Статті в журналах з теми "Transonic cracks"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Transonic cracks.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-24 статей у журналах для дослідження на тему "Transonic cracks".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Gao, H., Y. Huang, P. Gumbsch, and A. J. Rosakis. "On radiation-free transonic motion of cracks and dislocations." Journal of the Mechanics and Physics of Solids 47, no. 9 (September 1999): 1941–61. http://dx.doi.org/10.1016/s0022-5096(98)00126-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fernández, Rubén, Josu Amorebieta, Iker García, Gotzon Aldabaldetreku, Joseba Zubia, and Gaizka Durana. "Review of a Custom-Designed Optical Sensing System for Aero-Engine Applications." International Journal of Turbomachinery, Propulsion and Power 6, no. 1 (February 25, 2021): 3. http://dx.doi.org/10.3390/ijtpp6010003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fibre bundle-based reflective optical sensors are good candidates for parameter monitorisation in aero engines. Tip clearance is one of those parameters of great concern that is necessary to monitor. Within this optical technology, the evolution experienced by a custom-designed optical sensor is presented from its first configuration up to the fifth one. The performance of the last configuration is compared with those of other two optical sensors that are also based on a fibre bundle design. The comparison has been carried out in an experimental program in a transonic wind tunnel for aero engines. The proven high resolution and sensitivity of the last configuration of the optical sensor opens up the possibility to detect blade defects, cracks, etc. that could otherwise be hard to track.
3

Shlomai, Hadar, David S. Kammer, Mokhtar Adda-Bedia, and Jay Fineberg. "The onset of the frictional motion of dissimilar materials." Proceedings of the National Academy of Sciences 117, no. 24 (June 1, 2020): 13379–85. http://dx.doi.org/10.1073/pnas.1916869117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Frictional motion between contacting bodies is governed by propagating rupture fronts that are essentially earthquakes. These fronts break the contacts composing the interface separating the bodies to enable their relative motion. The most general type of frictional motion takes place when the two bodies are not identical. Within these so-called bimaterial interfaces, the onset of frictional motion is often mediated by highly localized rupture fronts, called slip pulses. Here, we show how this unique rupture mode develops, evolves, and changes the character of the interface’s behavior. Bimaterial slip pulses initiate as “subshear” cracks (slower than shear waves) that transition to developed slip pulses where normal stresses almost vanish at their leading edge. The observed slip pulses propagate solely within a narrow range of “transonic” velocities, bounded between the shear wave velocity of the softer material and a limiting velocity. We derive analytic solutions for both subshear cracks and the leading edge of slip pulses. These solutions both provide an excellent description of our experimental measurements and quantitatively explain slip pulses’ limiting velocities. We furthermore find that frictional coupling between local normal stress variations and frictional resistance actually promotes the interface separation that is critical for slip-pulse localization. These results provide a full picture of slip-pulse formation and structure that is important for our fundamental understanding of both earthquake motion and the most general types of frictional processes.
4

Fernández-Bello, Rubén, Josu Amorebieta, Josu Beloki, Gotzon Aldabaldetreku, Iker García, Joseba Zubia, and Gaizka Durana. "Performance Comparison of Three Fibre-Based Reflective Optical Sensors for Aero Engine Monitorization." Sensors 19, no. 10 (May 15, 2019): 2244. http://dx.doi.org/10.3390/s19102244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Among the different available optical technologies, fibre bundle-based reflective optical sensors represent an interesting alternative for parameter monitorization in aero engines. Tip clearance is one of the parameters of great concern for engine designers and engineers. In the framework of this optical technology, three fibre-based reflective optical sensors have been compared. Two of them are custom designed and based on the same geometrical fibre arrangement, whereas the third one is commercially available and relies on a different geometrical arrangement of the fibres. Their performance has been compared in clearance measurements carried out during an experimental program followed at a transonic wind tunnel for aero turbines. The custom-designed solution that operates in the most sensitive part of its response curve proved to be by far the most reliable tool for clearance measurements. Its high resolution opens up the possibility to detect small blade features such as cracks, reflectivity changes, etc. that otherwise could not be tracked. These results show that the detection of unexpected features on blade tips may have an important effect on how the clearance is calculated, ultimately giving rise to corrective actions.
5

Brock, L. M. "Dynamic Shear Fracture at Subsonic and Transonic Speeds in a Compressible Neo-Hookean Material Under Compressive Prestress." Journal of Applied Mechanics 69, no. 5 (August 16, 2002): 663–70. http://dx.doi.org/10.1115/1.1490374.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A crack driven by shear forces translating on its surfaces grows in an isotropic compressible neo-Hookean material that is initially in uniform compression. The material replicates a linear isotropic solid at small deformations, and preserves as a limit case for all deformations the incompressibility that occurs in the linear case when Poisson’s ratio becomes 1/2. A plane-strain steady state is assumed such that the crack and surface forces move at the same constant speed, whether subsonic, transonic, or supersonic. An exact analysis is performed based on superposition of infinitesimal deformations upon large, both for frictionless crack surface slip, and slip resisted by friction. The pre-stress induces anisotropy and increases the Rayleigh, rotational and dilatational wave speeds from their classical values. A positive finite fracture energy release rate arises for crack speeds below the Rayleight value and at two transonic speeds. In contrast, the transonic range in a purely linear analysis exhibits only one speed. It is found that friction enhances fracture energy release rate, and that compressive pre-stress enhances the rates for small crack speeds, but decreases it for speeds near the Rayleigh value.
6

