Добірка наукової літератури з теми "Transmission synaptique GABAergic/glycinergique"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Transmission synaptique GABAergic/glycinergique".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Дисертації з теми "Transmission synaptique GABAergic/glycinergique":

1

Zhu, Hongmei. "Prenatal dysfunctions of chloride-related inhibition in lumbar motoneurons of the SOD1G93A ALS." Electronic Thesis or Diss., Bordeaux, 2023. http://www.theses.fr/2023BORD0026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La sclérose latérale amyotrophique (SLA) est une maladie neurodégénérative fatale de l’adulte caractérisée par la dégénérescence des motoneurones (MNs) et ayant une étiologie multifactorielle. La plupart des études sur la SLA se sont focalisées aux stades symptomatiques selon l’hypothèse que la pathogénicité apparaît lorsque la maladie devient symptomatique. Cependant, un nombre grandissant d’évidences indique que la pathogénicité se développerait bien avant les symptômes. Mon travail de thèse de Doctorat a été basé sur l’hypothèse selon laquelle la SLA – familiale et sporadique – découlerait de déficits présents dès le développement précoce. La première partie de ma thèse a consisté à analyser les courants post-synaptiques GABA/glycine (IPSCs) au niveau des MNs embryonnaire (E) E17,5, localisés dans la colonne motrice ventro-laterale, chez la souris SOD1G93A (SOD) modèle de la SLA, en parallèle à l’analyse de l’homéostasie chlorure. Nos résultats ont montré que les IPSCs sont moins fréquents chez les animaux SOD en accord avec une réduction des terminaisons synaptiques VIAAT autour des MNs. Les MNs SODs avaient un ECI 10 mV plus positif que les MNs sauvages (WT) de la même portée. Ce déficit était lié à une réduction du co-transporteur chlorure KCC2. Les IPSCs évoqués et spontanés présentaient une relaxation plus longue chez les MNs SOD, en corrélation à une [Cl-]i plus élevée. La modélisation a montré que cet excès de relaxation permettait de compenser la moindre efficacité de l’inhibition GABA/glycine liée au ECI dépolarisé. De manière intéressante, les simulations ont révélé la nature excitatrice des potentiels dépolarisants post-synaptiques GABA/glycine (dGPSPs) survenant à basse fréquence (<50Hz) sur les MNs SOD mais pas sur les MNs WT. A plus haute fréquence, les dGPSPs basculaient vers une inhibition du MN liée à une sommation de composantes « shuntantes ». La seconde partie de ma thèse a donc focalisé sur les effets de dGPSPs évoqués électriquement at différentes fréquences (7,5 - 100 Hz) sur de vrais MNs E17,5 au niveau desquels un ECl dépolarisant (sous le seuil du PA) était imposé. Le but était d’examiner si l’effet excitateur pouvait être lié aux changements morphologiques des MNs E17,5 décrits précédemment. Les résultats ont montré que certains MNs étaient bien excités par les dGPSPs basse fréquence et inhibés à plus forte fréquence (MNs bi-effet) alors que d’autres MNs étaient inhibés quelles que soient les fréquences (MNs inhibés). L’effet double était plus souvent détecté au niveau des MNs SOD. Les MNs WT ont été classés en deux groupes en fonction de leur résistance d’entrée (Rin), les MNs bi-effet ayant une Rin élevée et les MNs inhibés une Rin basse. Les données morphométriques ont mis en avant un arbre dendritique réduit pour les MNs WT bi-effet (Rin élevée) et un arbre dendritique étendu pour les MNs inhibés (Rin basse). Ce n’était pas le cas des MNs SOD excités ou inhibés indépendamment de leur morphologie. En accord avec les simulations montrant qu’une baisse de la densité des courants inhibiteurs sur le soma du MN favorise l’excitation des dGPSPs, nous avons trouvé moins de terminaisons synaptiques VIAAT sur le soma et dendrites proximales des MNs SOD, et une fréquence réduite des dGPSPs spontanés. Dans leur ensemble, les données de ma thèse soulignent une altération précoce de l’homéostasie chlorure et de l’innervation GABA/glycine des MNs SOD1G93A. Avant la naissance, une population dominante de MNs avec Rin basse émerge chez les animaux WT. Ces MNs qui sont inhibés par les dGPSPs pourraient correspondre aux futures MNs vulnérables (rapides, FF). Ces MNs ne sont pas inhibés chez les animaux SOD. Le dysfonctionnement de l’inhibition pourrait être attribué à deux facteurs distincts : la morphologie et la densité des synapses inhibitrices péri-somatiques. Parmi ces facteurs, le deuxième joue un rôle majeur en contrôlant la capacité des neurones GABA/glycine à façonner la sortie motrice spinale
