Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Transport neuronal.

Статті в журналах з теми "Transport neuronal"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Transport neuronal".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Sammler, Esther, Stefan Titz, and Sheriar Hormuzdi. "Neuronal chloride transport tuning." Lancet 385 (February 2015): S85. http://dx.doi.org/10.1016/s0140-6736(15)60400-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

JODAL, M. "Neuronal influence on intestinal transport." Journal of Internal Medicine 228, S732 (1990): 125–32. http://dx.doi.org/10.1111/j.1365-2796.1990.tb01484.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Benaïssa, Ibtissem. "Analogie du transport neuronal au transport électronique en nanotechnologie." Journal of Renewable Energies 12, no. 1 (2023): 9–28. http://dx.doi.org/10.54966/jreen.v12i1.115.

Повний текст джерела
Анотація:
Le système nerveux est formé de deux types de cellules: les cellules gliales et les neurones. Les astrocytes, comme la plupart des cellules gliales, ont longtemps été considérés essentiellement pour leur rôle de support et d’entretien du tissu nerveux. Mais, de plus en plus d’évidences plaident en faveur d’une implication beaucoup plus importante des astrocytes dans la communication nerveuse. Les astrocytes sont couplés les uns aux autres par des ‘gap-jonctions’ à travers lesquels peuvent circuler divers métabolites. C’est par ces jonctions que les astrocytes évacuent vers les capillaires, le
Стилі APA, Harvard, Vancouver, ISO та ін.
4

MENZIKOV, SERGEY A. "NEURONAL MULTIFUNCTIONAL ATPase." Biophysical Reviews and Letters 08, no. 03n04 (2013): 213–27. http://dx.doi.org/10.1142/s1793048013300065.

Повний текст джерела
Анотація:
Here, we review the properties of a suggested mechanism for a neural ATPase complex based on our recent experimental findings. The mechanism represents a multifunctional ATPase: an enzyme that is a chloride pump and a GABA receptor. This enables new views on the ways Cl - channel transports anions and its regulation by the intra- and extracellular ions and molecules (in particular by glucose, ATP, [Formula: see text]). The hydrolytic activity of this GABA A-coupled ATPase provides the [Formula: see text] transport process the energy and determines a certain direction of ions flux across neuron
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kaye, D. M., S. D. Wiviott, L. Kobzik, R. A. Kelly, and T. W. Smith. "S-nitrosothiols inhibit neuronal norepinephrine transport." American Journal of Physiology-Heart and Circulatory Physiology 272, no. 2 (1997): H875—H883. http://dx.doi.org/10.1152/ajpheart.1997.272.2.h875.

Повний текст джерела
Анотація:
Although it has been recently shown that nitric oxide (NO) and its congeners (NO(x)), including nitrosothiols, may modify catecholamine turnover in the brain, it is not known whether NO(x) affect norepinephrine (NE) uptake by sympathetic neurons. The nitrosothiol NO donor S-nitroso-acetylpenicillamine (SNAP, 100 microM for 1 h) elicited a concentration-dependent reduction in desipramine-sensitive [3H]NE uptake into PC-12 cells (66 +/- 3%; P < 0.01) or cultured rat superior cervical ganglia (74 +/- 5%; P < 0.001), whereas desipramine-insensitive [3H]NE uptake was unaffected, indicating a
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Perry, Rotem Ben-Tov, and Mike Fainzilber. "Nuclear transport factors in neuronal function." Seminars in Cell & Developmental Biology 20, no. 5 (2009): 600–606. http://dx.doi.org/10.1016/j.semcdb.2009.04.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Stiess, Michael, and Frank Bradke. "Neuronal transport: myosins pull the ER." Nature Cell Biology 13, no. 1 (2010): 10–11. http://dx.doi.org/10.1038/ncb2147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Staff, N. P., E. E. Benarroch, and C. J. Klein. "Neuronal intracellular transport and neurodegenerative disease." Neurology 76, no. 11 (2011): 1015–20. http://dx.doi.org/10.1212/wnl.0b013e31821103f7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Brenner, S. R., N. P. Staff, E. E. Benarroch, and C. J. Klein. "Neuronal intracellular transport and neurodegenerative disease." Neurology 77, no. 21 (2011): 1932. http://dx.doi.org/10.1212/wnl.0b013e318239bf96.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bakshi, Rachit, Shuchi Mittal, Zhixiang Liao та Clemens R. Scherzer. "A Feed-Forward Circuit of EndogenousPGC-1αandEstrogen Related Receptor αRegulates the Neuronal Electron Transport Chain". Parkinson's Disease 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/2405176.

