservoir in submerged plants on planktonic communities, during four periods, we collect evidence of bottom-up and top-down controls of macrophyte on plankton. Our hypothesis is that the macrophytes are affected positively in that areas, and at the same time, can provide structure for richness and abundance to zooplankton and their interactions affect phytoplankton negatively. In the field we compare attributes of communities and dissolved nutrients in plant beds in the littoral and pelagic zones. For scientometrical analysis, we access publications using international database from 1980 to 2015. In the field, the samples were collected by boat, where greater distances with simultaneous sampling of vegetation, plankton communities and nitrogenous nutrients and total phosphorus dissolved. The submerged plant coverage areas were estimated by reducing the proportion of presence and absence of species in 24 points in parallel transects an area greater than 3.5 km. We collected 24 samples of phytoplankton and nutrients. For zooplankton, carry out sample composed of the water column vertically and horizontally, through hauls totaling 48 samples. The scientometrical analysis results showed that the number of trophic interactions researches grown in recent years in South America, with contributions from Brazil, Argentina and Uruguay. We found that the highest volume of indexed articles deals with the dynamics and structure of aquatic assemblages, webs and trophic interactions. Reservoirs and wetlands have received little attention. The large number of studies includes all aquatic community and interactions between macrophytes, phytoplankton, zooplankton and fish. Macrophytes occurred in high density and vegetation cover at 12 points per bay (60%; 70%) at different depths (2m to 6m). In the bays, phosphorus (mean = 0.03 and 0.05 mg / L) and nitrogen (0.4 and 0.9 mg / L) had lower concentrations. We found high Secchi transparency (>3.8) for both bays. The phytoplankton richness was 17 taxa, of which Cyanophyta Bacillariophyta were most representative. Low densities recorded reflected in lower values Chlorophyll-a (mean = 9.12 µg/l). Zooplankton showed high dissimilarity in the richness (97 spp.) of rotifers, Cladocera and Copepoda, with relative abundance. Densities varying significantly in the pelagic (24-2013 ind./m³) and littoral zones (28-1260 ind./m³) of both the bays. In this context, comparing these results with data from the vegetation, along with low concentrations of dissolved nutrients, chlorophyll-a and high water transparency, there is strong evidence of the occurrence of macrophytes and zooplankton interactions with bottomup and top-down controls on phytoplankton. Our data support the hypothesis that probably, effects of these interactions are contributing to the maintenance of conditions of water transparency, favoring low richness and algal biomass. The knowledge of trophic interactions, particularly which occur in cascades, has been successfully developed in the restructuring and restoration of water quality in several countries. This research brings to contributes to the knowledge of macrophytes, zooplankton and phytoplankton interactions in areas influenced by reservoirs. However, studies in the area of trophic interactions mediated by macrophytes may be directed in order to mitigate international asymmetries by encouraging increased scientific productivity in South America. Efforts to restore the bays around the reservoir in Brazil may be spent using combined techniques to increase the quality water and increase attributes of aquatic communities.
Itti, Laurent Koch Christof. "Models of bottom-up and top-down visual attention /." Diss., Pasadena, Calif. : California Institute of Technology, 2000. http://resolver.caltech.edu/CaltechETD:etd-12022005-103530.
Повний текст джерелаКниги з теми "Top-down and bottom-up interactions"
Marilyn, Taylor. Top down meets bottom up: Neighbourhood management. York: Joseph Rowntree Foundation, 2000.
Знайти повний текст джерелаTotzauer, Florian. Top-down- und Bottom-up-Ansätze im Innovationsmanagement. Wiesbaden: Springer Fachmedien Wiesbaden, 2014. http://dx.doi.org/10.1007/978-3-658-06841-7.
Повний текст джерелаThe administration of international organizations: Top down and bottom up. Aldershot, Hants, England: Ashgate, 2002.
Знайти повний текст джерелаJohnson, H. Thomas. Relevance regained: From top-down control to bottom-up empowerment. New York: Free Press, 1992.
Знайти повний текст джерелаPeacebuilding, memory and reconciliation: Bridging top-down and bottom-up approaches. New York: Routledge, 2012.
Знайти повний текст джерелаSoewignjo, Ignatius. Hubungan pusat dan daerah dilihat dari pendekatan "bottom-up & top-down". [Jakarta]: Markas Besar Angkatan Bersenjata, Republik Indonesia, Lembaga Pertahanan Nasional, 1992.
