Добірка наукової літератури з теми "Transformation semigroup"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Transformation semigroup".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Transformation semigroup"

1

Yusuf, Usman Mohammed, Moses Anayo Mbah, and Abimiku Alaku. "On Signed Full Transformation Semigroup of a Finite Set." FULafia Journal of Science and Technology 9, no. 1 (2025): 54–56. https://doi.org/10.62050/fjst2025.v9n1.510.

Повний текст джерела
Анотація:
If we define [n] = {1,2,3,...,n} and [n*] = {±1,±2,±3...,±n}. A map α: [n] → [n*] is called a signed transformation on [n]. The collection of all these maps together with composition forms a semigroup called a signed transformation semigroup. Given that dom(α) = [n], the signed transformation semigroup will be called a signed full transformation semigroup on [n]. In this paper, we obtain formulas that count the number of elements in the semigroups of order decreasing, order preserving and order decreasing signed transformations on [n]. We equally do same for the sub-semigroup of the signed tra
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Haynes, Tyler. "Thickness in topological transformation semigroups." International Journal of Mathematics and Mathematical Sciences 16, no. 3 (1993): 493–502. http://dx.doi.org/10.1155/s0161171293000602.

Повний текст джерела
Анотація:
This article deals with thickness in topological transformation semigroups (τ-semigroups). Thickness is used to establish conditions guaranteeing an invariant mean on a function space defined on aτ-semigroup if there exists an invariant mean on its functions restricted to a sub-τ-semigroup of the originalτ-semigroup. We sketch earlier results, then give many equivalent conditions for thickness onτ-semigroups, and finally present theorems giving conditions for an invariant mean to exist on a function space.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jude. A., Omelebele, Udoaka O. G., and Udoakpan I. U. "Ranks of Identity Difference Transformation Semigroup." International Journal of Pure Mathematics 9 (March 30, 2022): 49–54. http://dx.doi.org/10.46300/91019.2022.9.10.

Повний текст джерела
Анотація:
This study focuses on the ranks of identity difference transformation semigroup. The ideals of all the (sub) semigroups; identity difference full transformation semigroup (IDT_n), identity difference order preserving transformation semigroup, (IDO_n), identity difference symmetric inverse transformation semigroup( IDI_n), identity difference partial order preserving symmetric inverse transformation semigroup( IDPOI_n) and identity difference partial order preserving transformation semigroup ( IDPO_n) were investigated for rank and their combinatorial results obtained respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Emunefe, J. O., A. O. Atonuje, and J. Tsetimi,. "Conjugacy Classes in Order- Preserving Transformation Semi groups with Injective Contraction." Nigerian Journal of Science and Environment 22, no. 3 (2024): 22–43. https://doi.org/10.61448/njse223243.

Повний текст джерела
Анотація:
Enumerating the elements within transformation semigroups poses a significant challenge. Prior knowledge has been more on the injective order-preserving and order-decreasing transformation semigroup, a sub-semigroup of the injective transformation semigroup. This work categorized elements within the injective order-preserving sub-semigroup with contraction, arranging them into conjugacy classes using a path decomposition approach based on circuit and proper paths. Furthermore, these conjugacy classes were organized according to the number of images. A general expression was derived for the num
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nenthein, S., та Y. Kemprasit. "On transformation semigroups which areℬ𝒬-semigroups". International Journal of Mathematics and Mathematical Sciences 2006 (2006): 1–10. http://dx.doi.org/10.1155/ijmms/2006/12757.

Повний текст джерела
Анотація:
A semigroup whose bi-ideals and quasi-ideals coincide is called aℬ𝒬-semigroup. The full transformation semigroup on a setXand the semigroup of all linear transformations of a vector spaceVover a fieldFinto itself are denoted, respectively, byT(X)andLF(V). It is known that every regular semigroup is aℬ𝒬-semigroup. Then bothT(X)andLF(V)areℬ𝒬-semigroups. In 1966, Magill introduced and studied the subsemigroupT¯(X,Y)ofT(X), where∅≠Y⊆XandT¯(X,Y)={α∈T(X,Y)|Yα⊆Y}. IfWis a subspace ofV, the subsemigroupL¯F(V,W)ofLF(V)will be defined analogously. In this paper, it is shown thatT¯(X,Y)is aℬ𝒬-semigroup i
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Imam, A.T, M. Balarabe, S. Kasim, and C. Eze. "Perfect Product of two Squares in Finite Full Transformation Semigroup." International Journal of Mathematical Sciences and Optimization: Theory and Applications 11, no. 1 (2025): 107–13. https://doi.org/10.5281/zenodo.15176079.