Nishioka, Toshihisa, T. Tsuda, and T. Fujimoto. "Numerical Simulation of Impact Transonic Interfacial Fracture." Key Engineering Materials 261-263 (April 2004): 301–6. http://dx.doi.org/10.4028/www.scientific.net/kem.261-263.301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In transonic interfacial crack propagating fracture problem, the generation-phase simulations were done using the moving finite element method based on Delaunay automatic mesh generation. And the contact function based on the penalty method was newly developed to consider the crack face contact near the propagating interfacial crack tip. It was succeeded to visualize in 3-dimensions the Mach shock wave emanated from the propagating crack tip. And it was tried for the transonically propagating crack problem that solving the energy flows through the contact zone or along the Mach shock wave line emitted from the crack tip. The energy flow patterns into the crack tip were also visualized. Furthermore, from the values of the separated dynamic J integrals, it was found that the dynamic J integral is non-zero even for transonic fracture region and the most of the energy release rate is provided from the more compliant material epoxy.
7

C̆erv, Jan, Michal Landa, and Anna Machová. "Transonic twinning from the crack tip." Scripta Materialia 43, no. 5 (August 2000): 423–28. http://dx.doi.org/10.1016/s1359-6462(00)00456-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chung, Y. L. "Transonic expansion of a penny-shaped crack." Theoretical and Applied Fracture Mechanics 29, no. 3 (July 1998): 151–59. http://dx.doi.org/10.1016/s0167-8442(98)00026-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yue-Sheng, Wang. "Transonic extension of a self-similar interface crack." International Journal of Fracture 78, no. 1 (1996): R13—R19. http://dx.doi.org/10.1007/bf00018506.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tzou, D. Y. "Thermal Shock Waves Induced by a Moving Crack." Journal of Heat Transfer 112, no. 1 (February 1, 1990): 21–27. http://dx.doi.org/10.1115/1.2910349.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The near-tip behavior of the thermal field around a moving crack is investigated analytically in this work. The thermal field is characterized by a thermal Mach number defined as the ratio between the linear speed v of the moving crack and the heat propagation speed C in the solid. Mathematically, M= v/C. In the subsonic range with M < 1, a detailed comparison with the thermal diffusion model is made. In the transonic and the supersonic ranges with M ≥ 1, thermal shock waves, which separate the heat affected zone from the thermally undisturbed zone, are shown to exist in the physical domain. A swinging phenomenon for the temperature variation as a function of the thermal Mach number is found in transition from the subsonic to the supersonic ranges. Also, the r dependency of the near-tip temperature is found to be the same as that of the near-tip heat flux vector. It transits from r1/2, r, to r2 as the thermal Mach number transits from the subsonic, transonic, to the supersonic ranges.
11

Singh, R. P., and A. Shukla. "Subsonic and Intersonic Crack Growth Along a Bimaterial Interface." Journal of Applied Mechanics 63, no. 4 (December 1, 1996): 919–24. http://dx.doi.org/10.1115/1.2787247.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An experimental investigation has been conducted to study the dynamic failure of bimaterial interfaces. Interfacial crack growth is observed using dynamic photoelasticity and characterized in terms of crack-tip velocity, complex stress intensity factor, and energy release rate. On the basis of crack-tip velocity two growth regimes are established, viz. the subsonic and transonic regimes. In the latter regime crack-tip velocities up to 1.3 times the shear wave velocity of the more compliant material are observed. This results in the formation of a line of discontinuity in the stress field surrounding the crack tip and also the presence of a pseudo crack tip that travels with the Rayleigh wave velocity (of the more compliant material).
12

