Добірка наукової літератури з теми "Torricelli"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Torricelli".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Torricelli":

1

Robinson, Philip J. "Evangelista Torricelli." Mathematical Gazette 78, no. 481 (March 1994): 37. http://dx.doi.org/10.2307/3619429.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

ORMAN, BRYAN A. "Torricelli Revisited." Teaching Mathematics and its Applications 12, no. 3 (1993): 124–29. http://dx.doi.org/10.1093/teamat/12.3.124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Adeeyo, Opeyemi Adewale, Samuel Sunday Adefila, and Augustine Omoniyi Ayeni. "Dynamics of Steady-State Gravity-Driven Inviscid Flow in an Open System." International Journal of Innovative Research and Scientific Studies 6, no. 1 (December 22, 2022): 80–88. http://dx.doi.org/10.53894/ijirss.v6i1.1101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Various factors can be responsible for the flow of incompressible fluid under gravity. Torricelli's theorem gives the relationship between the efflux velocity of an incompressible, gravity-driven flow from an orifice and the height of liquid above it. The concept of the original derivation of Torricelli’s theorem is limited in application because of certain inherent assumptions in the method of derivation. An alternate method of derivation is the use of Bernoulli’s principle. However, its result tends towards Torricelli’s flow only with some assumptions. In this study, an inherent assumption was incorporated into the conventional method of derivation to obtain an amended Torricelli’s equation. This study also considers a more general approach of derivation with Bernoulli’s principle, which tends to eliminate some of the limitations. The method involves the theoretical construction of gravity-driven flow from the bottom of a reservoir that is opened to atmospheric pressure. Bernoulli’s equation, with the continuity equation, is applied to gravity-driven open flow. The derived equations are used to analyze the prerequisite conditions for vertical flow in an open system and the variables that affect the flow rate. It is assumed that the flow is steady, inviscid, and has one inlet port and one exit port. Findings show that the surface area ratio of discharge to upstream, which was neglected in the convectional Torricelli velocity, can influence the velocity significantly. The study shows that a high surface area ratio can be used to augment the velocity of established flow for a decreased flow height.
4

Mazauric, Simone. "De Torricelli à Pascal." Philosophia Scientae, no. 14-2 (October 1, 2010): 1–44. http://dx.doi.org/10.4000/philosophiascientiae.172.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rougier, Louis. "De Torricelli à Pascal." Philosophia Scientae, no. 14-2 (October 1, 2010): 45–50. http://dx.doi.org/10.4000/philosophiascientiae.174.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hager, Willi H. "Diskussionsbeitrag: Torricelli hat Recht." WASSERWIRTSCHAFT 111, no. 7-8 (August 2021): 74. http://dx.doi.org/10.1007/s35147-021-0869-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Clanet, C. "Clepsydrae, from Galilei to Torricelli." Physics of Fluids 12, no. 11 (2000): 2743. http://dx.doi.org/10.1063/1.1310622.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Verriest, Erik I. "Variations on Fermat-Steiner-Torricelli." IFAC-PapersOnLine 55, no. 30 (2022): 218–23. http://dx.doi.org/10.1016/j.ifacol.2022.11.055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Epple, Philipp, Michael Steppert, Luis Wunder, and Michael Steber. "Verification of Torricelli’s Efflux Equation with the Analytical Momentum Equation and with Numerical CFD Computations." Applied Mechanics and Materials 871 (October 2017): 220–29. http://dx.doi.org/10.4028/www.scientific.net/amm.871.220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The efflux velocity equation from Torricelli is well known in fluid mechanics. It can be derived analytically applying Bernoulli’s equation. Bernoulli’s equation is obtained integrating the momentum equation on a stream line. For verification purposes the efflux velocity for a large tank or vessel was also computed analytically applying the momentum equation, delivering, however, a different result as the Torricelli equation. In order to validate these theoretical results the vertical and the horizontal efflux velocity case was simulated with computational fluid dynamics CFD. Furthermore, simple experiments for the horizontal and vertical efflux equation were performed.
10