Amyotrophic lateral sclerosis (ALS) is a fatal and adult-onset neurodegenerative disease characterized by a progressive degeneration of motoneurons (MNs) with complex multifactorial aetiology. Most ALS studies have focused on symptomatic stages based on the hypothesis that ALS pathogenesis occurs when the disease becomes symptomatic. However, growing evidence indicates that ALS pathogenesis might start long before symptom onset. My PhD thesis work was based on the hypothesis that ALS - familial and sporadic - stems from deficits taking place during early development. With the aim of identifying early changes underpinning ALS neurodegeneration, the first part of my thesis analysed the GABAergic/glycinergic inhibitory postsynaptic currents (IPSCs) to embryonic (E) E17.5 MNs located in the ventro-lateral motor column from SOD1G93A (SOD) mice, in parallel with the analyse of chloride homeostasis. Our results showed that IPSCs are less frequent in SOD animals in accordance with a reduction of synaptic VIAAT-positive terminals in the close proximity of MN somata. SOD MNs exhibited an ECI 10 mV more depolarized than wild type (WT) MNs. This deficit in GABA/glycine inhibition was due to a reduction of the neuronal chloride transporter KCC2. SOD spontaneous IPSCs and evoked GABAAR-currents exhibited a slower decay correlated to elevated [Cl-]i. Using computer modelling approach, we revealed that the slower relaxation of synaptic inhibitory events acts as a compensatory mechanism to strengthen or increase the efficacy of GABA/glycine inhibition when ECI is more depolarized. Interestingly, simulations revealed an excitatory effect of low frequency (<50Hz) depolarizing GABA/glycine post-synaptic potentials (dGPSPs) in SOD-like MNs but not in WT-like littermates. At high frequency, dGPSPs switched to inhibitory effect resulting from the summation of the shunting components. The second part of my PhD thesis focussed on the effect of electrically evoked-dGPSPs, at different frequencies (7.5 to 100 Hz), on real lumbar E17.5 MNs in which a depolarized ECI (below spike threshold) was imposed. The aim was to examine whether the excitatory effect could be linked to morphological changes previously described in E17.5 SOD MNs. Results showed that some MNs were excited by low frequency dGPSPs and inhibited by high frequency dGPSPs (Dual MNs) and others were inhibited at all frequencies (Inhibited MNs). Dual effect was more often detected in SOD MNs. WT MNs were classified into two clusters according to their input resistance (Rin), Dual MNs being specific to high Rin and Inhibited MNs to low Rin. Morphometric data pointed out a reduced dendritic tree in high Rin WT Dual MNs and a large dendritic tree in low Rin Inhibited MNs. This was not the case in SOD MNs that were excited or inhibited whatever their morphology and Rin. In agreement with simulation showing that a less density of inhibitory current on MNs soma favours excitatory dGPSPs, we found less synaptic VIAAT terminals on the soma and proximal dendrites of SOD MNs, compared to littermate WT MNs, as well as a lower frequency of spontaneous dGPSPs. Altogether, my thesis data emphasize a prenatal defect in the CI- homeostasis and GABA/glycine innervation in the SOD1G93A ALS MNs. Before birth, a dominant population of MNs with low Rin emerges in WT animals. These MNs that are inhibited by dGPSPs could represent future ALS vulnerable fast MNs (putative FF). Interestingly, those MNs are not inhibited in SOD animals. The inhibitory dysfunction could be attributed to two distinct factors: morphology and perisomatic inhibitory synapse density. Of these two factors, the latter plays a major role by controlling capability of GABAergic/glycinergic neurons for shaping spinal motor output
2

Zell, Vivien. "Impact des glucocorticoïdes circulants sur la maturation et le fonctionnement de l'inhibition spinale GABAergique." Thesis, Strasbourg, 2013. http://www.theses.fr/2013STRAJ097/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les glucocorticoïdes (GC) sont des hormones stéroïdes synthétisées par les glandes surrénales. La production de ces GC est une des réponses de l’organisme pour rétablir l’homéostasie grâce à différentes actions comprenant des effets centraux sur le comportement et la douleur. C’est ce dernier qui a fait l’objet de mes travaux dans le cadre de cette thèse.Les afférences sensorielles primaires véhiculent les informations de la périphérie dans les cornes dorsales de la moelle épinière. Ces informations qui peuvent être nociceptives sont modulées par un réseau de neurones spinal avant d’être transmises et intégrées. Nous avons montré que les GC sont impliqués dans la maturation et le fonctionnement de la transmission inhibitrice faisant intervenir le neurotransmetteur GABA. Dans les cornes dorsales, cette inhibition est cruciale pour limiter les mécanismes de transmission de l’information nociceptive
