Добірка наукової літератури з теми "Transferts advectifs"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Transferts advectifs".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Transferts advectifs"

1

Genuchten, Martinus Th van, Feike J. Leij, Todd H. Skaggs, Nobuo Toride, Scott A. Bradford, and Elizabeth M. Pontedeiro. "Exact Analytical Solutions for Contaminant Transport in Rivers." Journal of Hydrology and Hydromechanics 61, no. 3 (2013): 250–59. http://dx.doi.org/10.2478/johh-2013-0032.

Повний текст джерела
Анотація:
Abstract Contaminant transport processes in streams, rivers, and other surface water bodies can be analyzed or predicted using the advection-dispersion equation and related transport models. In part 1 of this two-part series we presented a large number of one- and multi-dimensional analytical solutions of the standard equilibrium advection-dispersion equation (ADE) with and without terms accounting for zero-order production and first-order decay. The solutions are extended in the current part 2 to advective-dispersive transport with simultaneous first-order mass exchange between the stream or
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Genuchten, Martinus Th van, Feike J. Leij, Todd H. Skaggs, Nobuo Toride, Scott A. Bradford, and Elizabeth M. Pontedeiro. "Exact analytical solutions for contaminant transport in rivers 1. The equilibrium advection-dispersion equation." Journal of Hydrology and Hydromechanics 61, no. 2 (2013): 146–60. http://dx.doi.org/10.2478/johh-2013-0020.

Повний текст джерела
Анотація:
Abstract Analytical solutions of the advection-dispersion equation and related models are indispensable for predicting or analyzing contaminant transport processes in streams and rivers, as well as in other surface water bodies. Many useful analytical solutions originated in disciplines other than surface-water hydrology, are scattered across the literature, and not always well known. In this two-part series we provide a discussion of the advection-dispersion equation and related models for predicting concentration distributions as a function of time and distance, and compile in one place a la
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Peyrillé, Philippe, and Jean-Philippe Lafore. "An Idealized Two-Dimensional Framework to Study the West African Monsoon. Part II: Large-Scale Advection and the Diurnal Cycle." Journal of the Atmospheric Sciences 64, no. 8 (2007): 2783–803. http://dx.doi.org/10.1175/jas4052.1.

Повний текст джерела
Анотація:
The idealized 2D model developed in Part I of this study is used to study the West African monsoon sensitivity to large-scale forcing. Using ECWMF reanalyses, a large-scale forcing is introduced in the 2D model in terms of temperature and humidity advection. A coherent structure of cooling–moistening near the surface and drying–warming in the 2–4-km layer is found in the Saharan heat low region. The effect of the advective forcing is to block the monsoon propagation by strengthening the northerly flux and by an increase of convective inhibition. The heat low thus appears to play a key role in
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Aderogba, Adebayo Abiodun, and Appanah Rao Appadu. "Classical and Multisymplectic Schemes for Linearized KdV Equation: Numerical Results and Dispersion Analysis." Fluids 6, no. 6 (2021): 214. http://dx.doi.org/10.3390/fluids6060214.

Повний текст джерела
Анотація:
We construct three finite difference methods to solve a linearized Korteweg–de-Vries (KdV) equation with advective and dispersive terms and specified initial and boundary conditions. Two numerical experiments are considered; case 1 is when the coefficient of advection is greater than the coefficient of dispersion, while case 2 is when the coefficient of dispersion is greater than the coefficient of advection. The three finite difference methods constructed include classical, multisymplectic and a modified explicit scheme. We obtain the stability region and study the consistency and dispersion
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sun, Yubiao, Amitesh S. Jayaraman, and Gregory S. Chirikjian. "Approximate solutions of the advection–diffusion equation for spatially variable flows." Physics of Fluids 34, no. 3 (2022): 033318. http://dx.doi.org/10.1063/5.0084789.