Повний текст джерела
Анотація:
Peroxisome proliferator-activated receptor γcoactivator 1α(PGC-1α) is a central regulator of cellular and mitochondrial metabolism. Cellular bioenergetics are critically important in “energy-guzzling” neurons, but the components and wiring of the transcriptional circuit through whichPGC-1αregulates the neuronal electron transport chain have not been established. This information may be vital for restoring neuronal bioenergetics gene expression that is compromised during incipient Parkinson’s neuropathology and in aging-dependent brain diseases. Here we delineate a neuronal transcriptional circ
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Vossel, Keith A., Jordan C. Xu, Vira Fomenko та ін. "Tau reduction prevents Aβ-induced axonal transport deficits by blocking activation of GSK3β". Journal of Cell Biology 209, № 3 (2015): 419–33. http://dx.doi.org/10.1083/jcb.201407065.

Повний текст джерела
Анотація:
Axonal transport deficits in Alzheimer’s disease (AD) are attributed to amyloid β (Aβ) peptides and pathological forms of the microtubule-associated protein tau. Genetic ablation of tau prevents neuronal overexcitation and axonal transport deficits caused by recombinant Aβ oligomers. Relevance of these findings to naturally secreted Aβ and mechanisms underlying tau’s enabling effect are unknown. Here we demonstrate deficits in anterograde axonal transport of mitochondria in primary neurons from transgenic mice expressing familial AD-linked forms of human amyloid precursor protein. We show that
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Horiguchi, Kaori, Toshihiko Hanada, Yasuhisa Fukui, and Athar H. Chishti. "Transport of PIP3 by GAKIN, a kinesin-3 family protein, regulates neuronal cell polarity." Journal of Cell Biology 174, no. 3 (2006): 425–36. http://dx.doi.org/10.1083/jcb.200604031.

Повний текст джерела
Анотація:
Phosphatidylinositol-(3,4,5)-trisphosphate (PIP3), a product of phosphatidylinositol 3-kinase, is an important second messenger implicated in signal transduction and membrane transport. In hippocampal neurons, the accumulation of PIP3 at the tip of neurite initiates the axon specification and neuronal polarity formation. We show that guanylate kinase–associated kinesin (GAKIN), a kinesin-like motor protein, directly interacts with a PIP3-interacting protein, PIP3BP, and mediates the transport of PIP3-containing vesicles. Recombinant GAKIN and PIP3BP form a complex on synthetic liposomes contai
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Bae, Ju-Young, Julie Jacquemyn, and Maria S. Ioannou. "Neuronal AMPK regulates lipid transport to microglia." Trends in Cell Biology 34, no. 9 (2024): 695–97. http://dx.doi.org/10.1016/j.tcb.2024.08.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Carmichael, Stephen W., and W. Stephen Brimijoin. "Looking at Slow Axonal Transport." Microscopy Today 4, no. 9 (1996): 3–5. http://dx.doi.org/10.1017/s1551929500065299.

Повний текст джерела
Анотація:
Neurons are about as polarized as cells ever get. Their axonal process can extend a distance that is up to a million times the diameter of the nerve cell body. Axons have none of the ribosomal machinery responsible for protein synthesis, so all neuronal proteins and peptides must be manufactured near the nucleus and carried out to the periphery. This distribution involves at least two distinct mechanisms, fast axonal transport, moving at almost 500 mm per day, and slow axonal transport, moving only 0.1 to 3 mm per day. It turns out that proteins of the neuronal cytoskeleton, along with many so
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Hirano, Minato, Memi Muto, Mizuki Sakai, et al. "Dendritic transport of tick-borne flavivirus RNA by neuronal granules affects development of neurological disease." Proceedings of the National Academy of Sciences 114, no. 37 (2017): 9960–65. http://dx.doi.org/10.1073/pnas.1704454114.