BRAICA, PETRU, MIRCEA FARCAS, and DALY MARCIUC. "The locus of generalized Toricelli-Fermat points." Creative Mathematics and Informatics 24, no. 2 (2015): 125–29. http://dx.doi.org/10.37193/cmi.2015.02.16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Torricelli":

1

Bigucci, Giovanni. "Il punto di Torricelli-Fermat." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amslaurea.unibo.it/1231/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wilson, Jennifer. "A Grammar of Yeri a Torricelli language of Papua New Guinea." Thesis, State University of New York at Buffalo, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10255769.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

This dissertation is a grammar of Yeri, an endangered Torricelli language spoken in Sandaun Province, Papua New Guinea. The language is still spoken, to at least some degree, by approximately 100–150 speakers, most of whom live in Yapunda village. This grammar is based on primary data collected from Yeri speakers during the author’s eleven months of fieldwork, which was spread out over the course of three field trips. The primary data on which this grammar is founded can be accessed at The Language Archive. This grammar constitutes the first description of the Yeri language.

3

Pinheiro, Maciel. "Argumentos a favor do peso do ar: o experimento barométrico de Evangelista Torricelli (1608-1647)." Pontifícia Universidade Católica de São Paulo, 2014. https://tede2.pucsp.br/handle/handle/13290.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Made available in DSpace on 2016-04-28T14:16:18Z (GMT). No. of bitstreams: 1 Maciel Pinheiro.pdf: 518819 bytes, checksum: ddf0bcd1877d0d3003fc41d8196b3c73 (MD5) Previous issue date: 2014-03-21
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
The aim of this dissertation is to approach several arguments by Evangelista Torricelli (1608-1647) for the weight of air being the cause that explains the effects observed in his barometric experiment. To this end, we analyse a letter by Torricelli to Michelangelo Ricci (1619-1682) dated the 11th of June of 1644, which reports the experiment. The analysis revealed that, in order to understand Torricelli s interpretation of the experiment, we must take into account the intellectual context of that time. At first sight the experiment seems only to point to the evidence that vacuum can be generated in nature, since the phenomenon can be attributed to the weight of air. However, it reveals other aspects that were very important to the origins of modern science
Esta dissertação tem por finalidade abordar alguns argumentos apresentados por Evangelista Torricelli (1608-1647) a favor do peso do ar como causa para explicar os efeitos observados em seu experimento barométrico. Para tanto, analisamos uma carta encaminhada por Torricelli a Michelangelo Riccci (1619-1682) em 11 de junho de 1644 em que o experimento é relatado. A análise nos revelou que para compreender a interpretação dada por Torricelli ao experimento é preciso considerar o contexto intelectual daquela época. O experimento que, à primeira vista parece apenas apontar para a evidência de que era possível produzir vácuo na natureza, visto que o fenômeno poderia ser atribuído ao peso do ar, revela outros aspectos que foram importantes na origem da ciência moderna
4

Bascelli, Tiziana. "I fondamenti della nuova scienza del moto: la cinematica di Galileo e la geometria di Torricelli." Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3427358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This research presents in a different way the new science of motion described in Galileo’s Discourses (1638) and in Evangelista Torricelli’s Geometrical Work (1644). We will focus on how the local motion has been mathematized at the beginning of the modern mechanics in order to analyse its conditions and main features. The local motion, which had been a topic of natural philosophy, became a topic of modern kinematics that is a science. We will show that the new structure of speed has been a crucial event that led the naive notion of speed of the ancient tradition to the technical notion of continuous magnitude. The nature of continuity is closely connected to infinity and an analysis of this link is the peculiar way of reading those two texts.
Questo lavoro di ricerca intende dare una diversa lettura alla Nuova scienza del moto elaborata da Galileo Galilei nei Discorsi (1638) e da Evangelista Torricelli nell’Opera geometrica (1644). L'attenzione è rivolta al processo di matematizzazione che subisce il moto locale nel momento in cui nasce la meccanica moderna, per analizzarne le condizioni di realizzazione e le caratteristiche principali. Il moto locale, una questione dibattuta all’interno della filosofia naturale, diventa cinematica, cioè scienza. Si mostrerà che la strutturazione di un nuovo concetto di velocità è l’evento decisivo che porta l’accezione ingenua e intuitiva della tradizione, ad assumere l’accezione tecnico-operativa di grandezza continua. La natura della continuità è inscindibile dalla nozione di infinito e l’analisi di questo legame è la chiave di lettura proposta.
5