Повний текст джерела
Анотація:
The advection–diffusion equation (ADE) describes many important processes in hydrogeology, mechanics, geology, and biology. The equations model the transport of a passive scalar quantity in a flow. In this paper, we have developed a new approach to solve incompressible advection–diffusion equations (ADEs) with variable convective terms, which are essential to study species transport in various flow scenarios. We first reinterpret advection diffusion equations on a microscopic level and obtain stochastic differential equations governing the behavior of individual particles of the species transp
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dritschel, David G., and Maarten H. P. Ambaum. "The Diabatic Contour Advective Semi-Lagrangian Model." Monthly Weather Review 134, no. 9 (2006): 2503–14. http://dx.doi.org/10.1175/mwr3202.1.

Повний текст джерела
Анотація:
Abstract This article describes a novel algorithmic development extending the contour advective semi-Lagrangian model to include nonconservative effects. The Lagrangian contour representation of finescale tracer fields, such as potential vorticity, allows for conservative, nondiffusive treatment of sharp gradients allowing very high numerical Reynolds numbers. It has been widely employed in accurate geostrophic turbulence and tracer advection simulations. In the present, diabatic version of the model the constraint of conservative dynamics is overcome by including a parallel Eulerian field tha
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Surfleet, Christopher, and Justin Louen. "The Influence of Hyporheic Exchange on Water Temperatures in a Headwater Stream." Water 10, no. 11 (2018): 1615. http://dx.doi.org/10.3390/w10111615.

Повний текст джерела
Анотація:
A headwater stream in coastal California was used to evaluate the temperature response of effective shade reduction. Spatial distribution of stream water temperatures for summer low-flow conditions (<0.006 m3 s−1) were highly correlated with net radiation and advective heat transfers from hyporheic exchange and subsequent streambed conduction. Using a heat budget model, mean maximum stream water temperatures were predicted to increase by 1.7 to 2.2 °C for 50% and 0% effective shade scenarios, respectively, at the downstream end of a 300 m treatment reach. Effects on mean maximum stream wate
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lumpkin, Rick, and Kevin Speer. "Global Ocean Meridional Overturning." Journal of Physical Oceanography 37, no. 10 (2007): 2550–62. http://dx.doi.org/10.1175/jpo3130.1.

Повний текст джерела
Анотація:
Abstract A decade-mean global ocean circulation is estimated using inverse techniques, incorporating air–sea fluxes of heat and freshwater, recent hydrographic sections, and direct current measurements. This information is used to determine mass, heat, freshwater, and other chemical transports, and to constrain boundary currents and dense overflows. The 18 boxes defined by these sections are divided into 45 isopycnal (neutral density) layers. Diapycnal transfers within the boxes are allowed, representing advective fluxes and mixing processes. Air–sea fluxes at the surface produce transfers bet
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ménesguen, C., S. Le Gentil, P. Marchesiello, and N. Ducousso. "Destabilization of an Oceanic Meddy-Like Vortex: Energy Transfers and Significance of Numerical Settings." Journal of Physical Oceanography 48, no. 5 (2018): 1151–68. http://dx.doi.org/10.1175/jpo-d-17-0126.1.

Повний текст джерела
Анотація:
Abstract The increase of computational capabilities led recent studies to implement very high-resolution simulations that gave access to new scale interaction processes, particularly those associated with the transfer of energy from the oceanic mesoscales to smaller scales through an interior route to dissipation, which is still underexplored. In this context, we study spindown simulations of a mesoscale interior vortex, unstable to a mixed baroclinic–barotropic instability. Even though the global energy is almost conserved, some energy is transferred down to dissipation scales during the deve
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gutknecht, E., I. Dadou, B. Le Vu, et al. "Nitrogen transfers and air-sea N<sub>2</sub>O fluxes in the upwelling off Namibia within the oxygen minimum zone: a 3-D model approach." Biogeosciences Discussions 8, no. 2 (2011): 3537–618. http://dx.doi.org/10.5194/bgd-8-3537-2011.