Повний текст джерела
Анотація:
Neurological diseases caused by encephalitic flaviviruses are severe and associated with high levels of mortality. However, little is known about the detailed mechanisms of viral replication and pathogenicity in the brain. Previously, we reported that the genomic RNA of tick-borne encephalitis virus (TBEV), a member of the genusFlavivirus, is transported and replicated in the dendrites of neurons. In the present study, we analyzed the transport mechanism of the viral genome to dendrites. We identified specific sequences of the 5′ untranslated region of TBEV genomic RNA that act as acis-acting
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Yonekawa, Yoshiaki, Akihiro Harada, Yasushi Okada, et al. "Defect in Synaptic Vesicle Precursor Transport and Neuronal Cell Death in KIF1A Motor Protein–deficient Mice." Journal of Cell Biology 141, no. 2 (1998): 431–41. http://dx.doi.org/10.1083/jcb.141.2.431.

Повний текст джерела
Анотація:
The nerve axon is a good model system for studying the molecular mechanism of organelle transport in cells. Recently, the new kinesin superfamily proteins (KIFs) have been identified as candidate motor proteins involved in organelle transport. Among them KIF1A, a murine homologue of unc-104 gene of Caenorhabditis elegans, is a unique monomeric neuron– specific microtubule plus end–directed motor and has been proposed as a transporter of synaptic vesicle precursors (Okada, Y., H. Yamazaki, Y. Sekine-Aizawa, and N. Hirokawa. 1995. Cell. 81:769–780). To elucidate the function of KIF1A in vivo, we
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Tanneti, Nikhila S., Joel D. Federspiel, Ileana M. Cristea, and Lynn W. Enquist. "The axonal sorting activity of pseudorabies virus Us9 protein depends on the state of neuronal maturation." PLOS Pathogens 16, no. 12 (2020): e1008861. http://dx.doi.org/10.1371/journal.ppat.1008861.

Повний текст джерела
Анотація:
Alpha-herpesviruses establish a life-long infection in the nervous system of the affected host; while this infection is restricted to peripheral neurons in a healthy host, the reactivated virus can spread within the neuronal circuitry, such as to the brain, in compromised individuals and lead to adverse health outcomes. Pseudorabies virus (PRV), an alpha-herpesvirus, requires the viral protein Us9 to sort virus particles into axons and facilitate neuronal spread. Us9 sorts virus particles by mediating the interaction of virus particles with neuronal transport machinery. Here, we report that Us
Стилі APA, Harvard, Vancouver, ISO та ін.
18

MAHER, Fran, Theresa M. DAVIES-HILL, and Ian A. SIMPSON. "Substrate specificity and kinetic parameters of GLUT3 in rat cerebellar granule neurons." Biochemical Journal 315, no. 3 (1996): 827–31. http://dx.doi.org/10.1042/bj3150827.

Повний текст джерела
Анотація:
This study examines the apparent affinity, catalytic-centre activity (‘turnover number’) and stereospecificity of the neuronal glucose transporter GLUT3 in primary cultured cerebellar granule neurons. Using a novel variation of the 3-O-[14C]methylglucose transport assay, by measuring zero-trans kinetics at 25 °C, GLUT3 was determined to be a high-apparent-affinity, high-activity, glucose transporter with a Km of 2.87±0.23 mM (mean±S.E.M.) for 3-O-methylglucose, a Vmax of 18.7± 0.48 nmol/min per 106 cells, and a corresponding catalytic-centre activity of 853 s-1. Transport of 3-O-methylglucose
Стилі APA, Harvard, Vancouver, ISO та ін.
19