Знайти повний текст джерелаIronside, R. G. The Alberta forest products industry: Top-down initiatives--bottom-up problems. [Thunder Bay, Ont.]: Lakehead Centre for Northern Studies, 1990.
Знайти повний текст джерелаWinsor, John. Flipped: How bottom-up co-creation is replacing top-down innovation. Chicago: B2 Books, 2010.
Знайти повний текст джерела1959-, Winsor John, ed. Flipped: How bottom-up co-creation is replacing top-down innovation. Chicago: B2 Books, 2010.
Знайти повний текст джерелаЧастини книг з теми "Top-down and bottom-up interactions"
Glibert, Patricia M. "Interactions of top-down and bottom-up control in planktonic nitrogen cycling." In Eutrophication in Planktonic Ecosystems: Food Web Dynamics and Elemental Cycling, 1–12. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1493-8_1.
Повний текст джерелаHenderickx, David, Kathleen Maetens, Thomas Geerinck, and Eric Soetens. "Modeling the Interactions of Bottom-Up and Top-Down Guidance in Visual Attention." In Attention in Cognitive Systems, 197–211. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00582-4_15.
Повний текст джерелаCañas, José J. "The Future of Interaction Research: Interaction Is the Result of Top–Down and Bottom–Up Processes." In Future Interaction Design II, 55–68. London: Springer London, 2008. http://dx.doi.org/10.1007/978-1-84800-385-9_3.
Повний текст джерелаHeinke, Dietmar, Yaoru Sun, and Glyn W. Humphreys. "Modeling Grouping Through Interactions Between Top-Down and Bottom-Up Processes: The Grouping and Selective Attention for Identification Model (G-SAIM)." In Lecture Notes in Computer Science, 148–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-30572-9_11.
Повний текст джерелаLaverack, Glenn. "Bottom-Up and Top-Down." In A–Z of Health Promotion, 14–16. London: Macmillan Education UK, 2014. http://dx.doi.org/10.1007/978-1-137-35049-7_5.
Повний текст джерелаSamli, A. Coskun. "Bottom-Up Globalization, Not Top-Down." In Globalization from the Bottom Up, 63–76. New York, NY: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-77098-7_6.
Повний текст джерелаSuter, Andreas, Stefan Vorbach, and Doris Wild-Weitlaner. "Top-down vorgehen, bottom-up mitwirken." In Die Wertschöpfungsmaschine - Prozesse und Organisation strategiegerecht gestalten, 447–68. München: Carl Hanser Verlag GmbH & Co. KG, 2019. http://dx.doi.org/10.3139/9783446457386.014.
Повний текст джерелаPessa, Eliano. "Bottom-Up and Top-Down Mechanisms." In Visual Attention Mechanisms, 61–68. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0111-4_6.
Повний текст джерелаSamli, A. Coskun. "Top-Down versus Bottom-Up Management." In Who Stole Our Market Economy?, 131–43. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53801-3_15.
Повний текст джерелаBaldwin, Steve. "Planning: top-down or bottom-up?" In The Myth of Community Care, 39–44. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-4439-9_4.
Повний текст джерелаТези доповідей конференцій з теми "Top-down and bottom-up interactions"
Mitake, Hironori, Shoichi Hasegawa, Yasuharu Koike, and Makoto Sato. "Reactive Virtual Human with Bottom-up and Top-down Visual Attention for Gaze Generation in Realtime Interactions." In 2007 IEEE Virtual Reality Conference. IEEE, 2007. http://dx.doi.org/10.1109/vr.2007.352483.
Повний текст джерелаRubayat-E Tanjil, Md, Stanley Agbakansi, Keegan Phayden Suero, Ossie Douglas, Yunjo Jeong, Zhewen Yin, Wyatt Panaccione, and Michael Cai Wang. "Top-Down Processing Towards Ångström-Thin Two-Dimensional (2D) Elemental Metals." In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8495.
Повний текст джерелаEbashi, Takeshi, Katsuhiko Ishiguro, Keiichiro Wakasugi, Hideki Kawamura, Irina Gaus, Stratis Vomvoris, Andrew J. Martin, and Paul Smith. "Trends in Scenario Development Methodologies and Integration in NUMO’s Approach." In ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40124.