Повний текст джерела
Анотація:
Abstract. As regions of high primary production and being often associated to Oxygen Minimum Zones (OMZs), Eastern Boundary Upwelling Systems (EBUS) represent key regions for the oceanic nitrogen (N) cycle. Indeed, by exporting the Organic Matter (OM) and nutrients produced in the coastal region to the open ocean, EBUS can play an important role in sustaining primary production in subtropical gyres. Losses of fixed inorganic N, through denitrification and anammox processes and through nitrous oxide (N2O) emissions to the atmosphere, take place in oxygen depleted environments such as EBUS, and
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Transferts advectifs"

1

Touze-Foltz, Nathalie. "Modélisation des transferts advectifs dans les étanchéités composites de centres de stockage de déchets." Paris, ENMP, 2001. http://www.theses.fr/2001ENMPA001.

Повний текст джерела
Анотація:
Les géomembranes des étanchéités composites présentent fréquemment des défauts qui constituent des passages préférentiels d'écoulement pour les lixiviats. Plusieurs auteurs ont développe des modèles mathématiques et des équations empiriques pour interpréter les débits de fuite, générés par les transferts advectifs obtenus au laboratoire et les étendre aux conditions de terrain en régime permanent, pour une transmissivité d'interface uniforme, un sol et une interface saturés en eau. La synthèse bibliographique réalisée permet de déterminer les limites de validité des modèles mathématiques et de
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Touze-Foltz, Nathalie. "Modélisation des transferts advectifs dans les étanchéités composites de centres de stockage de déchets." Paris, ENMP, 2001. http://www.theses.fr/2001ENMP1038.

Повний текст джерела
Анотація:
Les géomembranes des étanchéités composites présentent fréquemment des défauts qui constituent des passages préférentiels d'écoulement pour les lixiviats. Plusieurs auteurs ont développé des modèles mathématiques et des équations empiriques pour interpréter les débits de fuite, générés par les transferts advectifs obtenus au laboratoire et les étendre aux conditions de terrain en régime permanent, pour une transmissivité d'interface uniforme, un sol et une interface saturés en eau. La synthèse bibliographique réalisée permet de déterminer les limites de validité des modèles mathématiques et de
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bannour, Hajer. "Evalution des transferts advectifs à travers les étanchéités composites géomenbranes-géosynthétiques bentonitiques des barrières de fonds d'installations de stockage de déchets." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENU048/document.

Повний текст джерела
Анотація:
L'étanchéité composite géomembrane(GM)-géosynthétique bentonitique (GSB) mise en place dans les barrières de fond d'installations de stockage de déchets non dangereux (ISDnD) peut être sujette à des transferts advectifs liés à l'existence de défauts dans la GM. Les lixiviats peuvent percoler dans le GSB, pénétrer dans le sol et les nappes phréatiques sous-jacentes ce qui peut nuire à l'environnement. Il est donc important de comprendre les mécanismes de transferts dans les étanchéités composites GM-GSB et de les quantifier afin de connaitre, maitriser et minimiser l'impact des transferts advec
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chabi, Fatiha. "Etude numérique et expérimentale du transfert de masse, par advection et diffusion en écoulement pulsé, sur des stents actifs." Thesis, Paris, ENSAM, 2016. http://www.theses.fr/2016ENAM0051/document.

Повний текст джерела
Анотація:
La perturbation des écoulements au voisinage de la paroi artérielle équipée d'un stent joue un rôle prépondérant dans l'apparition et le développement des complications liées aux maladies cardiovasculaires (sténose, resténose, thrombose...). La topologie de l'écoulement dans ces régions est très complexe. En effet, au voisinage du stent, des zones de recirculation se forment en amont et aval de chaque branche et les contraintes pariétales y sont très faibles. Des études in vivo et in vitro ont mis en évidence le rôle de ces caractéristiques de l'écoulement intra-stent sur les maladies cardiova
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ortega, Ramirez Miriam Patricia. "Analysis of soil structural and transfer properties using pore scale images and numerical modelling." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAU017/document.