Glucocorticoids (GC) are steroid hormones synthesized in adrenals following HPA axis activation. GC production is a response of the organism to alleviate homeostasis perturbations through different actions. One of them involves central neuronal modulation of behavior and pain perception.Primary afferents convey peripheral sensory information in the dorsal horns of the spinal cord. This information can be nociceptive and are modulated by a spinal neuronal network before being transmitted and integrated. We showed that GC are implied in the maturation and functioning of the inhibitory transmission involving GABA neurotransmitter. In the dorsal horns this inhibitory transmission is of major importance, limiting the processing of nociceptive information
3

Donato, Cristina. "Synaptic identity of neocortical circuits involving Martinotti cells in healthy conditions and in Down syndrome." Thesis, Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=http://theses-intra.upmc.fr/modules/resources/download/theses/2019SORUS079.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les interneurones GABAergiques du néocortex, englobent un grand nombre de types cellulaires: certains innervent la région périsomatique des neurones pyramidaux (NP), d'autres ciblent leurs dendrites. Ici, nous avons étudié la sous-unité alpha5 du récepteur GABAA(GABAAR), qui contribuerait significativement à l’inhibition tonique. Nous avons constaté que, dans les NP de la couche 2/3 du cortex somatosensoriel chez la souris, alpha5 a une contribution négligeable à l'inhibition tonique. Inversement nous avons montré qu’alpha5 est spécifiquement exprimée aux synapses dendritiques entre les cellules de Martinotti (MC) et les NP, indiquant l’importance des alpha5-GABAARs dans l’inhibition dendritique synaptique. Nous avons aussi montré qu’alpha5 est exclusivement exprimé aux synapses MC-NP, en proposant les alpha5-GABAARs comme signature moléculaire spécifique de ces synapses dendritiques. En plus, des nombreuses maladies du cerveau sont le résultat du dysfonctionnement de circuits inhibiteurs distincts: par exemple, il a été montré que le traitement avec un agoniste inverse spécifique du récepteur alpha5-GABAA(alpha5IA) a permis la récupération des déficits cognitifs chez des modèles animaux de trisomie 21(DS) mais les mécanismes de cette récupération cognitive sont inconnus au niveau du circuit. Nos résultats préliminaires indiquent que les synapses GABAergiques dendritiques formées par les MCs sont spécifiquement modifiées chez les souris DS. Nous définirons si cette modification est spécifique à un circuit particulier. Nos expériences visent à comprendre les altérations spécifiques des circuits de la DS afin d’ouvrir de nouvelles pistes thérapeutiques
Neocortical GABAergic interneurons encompass a vast number of cell types: some innervate the perisomatic region of cortical pyramidal neurons (PNs), whereas others target PN dendrites. Here we studied the alpha5 subunit of the GABAAR, which is believed to contribute significantly to tonic inhibition. We found that, in L 2/3 PNs of mouse somatosensory cortex, alpha5 provides a negligible contribution to tonic inhibition. Conversely, we found that alpha5 is specifically expressed at synapses between the dendrite-targeting interneurons Martinotti cells (MCs) thus indicating that GABAergic transmission through 5-GABAAR subtypes is important for synaptic dendritic inhibition. We also show that the expression of alpha5 is always present only at synapses made by MCs onto PNs. These results suggest alpha5-GABAARs as a molecular signature of specific inhibitory dendritic synapses involving MCs. Importantly, many brain diseases originate from dysfunctions of distinct inhibitory circuits and, in particular, alpha5-KO mice show improved learning: it was shown that the treatment with a highly specific alpha5 inverse agonist rescued learning and memory deficits in Ts65Dn mice, an animal model for Down syndrome (DS). Yet, the actual mechanisms underlying this cognitive rescue at the synaptic and circuit levels are unknown. Our preliminary results indicate that GABAergic synapses from dendrite-targeting MCs are specifically altered in DS. We are defining whether this alteration is circuit-specific. Our results will provide a better understanding of specific circuit alterations in DS, and will likely open new therapeutic avenues to alleviate cognitive impairment of this disease
4