Wu, Jianxin, and Vijay Gupta. "Observations of transonic crack velocity at a metal/ceramic interface." Journal of the Mechanics and Physics of Solids 48, no. 3 (March 2000): 609–19. http://dx.doi.org/10.1016/s0022-5096(99)00046-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Nishioka, Toshihisa, T. Tsuda, and T. Fujimoto. "Numerical Simulation of Impact Transonic Interfacial Fracture with the Crack Coalescence." Materials Science Forum 465-466 (September 2004): 61–66. http://dx.doi.org/10.4028/www.scientific.net/msf.465-466.61.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Georgiadis, H. G. "On the stress singularity in steady-state transonic shear crack propagation." International Journal of Fracture 30, no. 3 (March 1986): 175–80. http://dx.doi.org/10.1007/bf00019775.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Chung, Yen-Ling. "The stress singularity of mode-i crack propagating with transonic speed." Engineering Fracture Mechanics 52, no. 6 (December 1995): 977–85. http://dx.doi.org/10.1016/0013-7944(95)00083-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Ma, P., R. K. L. Su, and W. J. Feng. "Singularity of subsonic and transonic crack propagations along interfaces of magnetoelectroelastic bimaterials." International Journal of Engineering Science 129 (August 2018): 21–33. http://dx.doi.org/10.1016/j.ijengsci.2018.04.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Lambros, J. "Shear dominated transonic interfacial crack growth in a bimaterial-I. Experimental observations." Journal of the Mechanics and Physics of Solids 43, no. 2 (February 1995): 169–79. http://dx.doi.org/10.1016/0022-5096(94)00071-c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Tzou, Da Yu. "The transonic temperature wave around a rapidly propagating crack tip: An experimental evidence." International Journal of Engineering Science 30, no. 6 (June 1992): 757–69. http://dx.doi.org/10.1016/0020-7225(92)90105-p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Tzou, D. Y. "On the Thermal Shock Wave Induced by a Moving Heat Source." Journal of Heat Transfer 111, no. 2 (May 1, 1989): 232–38. http://dx.doi.org/10.1115/1.3250667.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Analytical solutions for the temperature field around a moving heat source in a solid with finite speed of heat propagation are obtained via the method of Green’s functions. When the speed of the moving heat source is equal to or faster than that of the thermal wave propagated in the solid, the thermal shock wave is shown to exist in the thermal field. The shock wave angle is obtained as sin−1 (1/M) for M ≥1. Orientation of crack initiation in the vicinity of the heat source is also estimated by considering the temperature gradient T,θ along the circumference of a continuum circle centered at the heat source. Such an orientation is established as a function of the thermal Mach number in the subsonic, transonic, and supersonic regimes, respectively.
20

Huang, Y., C. Liu, and A. J. Rosakis. "Transonic crack growth along a bimaterial interface: An investigation of the asymptotic structure of near-tip fields." International Journal of Solids and Structures 33, no. 18 (July 1996): 2625–45. http://dx.doi.org/10.1016/0020-7683(95)00175-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Liu, C. "Shear dominated transonic interfacial crack growth in a bimaterial I-II. Asymptotic fields and favorable velocity regimes." Journal of the Mechanics and Physics of Solids 43, no. 2 (February 1995): 189–206. http://dx.doi.org/10.1016/0022-5096(94)00072-d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

NISHIOKA, Toshihisa, and Anwer YASIN. "The Dynamic J Integral, Separated Dynamic J Integrals and Moving Finite Element Simulations, for Subsonic, Transonic and Supersonic Interfacial Crack Propagation." JSME International Journal Series A 42, no. 1 (1999): 25–39. http://dx.doi.org/10.1299/jsmea.42.25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Zimmerman, Jonathan A., Farid F. Abraham, and Huajian Gao. "Atomistic Simulation of Transonic Dislocations." MRS Proceedings 578 (1999). http://dx.doi.org/10.1557/proc-578-229.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractRecent work has been done on the analysis of elastic stress singularities, such as cracks and dislocations, which propagate at supersonic speeds. Gumbsch and Gao have performed atomistic simulations in which dislocations are created and travel at transonic velocities (speeds which are greater than the material's shear wave speeds but less than the longitudinal wave speed) close to the theoretical value corresponding to the radiation-free state for glide motion. Gao et al. have derived expressions for this radiation-free velocity in both isotropic and anisotropic media. We have performed molecular dynamics simulations showing dislocation nucleation at crystal surface ledges. Dislocations were nucleated at either sub- or transonic velocities, depending upon the ambient temperature, and accelerated to transonic speeds. This paper shows the velocity profiles for the emitted dislocations and compares velocities observed with a theoretical minimum-radiation speed derived by a Strohtype anisotropic elasticity analysis performed by Barnett and Zimmerman. Our findings are particularly exciting considering these simulations were not specifically engineered for the purpose of creating transonic defects, but show agreement with theory nonetheless.
24

Bouchard, D., A. Asghar, M. LaViolette, W. D. E. Allan, and R. Woodason. "Experimental Evaluation of Service-Exposed Nozzle Guide Vane Damage in a Rolls Royce A-250 Gas Turbine." Journal of Engineering for Gas Turbines and Power 136, no. 10 (May 2, 2014). http://dx.doi.org/10.1115/1.4027204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A unique methodology and test rig was designed to evaluate the degradation of damaged nozzle guide vanes (NGVs) in a transonic annular cascade in the short duration facility at the Royal Military College. A custom test section was designed which featured a novel rotating instrumentation suite. This permitted 360 deg multispan traverse measurements downstream from unmodified turbine NGV rings from a Rolls-Royce/Allison A-250 turbo-shaft engine. The downstream total pressure was measured at four spanwise locations on both an undamaged reference and a damaged test article. Three performance metrics were developed in an effort to determine characteristic signatures for common operational damage such as trailing edge bends or cracked trailing edges. The highest average losses were observed in the root area, while the lowest occurred closer to the NGV tips. The results from this study indicated that multiple spanwise traverses were required to detect localized trailing edge damage. Recommendations are made for future testing and to further develop performance metrics.

До бібліографії