Повний текст джерела
Анотація:
.Dans cette thèse, il a été étudié la structure des milieux poreux, en particulier sur des sols sableux et un paquet virtuel de sphères; Sur la base de références bibliographiques, nos propres outils ont été créés pour calculer la porosité, la surface spécifique et la distribution de la taille des pores. Nous avons construit un algorithme pour résoudre l'équation de diffusion de l'advection directement sur la structure du milieu poreux (en utilisant un résultat d'image 3D du scan $ mu $ CT du support poreux). Nous avons utilisé l'opérateur de division pour calculer la partie advective avec une
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zambaux, Julie-Anne. "Influence des déformations successives alternées de la paroi sur l'accroissement des performances d'échange d'un tube : application aux échangeurs multifonctionnels." Thesis, Valenciennes, 2014. http://www.theses.fr/2014VALE0036/document.

Повний текст джерела
Анотація:
Les travaux de thèse sont consacrés à l’étude numérique de l’application de macro-déformations successives alternées a la paroi d’un tube. La modification de l’écoulement du fait des déformations permet de modifier ses propriétés en termes de transfert thermique et de mélange. L’objectif de l’étude d’un tel dispositif est entre autre de l’appliquer pour des configurations d’échangeurs multifonctionnels, qui sont à la fois échangeurs de chaleur et réacteurs chimiques. L’étude s’intéresse principalement aux écoulements laminaires. Les calculs sont réalisés avec le code ANSYS Fluent. L’étude est
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Roque, António José Pereira Mendes. "Transfert advectif et diffusif de polluants inorganiques dans les barrières d'étanchéité minérales présentes dans les centres de stockage de déchets." Lyon, INSA, 2001. http://www.theses.fr/2001ISAL0034.

Повний текст джерела
Анотація:
Le présent travail vise à contribuer à une meilleure connaissance de la performance hydro-géochimique des sols dont les caractéristiques géotechniques sont proches de celles des sols habituellement utilisés pour la construction des barrières d'étanchéité minérales présentes dans les Centres de Stockage de Déchets (CSD), et ainsi à une meilleure conception et à un meilleur dimensionnement des dispositifs d'étanchéité sur la base de la détermination de la conductivité hydraulique, du coefficient de diffusion effective et de la capacité de rétention des sols. Nous présentons l'étude de la phénomé
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Davies, Kevin L. "Declarative modeling of coupled advection and diffusion as applied to fuel cells." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51814.

Повний текст джерела
Анотація:
The goal of this research is to realize the advantages of declarative modeling for complex physical systems that involve both advection and diffusion to varying degrees in multiple domains. This occurs, for example, in chemical devices such as fuel cells. The declarative or equation-based modeling approach can provide computational advantages and is compatible with physics-based, object-oriented representations. However, there is no generally accepted method of representing coupled advection and diffusion in a declarative modeling framework. This work develops, justifies, and implements
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hadad, Waseem Al. "Thermique des mini-canaux : comportement instationnaire et approche convolutive." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0121/document.

Повний текст джерела
Анотація:
Un modèle semi-analytique permettant de simuler le transfert thermique conjugué dans un mini/macro canal plan soumis à des sources de chaleur surfaciques localisées sur les faces externes et variantes en fonction du temps, a été présenté et vérifié. Plus le diamètre hydraulique du canal est petit, plus la caractérisation expérimentale interne (mesure des températures et des flux) en régime thermique permanent ou transitoire à l'aide des capteurs internes est délicate. Une méthode non-intrusive permettant d'estimer les conditions internes à partir des mesures de température par thermographie in
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ghanem, Akram. "Intensification des transferts : typologies par régime d'écoulement et critères de performance d'échangeurs/réacteurs multifonctionnels." Ecole centrale de Nantes, 2013. http://www.theses.fr/2013ECDN0034.