Özcan, Orçun Orkan. "Characterization of the Purkinje cell to nuclear cell connections in mice cerebellum." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAJ085/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le cervelet permet l’apprentissage moteur et la coordination des mouvements fins. Pour ce faire, il intègre les informations sensorielles provenant de l’ensemble du corps ainsi que les commandes motrices émises par d’autres structures du système nerveux central. Les noyaux cérébelleux profonds (DCN) constituent la sortie du cervelet et intègre les informations provenant des cellules de Purkinje (PC), des fibres moussues et des fibres grimpantes. Nous avons étudié les connexions fonctionnelles entres les PC et les DNC in vivo, grâce à une stimulation optogénétique des lobules IV/V du cortex cérébelleux et à l’enregistrement multi unitaire du noyau médian. Nous avons ainsi identifié deux groupes de cellules au sein des DCN, présentant des caractéristiques propres au niveau de leur fréquence de décharge et de la forme des potentiels d’action, en accord avec la dichotomie établie par une précédente étude in vitro permettant de séparer les neurones GABAergiques des autres neurones. Nos résultats suggèrent que les PC contrôlent la sotie du cervelet d’un point de vue temporel. De plus, la ciruiterie interne des DCN conforte ce résultat de part le fait que les cellules GABAergiques ne produisent pas d’effet temporel au travers de l’inhibition locale
The cerebellum integrates motor commands with somatosensory, vestibular, visual and auditory information for motor learning and coordination functions. The deep cerebellar nuclei (DCN) generates the final output by processing inputs from Purkinje cells (PC), mossy and climbing fibers. We investigated the properties of PC connections to DCN cells using optogenetic stimulation in L7-ChR2 mice with in vivo multi electrode extracellular recordings in lobule IV/V of the cerebellar cortex and in the medial nuclei. DCN cells discharged phase locked to local field potentials in the beta, gamma and high frequency bands. We identified two groups of DCN cells with significant differences in action potential waveforms and firing rates, matching previously discriminated in vitro properties of GABAergic and non-GABAergic cells. PCs inhibited the two group of cells gradually (rate coding), however spike times were controlled for only non-GABAergic cells. Our results suggest that PC inputs temporally control the output of cerebellum and the internal DCN circuitry supports this phenomenon since GABAergic cells do not induce a temporal effect through local inhibition
5

Xing, Paul. "Implication de Syngap1 dans la transmission GABAergique et la plasticité synaptique." Thèse, 2015. http://hdl.handle.net/1866/13793.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La déficience intellectuelle affecte de 1 à 3% de la population mondiale, ce qui en fait le trouble cognitif le plus commun de l’enfance. Notre groupe à découvert que des mutations dans le gène SYNGAP1 sont une cause fréquente de déficience intellectuelle non-syndromique, qui compte pour 1-3% de l’ensemble des cas. À titre d’exemple, le syndrome du X fragile, qui est la cause monogénique la plus fréquente de déficience intellectuelle, compte pour environ 2% des cas. Plusieurs patients affectés au niveau de SYNGAP1 présentent également des symptômes de l’autisme et d’une forme d’épilepsie. Notre groupe a également montré que SYNGAP1 cause la déficience intellectuelle par un mécanisme d’haploinsuffisance. SYNGAP1 code pour une protéine exprimée exclusivement dans le cerveau qui interagit avec la sous-unité GluN2B des récepteurs glutamatergique de type NMDA (NMDAR). SYNGAP1 possède une activité activatrice de Ras-GTPase qui régule négativement Ras au niveau des synapses excitatrices. Les souris hétérozygotes pour Syngap1 (souris Syngap1+/-) présentent des anomalies de comportement et des déficits cognitifs, ce qui en fait un bon modèle d’étude. Plusieurs études rapportent que l’haploinsuffisance de Syngap1 affecte le développement cérébral en perturbant l’activité et la plasticité des neurones excitateurs. Le déséquilibre excitation/inhibition est une théorie émergente de l’origine de la déficience intellectuelle et de l’autisme. Cependant, plusieurs groupes y compris le nôtre ont rapporté que Syngap1 est également exprimé dans au moins une sous-population d’interneurones GABAergiques. Notre hypothèse était donc que l’haploinsuffisance de Syngap1 dans les interneurones contribuerait en partie aux déficits cognitifs et au déséquilibre d’excitation/inhibition observés chez les souris Syngap1+/-. Pour tester cette hypothèse, nous avons généré un modèle de souris transgéniques