Delgado, Héctor Manuel. "Indivisibles, correspondances et controverses : Cavalieri, Galilée, Toricelli, Guldin." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAP002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Salvi, Marco. "Analisi della vulnerabilità di un aggregato edilizio nel centro storico di Torricella Sicura (TE) e confronto con il suo danneggiamento post sisma 2016." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18677/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La presente tesi prende in esame un aggregato edilizio storico colpito dal sisma del 2016, sito in Torricella Sicura (Te) . Innanzitutto è stata realizzata un’analisi della vulnerabilità sismica dell'aggregato, tramite un metodo che utilizza indici matematici, in grado di rappresentare le caratteristiche degli elementi strutturali degli edifici e di sintetizzare il livello di vulnerabilità dell'aggregato con un unico coefficiente numerico. Questo approccio necessita di una validazione attraverso l'applicazione a un caso di studio realmente danneggiato da un sisma, in modo da verificare se esista o meno una corrispondenza tra la propensione al danno misurata attraverso la vulnerabilità e il danno effettivamente registrato. Per questo motivo, si è proceduto anche alla quantificazione del danno subito dall’aggregato tramite un effettivo valore numerico e, successivamente, è stato operato un confronto tra i valori emersi dalle precedenti analisi. Il confronto è servito ad accertare l’attendibilità del modello di calcolo utilizzato, al fine di verificare l’esistenza o meno di uno scostamento tra quanto determinato con l’analisi della vulnerabilità e l’entità dei danni affettivamente riscontrati. Da ultimo, dopo aver preso in esame i dati emersi, è stata formulata una nuova proposta metodologica di calcolo, che rimodulando alcuni parametri, ha cercato di integrare e migliorare questo tipo di analisi, permettendo di raggiungere una più efficace corrispondenza tra la stima della vulnerabilità e la stima del danno.
7