Повний текст джерела
Анотація:
Le concept d’échangeur réacteur multifonctionnel (ERM) recouvre l’ensemble des systèmes efficaces pour réaliser une ou plusieurs opérations unitaires sur les fluides industriels. L'objectif de ce travail est de caractériser les performances de différentes configurations d’ERM en termes de mélange et de transfert de chaleur par des techniques numériques et expérimentales. Une démarche d'efficacité énergétique est adoptée pour évaluer la faisabilité de chaque configuration selon des critères de performance. Dans le régime laminaire, l'advection chaotique produite dans les réacteurs "Split-And-Re
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Transferts advectifs"

1

E, Hobbs Bruce, and Ord Alison 1955-, eds. Convective and advective heat transfer in geological systems. Springer, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bennett, Ted D. Transport by advection and diffusion: Momentum, heat, and mass transfer. John Wiley & Sons, Inc., 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bennett, Ted D. Transport by advection and diffusion: Momentum, heat, and mass transfer. John Wiley & Sons, Inc., 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Convective And Advective Heat Transfer In Geological Systems. Springer, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hobbs, Bruce E., Chongbin Zhao, and Alison Ord. Convective and Advective Heat Transfer in Geological Systems. Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hobbs, Bruce E., Chongbin Zhao, and Alison Ord. Convective and Advective Heat Transfer in Geological Systems. Springer, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Convective and Advective Heat Transfer in Geological Systems. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-79511-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Transferts advectifs"

1

Rumynin, Vyacheslav G. "Models for Assessment of Transverse Diffusive and Advective Transfer in Regional Two-Layer Systems." In Theory and Applications of Transport in Porous Media. Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1306-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kono, Yohei, Yoshihiko Susuki, and Takashi Hikihara. "Modeling of Advective Heat Transfer in a Practical Building Atrium via Koopman Mode Decomposition." In Lecture Notes in Control and Information Sciences. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35713-9_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhao, Lei, Linlin Zhang, and Songtao Hu. "The Exploration on Heat Transfer Models for Borehole Heat Exchanger in the Soil with Groundwater Advection." In Lecture Notes in Electrical Engineering. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39581-9_69.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Davydova, M. A., N. N. Nefedov, and S. A. Zakharova. "Asymptotically Lyapunov-Stable Solutions with Boundary and Internal Layers in the Stationary Reaction-Diffusion-Advection Problems with a Small Transfer." In Finite Difference Methods. Theory and Applications. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11539-5_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Katopodes, Nikolaos D. "Advective Mass Transfer." In Free-Surface Flow. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-815489-2.00004-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rubin, Yoram. "An Overview of Stochastic Tools for Modeling Transport of Tracers in Heterogeneous Media." In Applied Stochastic Hydrogeology. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195138047.003.0012.

Повний текст джерела
Анотація:
Spatial variability and the uncertainty in characterizing the flow domain play an important role in the transport of contaminants in porous media: they affect the pathlines followed by solute particles, the spread of solute bodies, the shape of breakthrough curves, the spatial variability of the concentration, and the ability to quantify any of these accurately. This chapter briefly reviews some basic concepts which we shall later employ for the analysis of solute transport in heterogeneous media, and also points out some issues we shall address in the subsequent chapters. Our exposition in chapters 8-10 on contaminant transport is built around the Lagrangian and the Eulerian approaches for analyzing transport. The Eulerian approach is a statement of mass conservation in control volumes of arbitrary dimensions, in the form of the advection-dispersion equation. As such, it is well suited for numerical modeling in complex flow configurations. Its main difficulties, however, are in the assignment of parameters, both hydrogeological and geochemical, to the numerical grid blocks such that the effects of subgrid-scale heterogeneity are accounted for, and in the numerical dispersion that occurs in advection-dominated flow situations. Another difficulty is in the disparity between the scale of the numerical elements and the scale of the samples collected in the field, which makes the interpretation of field data difficult. The Lagrangian approach focuses on the displacements and travel times of solute bodies of arbitrary dimensions, using the displacements of small solute particles along streamlines as its basic building block. Tracking such displacements requires that the solute particles do not transfer across streamlines. Since such mass transfer may only occur due to pore-scale dispersion, Lagrangian approaches are ideally suited for advection-dominated situations. Let us start by considering the displacement of a small solute body, a particle, as a function of time. “Small” here implies that the solute body is much smaller than the characteristic scale of heterogeneity. At the same time, to qualify for a description of its movement using Darcy’s law, the solute body also needs to be larger than a few pores. The small dimension of the solute body ensures that it moves along a single streamline and that it does not disintegrate due to velocity shear.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ferrari, Andrea. "Tutorial on Advection Schemes for Interface Volume Capturing Techniques." In Encyclopedia of Two-Phase Heat Transfer and Flow III. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813229440_0003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nagorskiy, Petr Mikhailovich, Mikhail Vsevolodovich Kabanov, and Konstantin Nikolaevich Pustovalov. "The Influence of Smoke From Forest Fires on the Meteorological and Electrical Characteristics of the Atmosphere." In Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1867-0.ch014.