dont l’expression de Syngap1 a été diminuée uniquement dans les interneurones dérivés des éminences ganglionnaires médianes qui expriment le facteur de transcription Nkx2.1 (souris Tg(Nkx2,1-Cre);Syngap1). Nous avons observé une diminution des courants postsynaptiques inhibiteurs miniatures (mIPSCs) au niveau des cellules pyramidales des couches 2/3 du cortex somatosensoriel primaire (S1) et dans le CA1 de l’hippocampe des souris Tg(Nkx2,1-Cre);Syngap1. Ces résultats supportent donc l’hypothèse selon laquelle la perte de Syngap1 dans les interneurones contribue au déséquilibre d’excitation/inhibition. De manière intéressante, nous avons également observé que les courants postsynaptiques excitateurs miniatures (mEPSCs) étaient augmentés dans le cortex S1, mais diminués dans le CA1 de l’hippocampe. Par la suite, nous avons testé si les mécanismes de plasticité synaptique qui sous-tendraient l’apprentissage étaient affectés par l’haploinsuffisance de Syngap1 dans les interneurones. Nous avons pu montrer que la potentialisation à long terme (LTP) NMDAR-dépendante était diminuée chez les souris Tg(Nkx2,1-Cre);Syngap1, sans que la dépression à long terme (LTD) NMDAR-dépendante soit affectée. Nous avons également montré que l’application d’un bloqueur des récepteurs GABAA renversait en partie le déficit de LTP rapporté chez les souris Syngap1+/-, suggérant qu’un déficit de désinhibition serait présent chez ces souris. L’ensemble de ces résultats supporte un rôle de Syngap1 dans les interneurones qui contribue aux déficits observés chez les souris affectées par l’haploinsuffisance de Syngap1.
Intellectual disability affects 1-3% of the world population, which make it the most common cognitive disorder of childhood. Our group discovered that mutation in the SYNGAP1 gene was a frequent cause of non-syndromic intellectual disability, accounting for 1-3% of the cases. For example, the fragile X syndrome, which is the most common monogenic cause of intellectual disability, accounts for 2% of all cases. Some patients affected by SYNGAP1 also showed autism spectrum disorder and epileptic seizures. Our group also showed that mutations in SYNGAP1 caused intellectual disability by an haploinsufficiency mechanism. SYNGAP1 codes for a protein expressed only in the brain which interacts with the GluN2B subunit of NMDA glutamatergic receptors (NMDAR). SYNGAP1 possesses a Ras-GAP activating activity which negatively regulates Ras at excitatory synapses. Heterozygote mice for Syngap1 (Syngap1+/- mice) show behaviour abnormalities and learning deficits, which makes them a good model of intellectual disability. Some studies showed that Syngap1 affects the brain development by perturbing the activity and plasticity of excitatory neurons. The excitatory/inhibitory imbalance is an emerging theory of the origin of intellectual disability and autism. However, some groups including ours, showed that Syngap1 is expressed in at least a subpopulation of GABAergic interneurons. Therefore, our hypothesis was that Syngap1 happloinsufficiency in interneurons contributes in part to the cognitive deficits and excitation/inhibition imbalance observed in Syngap1+/- mice. To test this hypothesis, we generated a transgenic mouse model where Syngap1 expression was decreased only in GABAergic interneurons derived from the medial ganglionic eminence, which expresses the transcription factor Nkx2.1 (Tg(Nkx2,1-Cre);Syngap1 mouse). We showed that miniature inhibitory postsynaptic currents (mIPSCs) were decreased in pyramidal cells in layers 2/3 in primary somatosensory cortex (S1) and in CA1 region of the hippocampus of Tg(Nkx2,1-Cre);Syngap1 mice. Those results suggest that Syngap1 haploinsufficiency in GABAergic interneurons contributes in part to the excitation/inhibition imbalance observed in Syngap1+/- mice. Interestingly, we also observed that miniature excitatory postsynaptic currents (mEPSCs) were increased in cortex S1 but decreased in CA1 region of the hippocampus. We further tested whether synaptic plasticity mechanisms that are thought to underlie learning and memory were affected by Syngap1 haploinsufficiency in GABAergic interneurons. We showed that NMDAR-dependent long-term potentiation (LTP) but not NMDAR-dependent long-term depression (LTD) was decreased in Tg(Nkx2,1-Cre);Syngap1 mice. We also showed that GABAA receptor blockade rescued in part the LTP deficit in Syngap1+/- mice, suggesting that a disinhibition deficit is present in these mice. Altogether, the results support a functional role of Syngap1 in GABAergic interneurons, which may in turn contributes to the deficit observed in Syngap1+/- mice.

До бібліографії