Ζάχος, Αναστάσιος. "Το πρόβλημα Fermat-Torricelli και ένα αντίστροφο πρόβλημα στο Κ-επίπεδο και σε κλειστά πολύεδρα του R^3". Thesis, 2014. http://hdl.handle.net/10889/8001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Το πρόβλημα Fermat-Torricelli για n μη συγγραμμικά σημεία με βαρύτητες στον R^3 (b.FT) διατυπώνεται ως εξής: Δοθέντος n μη συγγραμμικών σημείων στον R^3 να βρεθεί ένα σημείο το οποίο ελαχιστοποιεί το άθροισμα των αποστάσεων με θετικές βαρύτητες του σημείου αυτού από τα n δοσμένα σημεία. Το αντίστροφο πρόβλημα Fermat-Torricelli για n μη συγγραμμικά και μη συνεπίπεδα σημεία με βαρύτητες στον R^3 (αντ.FT) διατυπώνεται ως εξής: Δοθέντος ενός σημείου που ανήκει στο εσωτερικό ενός κλειστού πολυέδρου που σχηματίζεται από n δοσμένα μη συγγραμμικά και μη συνεπίπεδα σημεία στον R^3, υπάρχει μοναδικά προσδιορίσιμο σύνολο τιμών για τις βαρύτητες που αντιστοιχούν σε κάθε ένα από τα n δοσμένα σημεία, ώστε το σημείο αυτό να επιλύει για τις τιμές αυτές των βαρυτήτων το πρόβλημα b.FT στον R^3; Στην παρούσα διατριβή, αποδεικνύουμε μία γενίκευση της ισογώνιας ιδιότητας του σημείου b.FT για ένα γεωδαισιακό τρίγωνο σε ένα Κ-επίπεδο (Σφαίρα, Υπερβολικό επίπεδο, Ευκλείδειο επίπεδο). Στη συνέχεια, δίνουμε μία αναγκαία συνθήκη για να είναι το σημείο b.FT εσωτερικό σημείο ενός τετραέδρου και ενός πενταέδρου (πυραμίδες) στον R^3. Η δεύτερη ομάδα αποτελεσμάτων της διατριβής περιλαμβάνει τη θετική απάντηση στο αντ.FT πρόβλημα για τρία μη γεωδαισιακά σημεία στο Κ-επίπεδο και στο αντ.FT πρόβλημα για τέσσερα μη συγγραμμικά και μη συνεπίπεδα σημεία στον R^3. Η αρνητική απάντηση στο αντ.FT για τέσσερα μη συγγραμμικά σημεία στον R^2 θα μας οδηγήσει σε σχέσεις εξάρτησης των βαρυτήτων που ονομάζουμε εξισώσεις της δυναμικής πλαστικότητας των τετραπλεύρων. Ομοίως, δίνοντας αρνητική απάντηση στο αντ.FT πρόβλημα για πέντε μη συνεπίπεδα σημεία στον R^3, παίρνουμε τις εξισώσεις δυναμικής πλαστικότητας , διατυπώνουμε και αποδεικνύουμε την αρχή της πλαστικότητας των κλειστών εξαέδρων στον R^3, που αναφέρει ότι: Έστω ότι πέντε προδιαγεγραμμένα ευθύγραμμα τμήματα συναντώνται στο σημείο b.FT, των οποίων τα άκρα σχηματίζουν ένα κλειστό εξάεδρο. Επιλέγουμε ένα σημείο σε κάθε ημιευθεία που ορίζει το προδιαγεγραμμένο ευθύγραμμο τμήμα, τέτοιο ώστε το τέταρτο σημείο να βρίσκεται πάνω από το επίπεδο που σχηματίζεται από την πρώτη και δεύτερη προδιαγεγραμμένη ημιευθεία και το τρίτο και πέμπτο σημείο να βρίσκονται κάτω από το επίπεδο που σχηματίζεται από την πρώτη και δεύτερη προδιαγεγραμμένη ημιευθεία. Τότε η μείωση της τιμής της βαρύτητας που αντιστοιχεί στην πρώτη, τρίτη και τέταρτη προδιαγεγραμμένη ημιευθεία προκαλεί αύξηση στις βαρύτητες που αντιστοιχούν στη δεύτερη και πέμπτη προδιαγεγραμμένη ημιευθεία.Τέλος, ένα σημαντικό αποτέλεσμα της διατριβής αφορά την επίλυση του γενικευμένου προβλήματος του Gauss για κυρτά τετράπλευρα στο Κ-επίπεδο, θέτοντας δύο σημεία στο εσωτερικό του κυρτού τετραπλεύρου με ίσες βαρύτητες, τα οποία στη συνέχεια αποδεικνύουμε ότι είναι δύο σημεία b.FT με συγκεκριμμένες βαρύτητες, αποτέλεσμα το οποίο γενικεύει το πρόβλημα b.FT για τετράπλευρα στο Κ-επίπεδo.
The weighted Fermat-Torricelli for n non-collinear points in R^3 states the following: Given n non-collinear points in R^3 find a point (b.FT point) which minimizes the sum of the distances multiplied by a positive number which corresponds to a given point (weight). The inverse Fermat-Torricelli problem for n non-collinear points with weights in R^3 (inv.FT) states the following: Given a point that belongs to the interior of a closed polyhedron which is formed between n given non-collinear points in R^3, does there exist a unique set of weights which corresponds to each one of the n points such that this point solves the weighted Fermat-Torricelli problem for this particular set of weights? In the present thesis, we prove a generalization of the isogonal property of the b.FT point for a geodesic triangle on the K-plane (Sphere, Hyperbolic plane, Euclidean plane). We proceed by giving a sufficient condition to locate the b.FT point at the interior of tetrahedra and pentahedra (pyramids) in R^3. The second group of results contains a positive answer on the inv.FT problem for three points that do not belong to a geodesic arc on the K-plane and on the inv.FT problem for four non collinear points and non coplanar in R^3. The negative answer with respect to the inv.FT problem for four non-collinear points in R^2 lead us to the relations of the dependence between the weights that we call the equations of dynamic plasticity for quadrilaterals. Similarly, by giving a negative answer with respect to the inv.FT problem for five points which do not belong in the same plane in R^3, we derive the equations of dynamic plasticity of closed hexahedra and we prove a plasticity principle of closed hexahedra in R^3, which states that: Considering five prescribed rays which meet at the weighted Fermat-Torricelli point, such that their endpoints form a closed hexahedron, a decrease on the weights that correspond to the first, third and fourth ray, causes an increase to the weights that correspond to the second and fifth ray, where the fourth endpoint is upper from the plane which is formed from the first ray and second ray and the third and fifth endpoint is under the plane which is formed from the first ray and second ray. Finally, a significant result of this thesis deals with the solution of the generalized Gauss problem for convex quadrilaterals on the K-plane in which by setting two points at the interior of the convex quadrilateral with equal weights we prove that these points are weighted Fermat-Torricelli points with specific weights, that generalizes the b.FT problem for quadrilaterals on the K-plane.