Повний текст джерела
Анотація:
The impact of smoke from forest fires in western Siberia on meteorological, atmospheric electric, and aerological variables has been analyzed. The anomalous distribution of water vapor in the atmosphere associated with the peculiarities of the evaporation regime and the absence of advective moisture transfer over the southern regions of Western Siberia during the fires. With an increase in the height of the homogeneous surface smoke layer with an unchanged aerosol optical thickness, the cooling of the earth's surface and heating of the atmosphere was weakened. The smoke plume spreads predominantly in the middle of the troposphere, creating aerosol layers elevated above the ground, the lower part of which had a negative volume charge. The effect of diurnal variations in the electrical field in the near-surface layer, differs from the known similar effects.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nurgaliev, Ildus Saetgalievich. "Solar Energy in Agro-Ecologic Micrometeorology Measurements." In Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3867-7.ch006.

Повний текст джерела
Анотація:
New approach to the measurements in agro-ecologic micrometeorology is suggested on the bases of renewable solar panels for energy supply to instruments at the remote sites and new turbulent model of the flow of the gases. Analytical dynamic model of the turbulent multi-component flow in the three-layer boundary system is presented. Turbulence is simulated by the non-zero vorticity, but not only. Other mathematical aspects of the turbulence are an introducing new model of the material point and considering a torsion of their trajectories. The generalized advection-diffusion-reaction equation is derived for an arbitrary number of components in the flow. The flows in the layers are objects for matching requirements on the boundaries between the layers. Different types of transport mechanisms are dominant on the different levels of the layers and space scales. The same models of mass and energy transfer are instrumental in simulation rural electrification concepts in general on the bases renewable sources.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yury, Yanilkin, Shmelev Vladimir, and Kolobyanin Vadim. "A Monotonic Method of Split Particles." In Recent Advances on Numerical Simulations [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97044.

Повний текст джерела
Анотація:
The problem of correct calculation of the motion of a multicomponent (multimaterial) medium is the most serious problem for Lagrangian–Eulerian and Eulerian techniques, especially in multicomponent cells in the vicinity of interfaces. There are two main approaches to solving the advection equation for a multicomponent medium. The first approach is based on the identification of interfaces and determining their position at each time step by the concentration field. In this case, the interface can be explicitly distinguished or reconstructed by the concentration field. The latter algorithm is the basis of widely used methods such as VOF. The second approach involves the use of the particle or marker method. In this case, the material fluxes of substances are determined by the particles with which certain masses of substances bind. Both approaches have their own advantages and drawbacks. The advantages of the particle method consist in the Lagrangian representation of particles and the possibility of” drawbacks. The main disadvantage of the particle method is the strong non-monotonicity of the solution caused by the discrete transfer of mass and mass-related quantities from cell to cell. This paper describes a particle method that is free of this drawback. Monotonization of the particle method is performed by spliting the particles so that the volume of matter flowing out of the cell corresponds to the volume calculated according to standard schemes of Lagrangian–Eulerian and Eulerian methods. In order not to generate an infinite chain of spliting, further split particles are re-united when certain conditions are met. The method is developed for modeling 2D and 3D gas-dynamic flows with accompanying processes, in which it is necessary to preserve the history of the process at Lagrangian points.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Transferts advectifs"

1

Chalhub, D. J. M. N., L. A. Sphaier, and L. S. de B. Alves. "Hybrid Eigenfunction-Discretization Methodology for Solving Convective Heat Transfer Problems." In ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ht2012-58336.