Повний текст джерелаMéndez, Gonzalo Gabriel, Uta Hinrichs, and Miguel A. Nacenta. "Bottom-up vs. Top-down." In CHI '17: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3025453.3025942.
Повний текст джерелаDuan, Gang, Andy Tang, Xinhai Qi, and Jianxia Zhong. "Finite Element Analysis of Pipeline Global Walking With Spanning and Lateral Buckling." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-24159.
Повний текст джерелаFidler, Sanja, Roozbeh Mottaghi, Alan Yuille, and Raquel Urtasun. "Bottom-Up Segmentation for Top-Down Detection." In 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2013. http://dx.doi.org/10.1109/cvpr.2013.423.
Повний текст джерелаOka, Takeshi, and Adolf Witt. "TOP DOWN CHEMISTRY VERSUS BOTTOM UP CHEMISTRY." In 71st International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2016. http://dx.doi.org/10.15278/isms.2016.rh15.
Повний текст джерелаUllman, J. D. "Bottom-up beats top-down for datalog." In the eighth ACM SIGACT-SIGMOD-SIGART symposium. New York, New York, USA: ACM Press, 1989. http://dx.doi.org/10.1145/73721.73736.
Повний текст джерелаLievens, Sigried. "IMPLEMENTING DIVERSITY: TOP-DOWN AND BOTTOM-UP." In International Technology, Education and Development Conference. IATED, 2016. http://dx.doi.org/10.21125/iceri.2016.0021.
Повний текст джерелаZs. Sejtes, Györgyi. "Bottom-up / top-down? / Bottom-up és top-down! Az olvasás-szövegértés pszicholingvisztikai megközelítése, lehetséges hatásai a fejlesztésre." In PeLiKon2018 – A nyelv perspektívája az oktatásban. Eszterházy Károly Egyetem Líceum Kiadó, 2020. http://dx.doi.org/10.17048/pelikon2018.2020.83.
Повний текст джерелаЗвіти організацій з теми "Top-down and bottom-up interactions"
Richards, Whitman. Top-Down Influences on Bottom-Up Processing. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada261514.
Повний текст джерелаRichards, Whitman. Top-Down Influences on Bottom-Up Processing. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada238235.
Повний текст джерелаPloos van Amstel, Dirk, Kuijer Lenneke, and Remko van der Lugt. Psychological Ownership Affordances as Routes to Influence Product Lifetime: Integrating top-down & bottom-up insights. University of Limerick, 2021. http://dx.doi.org/10.31880/10344/10243.
Повний текст джерелаSwartzentruber, Brian Shoemaker. "Bottom-up" meets "top-down" : self-assembly to direct manipulation of nanostructures on length scales from atoms to microns. Office of Scientific and Technical Information (OSTI), April 2009. http://dx.doi.org/10.2172/984156.
Повний текст джерелаRichardson, Ruth. Improved Understanding of Microbial Iron and Sulfate Reduction Through a Combination of Bottom-up and Top-down Functional Proteomics Assays. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1239632.
Повний текст джерелаNicholls, David, Frank Barnes, Felicia Acrea, Chinling Chen, Lara Y. Buluç, and Michele M. Parker. Top-down and bottom-up approaches to greenhouse gas inventory methods—a comparison between national- and forest-scale reporting methods. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 2015. http://dx.doi.org/10.2737/pnw-gtr-906.
Повний текст джерелаAkasha, Heba, Omid Ghaffarpasand, and Francis Pope. Climate Change and Air Pollution. Institute of Development Studies (IDS), January 2021. http://dx.doi.org/10.19088/k4d.2021.071.
Повний текст джерелаSuntharasaj, Pattharaporn. Bridging the Missing Link between "Top-down" and "Bottom-up": A Strategic Policy Model for International Collaboration in Science and Technology. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.1077.
Повний текст джерелаHeath, Garvin A. Reconciling Basin-Scale Top-Down and Bottom-Up Methane Emission Measurements for Onshore Oil and Gas Development: Cooperative Research and Development Final Report, CRADA Number CRD-14-572. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1412102.
Повний текст джерелаBustelo, Monserrat, Suzanne Duryea, Claudia Piras, Breno Sampaio, Giuseppe Trevisan, and Mariana Viollaz. The Gender Pay Gap in Brazil: It Starts with College Students' Choice of Major. Inter-American Development Bank, January 2021. http://dx.doi.org/10.18235/0003011.
Повний текст джерела