Книги з теми "Torricelli":

1

Torricelli, Evangelista. Lezioni accademiche d'Evangelista Torricelli. Milano: Biblion, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Battistini, Matilde. Capolavori della mente: Manuzio, Leonardo, Torricelli, Ferraris, Marconi. Milano: Electa, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

1947-, Gandt François de, and Beaulieu Armand, eds. L' Œuvre de Torricelli: Science galiléenne et nouvelle géométrie. Paris: Diffusion, Les Belles Lettres, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Toscano, Fabio. L'erede di Galileo: Vita breve e mirabile di Evangelista Torricelli. Milano (Italy): Sironi, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Blay, Michel. La science du mouvement des eaux: De Torricelli à Lagrange. Paris: Belin, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Torricelli, Giuseppe Antonio, and Anna Maria Massinelli. De lapidibus: Il trattato delle pietre di Giuseppe Antonio Torricelli. Livorno: Sillabe, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Toscano, Fabio. L'erede di Galileo: Vita breve e mirabile di Evangelista Torricelli. Milano (Italy): Sironi, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Torricelli, Angelo, and Chiara Baglione. Angelo Torricelli: Architettura in Capitanata : opere e progetti = works and projects 1997-2012. Padova: Il Poligrafo, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cristina, Zamora María, and Editora Política, eds. Ni mil leyes como esta nos pondrán de rodillas: Rechazo popular a la Ley Torricelli. La Habana: Editora Política, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mantese, Eleonora, ed. House and Site. Florence: Firenze University Press, 2014. http://dx.doi.org/10.36253/978-88-6655-581-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Il libro House and Site, curato da Eleonora Mantese e introdotto da Francesco Cellini, focalizza l’attenzione sul tema della casa isolata in rapporto al valore del luogo negli esempi di architetti che progettano la casa pensando alla città. Il racconto percorre l’opera di Wright, Neutra, Le Corbusier e guarda in profondità alcune case di Rudofsky, Zanuso, Lewerentz, Sert, Rainer. Contributi di Eleonora Mantese, Andrea Calgarotto, Cristiana Eusepi, Ugo Rossi, Carlotta Torricelli, Gundula Rakowitz.