Повний текст джерела
Анотація:
This paper presents a novel methodology for the solution of problems that include diffusion and advection effects, as naturally occur in convective heat transfer problems. The methodology is based on writing the unknown temperature field in terms of eigenfunction expansions, as traditionally carried-out with the Generalized Integral Transform Technique (GITT). However, a different approach is used for handling advective derivatives. Rather than transforming the advection terms as done in traditional GITT solutions, upwind discretization schemes (UDS) are used prior to the integral transformati
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lefevre, A., Jose Paulo Barbosa Mota, Antonio Jose Silveiro Rodrigo, and Esteban Saatdjian. "Chaotic advection and heat transfer enhancement in Stokes flows." In International Heat Transfer Conference 12. Begellhouse, 2002. http://dx.doi.org/10.1615/ihtc12.3220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Marschewski, Julian, Patrick Ruch, Bruno Michel, and Dimos Poulikakos. "Enhancement of Mass and Heat Transfer Using Herringbone-Inspired Microstructures for Application in Microfluidic Redox Flow Cells." In ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icnmm2016-7920.

Повний текст джерела
Анотація:
Enhancing advection is of uttermost importance in many laminar microfluidic devices in order to thin boundary layers which limit both mass and heat transfer. We address this challenge by integrating herringbone-inspired flow promoters in channels for microfluidics. Due to the small dimensions of microchannels, microfluidic devices typically experience a purely laminar flow regime and are thus limited by diffusion. By augmenting diffusion limited transport to the wall of species and heat with advective transport mechanisms, the performance per unit area of microfluidic devices can be significan
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chu, Vincent H., and Wihel Altai. "ADVECTION AND DIFFUSION SIMULATIONS USING LAGRANGIAN BLOCKS." In Proceedings of CHT-12. ICHMT International Symposium on Advances in Computational Heat Transfer. Begellhouse, 2012. http://dx.doi.org/10.1615/ichmt.2012.cht-12.270.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mechitoua, N., and P. L. Viollet. "MODELLING OF ADVECTIVE AND RADIATIVE HEAT TRANSFER IN TURBULENT FLOWS APPLICATION TO FURNACE COMPUTATIONS." In International Heat Transfer Conference 9. Begellhouse, 1990. http://dx.doi.org/10.1615/ihtc9.1490.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Luo, Huan-Lin. "THE UNSTEADY ONE-DIMENSIONAL ADVECTION MODELLING USING CCMC SCHEME." In CHT'97 - Advances in Computational Heat Transfer. Proceedings of the International Symposium. Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphencht.290.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ranalli, Joseph, and Esther E. M. Peerlings. "Downscaling of Spatial Irradiance Based on Cloud Advection using Transfer Functions." In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC). IEEE, 2021. http://dx.doi.org/10.1109/pvsc43889.2021.9518748.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sun, Yong Kweon, and Yong Kyun Kim. "ENHANCEMENT OF HEAT TRANSFER BY CHAOTIC ADVECTION IN A SINGLE SCREW EXTRUDER WITH A STAGGERED FLIGHT GEOMETRY." In International Heat Transfer Conference 11. Begellhouse, 1998. http://dx.doi.org/10.1615/ihtc11.2030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jurcisinova, E., M. Jurcisin, and R. Remecky. "Passive vector advection in the turbulent velocity field with finite correlation time: two-loop approximation." In Turbulence, Heat and Mass Transfer 6. Proceedings of the Sixth International Symposium On Turbulence, Heat and Mass Transfer. Begellhouse, 2009. http://dx.doi.org/10.1615/ichmt.2009.turbulheatmasstransf.1330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Moreira, Davidson M., Marco Tulio de Vilhena, D. Buske, and Tiziano Tirabassi. "Analytical Solution for the Transient Two-Dimensional Advection-Diffusion Equation Considering Nonlocal Closure of the Turbulent Diffusion." In Turbulence, Heat and Mass Transfer 5. Proceedings of the International Symposium on Turbulence, Heat and Mass Transfer. Begellhouse, 2006. http://dx.doi.org/10.1615/ichmt.2006.turbulheatmasstransf.1530.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!