Повний текст джерела
Анотація:
 In this paper, we investigate the concept of the perfect product of two squares in the context  of finite full transformation semigroups. We provide a comprehensive analysis of the conditions  under which the product of two idempotent elements in a transformation semigroup forms a  perfect product of two squares. Specifically, we examine the relationship between the kernel and image of idempotents, as well as the interplay between the domain and image of these  transformations. The main result establishes that for two idempotent elements α and β in Tn,
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shirazi, Zadeh, and Nasser Golestani. "On classifications of transformation semigroups: Indicator sequences and indicator topological spaces." Filomat 26, no. 2 (2012): 313–29. http://dx.doi.org/10.2298/fil1202313s.

Повний текст джерела
Анотація:
In this paper considering a transformation semigroup with finite height we define the notion of indicator sequence in such a way that any two transformation semigroups with the same indicator sequence have the same height. Also related to any transformation semigroup a topological space, called indicator topological space, is defined in such a way that transformation semigroups with homeomorphic indicator topological spaces have the same height. Moreover any two transformation semigroups with homeomorphic indicator topological spaces and finite height have the same indicator sequences.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dimitrova, I., and J. Koppitz. "ON THE MAXIMAL SUBSEMIGROUPS OF SOME TRANSFORMATION SEMIGROUPS." Asian-European Journal of Mathematics 01, no. 02 (2008): 189–202. http://dx.doi.org/10.1142/s1793557108000187.

Повний текст джерела
Анотація:
Let Singn be the semigroup of all singular transformations on an n-element set. We consider two subsemigroups of Singn: the semigroup On of all isotone singular transformations and the semigroup Mn of all monotone singular transformations. We describe the maximal subsemigroups of these two semigroups, and study the connections between them.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rakbud, Jittisak, та Malinee Chaiya. "Regularity of Semigroups of Transformations Whose Characters Form the Semigroup of a Δ -Structure". International Journal of Mathematics and Mathematical Sciences 2020 (27 грудня 2020): 1–7. http://dx.doi.org/10.1155/2020/8872391.

Повний текст джерела
Анотація:
In this paper, we make use of the notion of the character of a transformation on a fixed set X , provided by Purisang and Rakbud in 2016, and the notion of a Δ -structure on X , provided by Magill Jr. and Subbiah in 1974, to define a sub-semigroup of the full-transformation semigroup T X . We also define a sub-semigroup of that semigroup. The regularity of those two semigroups is also studied.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

SINGHA, BOORAPA, JINTANA SANWONG, and R. P. SULLIVAN. "PARTIAL ORDERS ON PARTIAL BAER–LEVI SEMIGROUPS." Bulletin of the Australian Mathematical Society 81, no. 2 (2010): 195–207. http://dx.doi.org/10.1017/s0004972709001038.

Повний текст джерела
Анотація:
AbstractMarques-Smith and Sullivan [‘Partial orders on transformation semigroups’, Monatsh. Math.140 (2003), 103–118] studied various properties of two partial orders on P(X), the semigroup (under composition) consisting of all partial transformations of an arbitrary set X. One partial order was the ‘containment order’: namely, if α,β∈P(X) then α⊆β means xα=xβ for all x∈dom α, the domain of α. The other order was the so-called ‘natural order’ defined by Mitsch [‘A natural partial order for semigroups’, Proc. Amer. Math. Soc.97(3) (1986), 384–388] for any semigroup. In this paper, we consider t
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Transformation semigroup"

1

Wilson, Wilf A. "Computational techniques in finite semigroup theory." Thesis, University of St Andrews, 2019. http://hdl.handle.net/10023/16521.

Повний текст джерела
Анотація:
A semigroup is simply a set with an associative binary operation; computational semigroup theory is the branch of mathematics concerned with developing techniques for computing with semigroups, as well as investigating semigroups with the help of computers. This thesis explores both sides of computational semigroup theory, across several topics, especially in the finite case. The central focus of this thesis is computing and describing maximal subsemigroups of finite semigroups. A maximal subsemigroup of a semigroup is a proper subsemigroup that is contained in no other proper subsemigroup. We
Стилі APA, Harvard, Vancouver, ISO та ін.
2

East, James Phillip Hinton. "On Monoids Related to Braid Groups and Transformation Semigroups." School of Mathematics and Statistics, 2006. http://hdl.handle.net/2123/2438.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

East, James Phillip Hinton. "On Monoids Related to Braid Groups and Transformation Semigroups." Thesis, The University of Sydney, 2005. http://hdl.handle.net/2123/2438.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Péresse, Yann. "Generating uncountable transformation semigroups." Thesis, University of St Andrews, 2009. http://hdl.handle.net/10023/867.