DuRaine, Grayson, та David C. Johnson. "Anterograde transport of α-herpesviruses in neuronal axons". Virology 559 (липень 2021): 65–73. http://dx.doi.org/10.1016/j.virol.2021.02.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Jones, Sara R., Joshua D. Joseph, Larry S. Barak, Marc G. Caron, and R. Mark Wightman. "Dopamine Neuronal Transport Kinetics and Effects of Amphetamine." Journal of Neurochemistry 73, no. 6 (2002): 2406–14. http://dx.doi.org/10.1046/j.1471-4159.1999.0732406.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Twelvetrees, Alison E. "The lifecycle of the neuronal microtubule transport machinery." Seminars in Cell & Developmental Biology 107 (November 2020): 74–81. http://dx.doi.org/10.1016/j.semcdb.2020.02.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Karten, Barbara, Hideki Hayashi, Robert B. Campenot, Dennis E. Vance, and Jean E. Vance. "Neuronal models for studying lipid metabolism and transport." Methods 36, no. 2 (2005): 117–28. http://dx.doi.org/10.1016/j.ymeth.2004.11.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Wu, Chia-wen K., Fanyi Zeng, and James Eberwine. "mRNA transport to and translation in neuronal dendrites." Analytical and Bioanalytical Chemistry 387, no. 1 (2006): 59–62. http://dx.doi.org/10.1007/s00216-006-0916-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Paggi, Paola, and Tamara C. Petrucci. "Neuronal compartments and axonal transport of synapsin I." Molecular Neurobiology 6, no. 2-3 (1992): 239–51. http://dx.doi.org/10.1007/bf02780556.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Hoang, Tuan, Matthew D. Smith, and Masoud Jelokhani-Niaraki. "Conformation and Ion Transport of Neuronal Uncoupling Proteins." Biophysical Journal 100, no. 3 (2011): 358a. http://dx.doi.org/10.1016/j.bpj.2010.12.2148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Kelner, Gregory S., MoonHee Lee, Melody E. Clark, et al. "The Copper Transport Protein Atox1 Promotes Neuronal Survival." Journal of Biological Chemistry 275, no. 1 (2000): 580–84. http://dx.doi.org/10.1074/jbc.275.1.580.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Muslimov, Ilham A., Margaret Titmus, Edward Koenig, and Henri Tiedge. "Transport of Neuronal BC1 RNA in Mauthner Axons." Journal of Neuroscience 22, no. 11 (2002): 4293–301. http://dx.doi.org/10.1523/jneurosci.22-11-04293.2002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Namba, Takashi, Shinichi Nakamuta, Yasuhiro Funahashi, and Kozo Kaibuchi. "The role of selective transport in neuronal polarization." Developmental Neurobiology 71, no. 6 (2011): 445–57. http://dx.doi.org/10.1002/dneu.20876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Gajewska, Katarzyna A., John M. Haynes, and David A. Jans. "Nuclear Transporter IPO13 Is Central to Efficient Neuronal Differentiation." Cells 11, no. 12 (2022): 1904. http://dx.doi.org/10.3390/cells11121904.

Повний текст джерела
Анотація:
Molecular transport between the nucleus and cytoplasm of the cell is mediated by the importin superfamily of transport receptors, of which the bidirectional transporter Importin 13 (IPO13) is a unique member, with a critical role in early embryonic development through nuclear transport of key regulators, such as transcription factors Pax6, Pax3, and ARX. Here, we examined the role of IPO13 in neuronal differentiation for the first time, using a mouse embryonic stem cell (ESC) model and a monolayer-based differentiation protocol to compare IPO13-/- to wild type ESCs. Although IPO13-/- ESCs diff
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Guedes-Dias, Pedro, and Erika L. F. Holzbaur. "Axonal transport: Driving synaptic function." Science 366, no. 6462 (2019): eaaw9997. http://dx.doi.org/10.1126/science.aaw9997.

Повний текст джерела
Анотація:
The intracellular transport system in neurons is specialized to an extraordinary degree, enabling the delivery of critical cargo to sites in axons or dendrites that are far removed from the cell center. Vesicles formed in the cell body are actively transported by kinesin motors along axonal microtubules to presynaptic sites that can be located more than a meter away. Both growth factors and degradative vesicles carrying aged organelles or aggregated proteins take the opposite route, driven by dynein motors. Distance is not the only challenge; precise delivery of cargos to sites of need must al
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Cai, Qian, Claudia Gerwin, and Zu-Hang Sheng. "Syntabulin-mediated anterograde transport of mitochondria along neuronal processes." Journal of Cell Biology 170, no. 6 (2005): 959–69. http://dx.doi.org/10.1083/jcb.200506042.

Повний текст джерела
Анотація:
In neurons, proper distribution of mitochondria in axons and at synapses is critical for neurotransmission, synaptic plasticity, and axonal outgrowth. However, mechanisms underlying mitochondrial trafficking throughout the long neuronal processes have remained elusive. Here, we report that syntabulin plays a critical role in mitochondrial trafficking in neurons. Syntabulin is a peripheral membrane-associated protein that targets to mitochondria through its carboxyl-terminal tail. Using real-time imaging in living cultured neurons, we demonstrate that a significant fraction of syntabulin coloca
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Sommers, Kelli, and Bonnie Dittel. "Characterizing immune-mediated neuronal microtubule destabilization and axonal transport defects in a mouse model of optic neuritis." Journal of Immunology 212, no. 1_Supplement (2024): 0568_5526. http://dx.doi.org/10.4049/jimmunol.212.supp.0568.5526.