Частини книг з теми "Torricelli":

1

Vesel, Živa, Leonardo Gariboldi, Steven L. Renshaw, Saori Ihara, İhsan Fazlıoğlu, Voula Saridakis, Michael Fosmire, et al. "Torricelli, Evangelista." In The Biographical Encyclopedia of Astronomers, 1146–47. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-30400-7_1390.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hack, Margherita. "Torricelli, Evangelista." In Biographical Encyclopedia of Astronomers, 2168–69. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-9917-7_1390.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zeng, Zhenbing, Yu Chen, Xiang Sun, and Yuzheng Wang. "On Geometric Property of Fermat–Torricelli Points on Sphere." In Computer Algebra in Scientific Computing, 442–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85165-1_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Uteshev, Alexei Yu, and Marina V. Yashina. "Stationary Points for the Family of Fermat–Torricelli–Coulomb-Like Potential Functions." In Computer Algebra in Scientific Computing, 412–26. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02297-0_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hui, Yan, Jie Zhan, Libin Jiao, and Xiu Liang. "Design and Development of Simulation Software Based on AR-Based Torricelli Experiment." In Lecture Notes in Computer Science, 481–90. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97774-0_44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

B. West, John. "Torricelli and the Ocean of Air: The First Measurement of Barometric Pressure." In Essays on the History of Respiratory Physiology, 25–35. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2362-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Allen, Bryant J. "Infection, Innovation and Residence: Illness and Misfortune in the Torricelli Foothills from 1800." In A Continuing Trial of Treatment, 35–68. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2731-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Duhem, Pierre. "The Mechanical Properties of the Center of Gravity from Albert of Saxony to Evangelista Torricelli." In The Origins of Statics, 261–356. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3730-0_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Havil, Julian. "Torricellis Trompete." In Verblüfft?!, 79–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-78236-0_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Guo, Xiaofeng, Tuo Leng, and Zhenbing Zeng. "The Fermat-Torricelli Problem of Triangles on the Sphere with Euclidean Metric: A Symbolic Solution with Maple." In Communications in Computer and Information Science, 263–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41258-6_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Torricelli":

1

Aggarwal, Ved Ratna, Suresh Kumar, Boonchoat Paosawatyanyong, and Pornrat Wattanakasiwich. "Safe Torricelli Experiment for Educational use in a Science Resource Center." In INTERNATIONAL CONFERENCE ON PHYSICS EDUCATION: ICPE-2009. AIP, 2010. http://dx.doi.org/10.1063/1.3479901.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fajar, Dinar Maftukh, Neny Kurniasih, and Khairurrijal Khairurrijal. "Simulation of Torricelli Effluent Flow by Using Visual Basic for Application (VBA) on Microsoft Excel." In 2014 International Conference on Advances in Education Technology. Paris, France: Atlantis Press, 2014. http://dx.doi.org/10.2991/icaet-14.2014.39.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sudarmanto, Agus, Muhammad Izzatul Faqih, and Nur Salim. "Development of a dynamic fluid practicum tool (torricelli theory) based on Arduino uno with flow sensor and vibration sensor for high schools in grade 11." In INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS) 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0073119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Panich, Charunya, Chokchai Puttharugsa, and Supitch Khemmani. "Predict-share-observe-explain learning activity for the Torricelli’s tank experiment." In INTERNATIONAL CONFERENCE FOR SCIENCE EDUCATORS AND TEACHERS (ISET) 2017: Proceedings of the 5th International Conference for Science Educators and Teachers (ISET) 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5019523.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Apiwan, Suttinee, Chokchai Puttharugsa, and Supitch Khemmani. "Development of instructional manual encouraging student active learning for high school teaching on fluid mechanics through Torricelli’s tank experiment." In INTERNATIONAL CONFERENCE FOR SCIENCE EDUCATORS AND TEACHERS (ISET) 2017: Proceedings of the 5th International Conference for Science Educators and Teachers (ISET) 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5019493.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Torricelli":

1

Lawrence, Nathan. Convex and Nonconvex Optimization Techniques for the Constrained Fermat-Torricelli Problem. Portland State University Library, January 2016. http://dx.doi.org/10.15760/honors.319.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії
Current page language: Ukrainian.
You might want to see the page in this language: English.
Change language