Повний текст джерела
Анотація:
We consider naturally occurring, uncountable transformation semigroups S and investigate the following three questions. (i) Is every countable subset F of S also a subset of a finitely generated subsemigroup of S? If so, what is the least number n such that for every countable subset F of S there exist n elements of S that generate a subsemigroup of S containing F as a subset. (ii) Given a subset U of S, what is the least cardinality of a subset A of S such that the union of A and U is a generating set for S? (iii) Define a preorder relation ≤ on the subsets of S as follows. For subsets V and W
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Umar, Abdullahi. "Semigroups of order-decreasing transformations." Thesis, University of St Andrews, 1992. http://hdl.handle.net/10023/2834.

Повний текст джерела
Анотація:
Let X be a totally ordered set and consider the semigroups of orderdecreasing (increasing) full (partial, partial one-to-one) transformations of X. In this Thesis the study of order-increasing full (partial, partial one-to-one) transformations has been reduced to that of order-decreasing full (partial, partial one-to-one) transformations and the study of order-decreasing partial transformations to that of order-decreasing full transformations for both the finite and infinite cases. For the finite order-decreasing full (partial one-to-one) transformation semigroups, we obtain results analogous
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jacques, Matthew. "Composition sequences and semigroups of Möbius transformations." Thesis, Open University, 2016. http://oro.open.ac.uk/48415/.

Повний текст джерела
Анотація:
Motivated by the theory of Kleinian groups and by the theory of continued fractions, we study semigroups of Möbius transformations. Like Kleinian groups, semigroups have limit sets, and indeed each semigroup is equipped with two limit sets. We find that limit sets have an internal structure with features similar to the limit sets of Kleinian groups and the Julia sets of iterates of analytic functions. We introduce the notion of a semidiscrete semigroup, and find that this property is akin to the discreteness property for groups. We study semigroups of Möbius transformations that fix the unit d
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Garba, Goje Uba. "Idempotents, nilpotents, rank and order in finite transformation semigroups." Thesis, University of St Andrews, 1992. http://hdl.handle.net/10023/13703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Жуковська, Тетяна Григорівна, та Tetiana H. Zhukovska. "Напівгрупи перетворень булеану пов’язані з відношенням включення". Thesis, Інститут математики НАН України, 2008. http://esnuir.eenu.edu.ua/handle/123456789/1512.

Повний текст джерела
Анотація:
Жуковська Тетяна Григорівна - старший викладач кафедри геометрії і алгебри Східноєвропейського національного університету імені Лесі Українки<br>Напівгрупи перетворень булеану пов’язані з відношенням включення були розглянуті в доповіді. The transformations semigroup of the boolean related to the relation of the inclusion were considered in the report.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Morris, Owen Christopher. "On a class of one-parameter operator semigroups with state space Rn x Zm generated by pseudo-differential operators." Thesis, Swansea University, 2013. https://cronfa.swan.ac.uk/Record/cronfa42779.

Повний текст джерела
Анотація:
The thesis shows that, under suitable conditions, a pseudo-differential operator, defined on some "nice" set of functions on Rn x Zm, with continuous negative definite symbol q(x,xi,o) extends to a generator of a Feller semigroup. Sections 1-5 are the preliminary sections, these sections discuss some harmonic analysis concerning locally compact Abelian groups. The essence of this thesis are Sections 6-13, which deals with obtaining the estimates required for the fulfilment of the conditions of the Hille-Yosida-Ray theorem.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Brown, Thomas John. "The theory of integrated empathies." Pretoria : [s.n.], 2005. http://upetd.up.ac.za/thesis/available/etd-08242006-120817.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Transformation semigroup"

1

Ganyushkin, Olexandr, and Volodymyr Mazorchuk. Classical Finite Transformation Semigroups. Springer London, 2009. http://dx.doi.org/10.1007/978-1-84800-281-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rocha, Victor H. L., and Josiney A. Souza. Lyapunov Stability of Transformation Semigroups. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-85761-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Volodymyr, Mazorchuk, ed. Classical finite transformation semigroups: An introduction. Springer, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Koli︠a︡da, S. F. Dynamics and numbers: A special program, June 1-July 31, 2014, Max Planck Institute for Mathematics, Bonn, Germany : international conference, July 21-25, 2014, Max Planck Institute for Mathematics, Bonn, Germany. Edited by Max-Planck-Institut für Mathematik. American Mathematical Society, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ganyushkin, Olexandr, and Volodymyr Mazorchuk. Classical Finite Transformation Semigroups: An Introduction. Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Geometry and Dynamics in Gromov Hyperbolic Metric Spaces: With an Emphasis on Non-Proper Settings. American Mathematical Society, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Transformation semigroup"