Повний текст джерела
Анотація:
Abstract Multiple sclerosis (MS) is a central nervous system autoimmune disease that often presents with inflammation of the optic nerve, optic neuritis (ON). The mechanisms of neuronal damage in MS and ON are unknown. In vitro studies modeling MS neurodegeneration demonstrated that cytolytic lymphocytes drive microtubule destabilization in human induced pluripotent stem cell-derived spinal motor neurons. Microtubules are essential for axonal transport, a key function for neuron health. We hypothesize that immune-mediated neuronal microtubule destabilization drives development of ON through di
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Bhattacharyya, S., K. Kim, H. Nakazawa, M. Umetsu, and W. Teizer. "Modulating the microtubule–tau interactions in biomotility systems by altering the chemical environment." Integrative Biology 8, no. 12 (2016): 1296–300. http://dx.doi.org/10.1039/c6ib00182c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Williams, Jeffery R., and John A. Payne. "Cation transport by the neuronal K+-Cl− cotransporter KCC2: thermodynamics and kinetics of alternate transport modes." American Journal of Physiology-Cell Physiology 287, no. 4 (2004): C919—C931. http://dx.doi.org/10.1152/ajpcell.00005.2004.

Повний текст джерела
Анотація:
Both Cs+ and NH4+ alter neuronal Cl− homeostasis, yet the mechanisms have not been clearly elucidated. We hypothesized that these two cations altered the operation of the neuronal K+-Cl− cotransporter (KCC2). Using exogenously expressed KCC2 protein, we first examined the interaction of cations at the transport site of KCC2 by monitoring furosemide-sensitive 86Rb+ influx as a function of external Rb+ concentration at different fixed external cation concentrations (Na+, Li+, K+, Cs+, and NH4+). Neither Na+ nor Li+ affected furosemide-sensitive 86Rb+ influx, indicating their inability to interac
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Whitesell, Richard R., Michael Ward, Anthony L. McCall, Daryl K. Granner, and James M. May. "Coupled Glucose Transport and Metabolism in Cultured Neuronal Cells: Determination of the Rate-Limiting Step." Journal of Cerebral Blood Flow & Metabolism 15, no. 5 (1995): 814–26. http://dx.doi.org/10.1038/jcbfm.1995.102.

Повний текст джерела
Анотація:
In brain and nerves the phosphorylation of glucose, rather than its transport, is generally considered the major rate-limiting step in metabolism. Since little is known regarding the kinetic coupling between these processes in neuronal tissues, we investigated the transport and phosphorylation of [2-3H]glucose in two neuronal cell models: a stable neuroblastoma cell line (NCB20), and a primary culture of isolated rat dorsal root ganglia cells. When transport and phosphorylation were measured in series, phosphorylation was the limiting step, because intracellular glucose concentrations were the
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Leybaert, Luc. "Neurobarrier Coupling in the Brain: A Partner of Neurovascular and Neurometabolic Coupling?" Journal of Cerebral Blood Flow & Metabolism 25, no. 1 (2005): 2–16. http://dx.doi.org/10.1038/sj.jcbfm.9600001.

Повний текст джерела
Анотація:
Neurovascular and neurometabolic coupling help the brain to maintain an appropriate energy flow to the neural tissue under conditions of increased neuronal activity. Both coupling phenomena provide us, in addition, with two macroscopically measurable parameters, blood flow and intermediate metabolite fluxes, that are used to dynamically image the functioning brain. The main energy substrate for the brain is glucose, which is metabolized by glycolysis and oxidative breakdown in both astrocytes and neurons. Neuronal activation triggers increased glucose consumption and glucose demand, with new g
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Le Roux, Lucia G., Xudong Qiu, Megan C. Jacobsen, et al. "Axonal Transport as an In Vivo Biomarker for Retinal Neuropathy." Cells 9, no. 5 (2020): 1298. http://dx.doi.org/10.3390/cells9051298.