1

Lozano, Yolanda, Massimo Bianchi, Warren Siegel, et al. "Transformation Semigroup." In Concise Encyclopedia of Supersymmetry. Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_660.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jentsch, Peter C., and Chrystopher L. Nehaniv. "Exploring Tetris as a Transformation Semigroup." In Springer Proceedings in Mathematics & Statistics. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63591-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Farahbakhsh, Isaiah, and Chrystopher L. Nehaniv. "Spatial Iterated Prisoner’s Dilemma as a Transformation Semigroup." In Springer Proceedings in Mathematics & Statistics. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63591-6_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lipscomb, Stephen. "Decomposing partial transformations." In Symmetric Inverse Semigroups. American Mathematical Society, 1996. http://dx.doi.org/10.1090/surv/046/11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lipscomb, Stephen. "Commuting partial transformations." In Symmetric Inverse Semigroups. American Mathematical Society, 1996. http://dx.doi.org/10.1090/surv/046/12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

More, Anuj Kumar, and Mohua Banerjee. "Transformation Semigroups for Rough Sets." In Rough Sets. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99368-3_46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Magill, K. D. "The Countability Indices of Certain Transformation Semigroups." In Semigroups and Their Applications. Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3839-7_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Beaudry, Martin. "Testing membership in commutative transformation semigroups." In Automata, Languages and Programming. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/3-540-18088-5_47.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tiwari, S. P., and Shambhu Sharan. "On Coverings of Rough Transformation Semigroups." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21881-1_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fleischer, Lukas, and Manfred Kufleitner. "Green’s Relations in Finite Transformation Semigroups." In Computer Science – Theory and Applications. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58747-9_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Transformation semigroup"

1

Trendafilov, Ivan D., and Dimitrinka I. Vladeva. "On some semigroups of the partial transformation semigroup." In APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '12): Proceedings of the 38th International Conference Applications of Mathematics in Engineering and Economics. AIP, 2012. http://dx.doi.org/10.1063/1.4766807.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ronca, Alessandro. "The Transformation Logics." In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/393.

Повний текст джерела
Анотація:
We introduce a new family of temporal logics designed to finely balance the trade-off between expressivity and complexity. Their key feature is the possibility of defining operators of a new kind that we call transformation operators. Some of them subsume existing temporal operators, while others are entirely novel. Of particular interest are transformation operators based on semigroups. They enable logics to harness the richness of semigroup theory, and we show them to yield logics capable of creating hierarchies of increasing expressivity and complexity which are non-trivial to characterise
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Xiang. "Isomorphisms of Maximal Subsemigroups of D-classes of Finite Full Transformation Semigroup." In Proceedings of the 2018 3rd International Conference on Communications, Information Management and Network Security (CIMNS 2018). Atlantis Press, 2018. http://dx.doi.org/10.2991/cimns-18.2018.34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Al-Aadhami, Asawer. "Ideals of the full transformation semigroup of a free left G-act on n-generators." In 2ND INTERNATIONAL CONFERENCE FOR ENGINEERING SCIENCES AND INFORMATION TECHNOLOGY (ESIT 2022): ESIT2022 Conference Proceedings. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0183024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

MENDES-GONÇALVES, SUZANA. "ISOMORPHISM PROBLEMS FOR TRANSFORMATION SEMIGROUPS." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708700_0015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

SULLIVAN, R. P. "TRANSFORMATION SEMIGROUPS: PAST, PRESENT AND FUTURE." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792310_0016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

FERNANDES, VíTOR H. "PRESENTATIONS FOR SOME MONOIDS OF PARTIAL TRANSFORMATIONS ON A FINITE CHAIN: A SURVEY." In Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mora, W., and Y. Kemprasit. "Regular Elements of Generalized Order-Preserving Transformation Semigroups." In The International Conference on Algebra 2010 - Advances in Algebraic Structures. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814366311_0033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

ANANICHEV, D. S., and M. V. VOLKOV. "SOME RESULTS ON ČERNÝ TYPE PROBLEMS FOR TRANSFORMATION SEMIGROUPS." In Proceedings of the Workshop. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702616_0002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Muradov, Firudin Kh. "Ternary semigroups of topological transformations of open sets of finite-dimensional Euclidean spaces." In FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0042197.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!