Повний текст джерела
Анотація:
We illuminate a possible explanatory pathophysiologic mechanism for retinal cellular neuropathy by means of a novel diagnostic method using ophthalmoscopic imaging and a molecular imaging agent targeted to fast axonal transport. The retinal neuropathies are a group of diseases with damage to retinal neural elements. Retinopathies lead to blindness but are typically diagnosed late, when substantial neuronal loss and vision loss have already occurred. We devised a fluorescent imaging agent based on the non-toxic C fragment of tetanus toxin (TTc), which is taken up and transported in neurons usin
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Bertram, Simone, Francesca Cherubino, Elena Bossi, Michela Castagna, and Antonio Peres. "GABA reverse transport by the neuronal cotransporter GAT1: influence of internal chloride depletion." American Journal of Physiology-Cell Physiology 301, no. 5 (2011): C1064—C1073. http://dx.doi.org/10.1152/ajpcell.00120.2011.

Повний текст джерела
Анотація:
The role of intracellular ions on the reverse GABA transport by the neuronal transporter GAT1 was studied using voltage-clamp and [3H]GABA efflux determinations in Xenopus oocytes transfected with heterologous mRNA. Reverse transport was induced by intracellular GABA injections and measured in terms of the net outward current generated by the transporter. Changes in various intracellular ionic conditions affected the reverse current: higher concentrations of Na+ enhanced the ratio of outward over inward transport current, while a considerable decrease of the outward current and a parallel redu
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Li, Yan, Seung Lim, David Hoffman, Pontus Aspenstrom, Howard J. Federoff та David A. Rempe. "HUMMR, a hypoxia- and HIF-1α–inducible protein, alters mitochondrial distribution and transport". Journal of Cell Biology 185, № 6 (2009): 1065–81. http://dx.doi.org/10.1083/jcb.200811033.

Повний текст джерела
Анотація:
Mitochondrial transport is critical for maintenance of normal neuronal function. Here, we identify a novel mitochondria protein, hypoxia up-regulated mitochondrial movement regulator (HUMMR), which is expressed in neurons and is markedly induced by hypoxia-inducible factor 1 α (HIF-1α). Interestingly, HUMMR interacts with Miro-1 and Miro-2, mitochondrial proteins that are critical for mediating mitochondrial transport. Interestingly, knockdown of HUMMR or HIF-1 function in neurons exposed to hypoxia markedly reduces mitochondrial content in axons. Because mitochondrial transport and distributi
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Dias, Mariana Santana, Xiaoyue Luo, Vinicius Toledo Ribas, Hilda Petrs-Silva, and Jan Christoph Koch. "The Role of Axonal Transport in Glaucoma." International Journal of Molecular Sciences 23, no. 7 (2022): 3935. http://dx.doi.org/10.3390/ijms23073935.

Повний текст джерела
Анотація:
Glaucoma is a neurodegenerative disease that affects the retinal ganglion cells (RGCs) and leads to progressive vision loss. The first pathological signs can be seen at the optic nerve head (ONH), the structure where RGC axons leave the retina to compose the optic nerve. Besides damage of the axonal cytoskeleton, axonal transport deficits at the ONH have been described as an important feature of glaucoma. Axonal transport is essential for proper neuronal function, including transport of organelles, synaptic components, vesicles, and neurotrophic factors. Impairment of axonal transport has been
Стилі APA, Harvard, Vancouver, ISO та ін.
41

ZHOU, CHUYING, and MINEKO KENGAKU. "Possible mechanisms of bidirectional nuclear transport during neuronal migration." BIOCELL 46, no. 11 (2022): 2357–61. http://dx.doi.org/10.32604/biocell.2022.021050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Sninkura, K., N. Shiina, and M. Tokunaga. "Neuronal mRNA transport complex : its ultrastructure and protein constituents." Seibutsu Butsuri 43, supplement (2003): S234. http://dx.doi.org/10.2142/biophys.43.s234_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Shinkura, K., N. Shiina, K. Sakata-Sogawa, and M. Tokunaga. "1P247 Association of neuronal mRNA transport complex and mitochondria." Seibutsu Butsuri 45, supplement (2005): S93. http://dx.doi.org/10.2142/biophys.45.s93_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Moen, Marivi Nabong, Roar Fjær, El Hassan Hamdani, et al. "Pathogenic variants inKCTD7perturb neuronal K+fluxes and glutamine transport." Brain 139, no. 12 (2016): 3109–20. http://dx.doi.org/10.1093/brain/aww244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Richardt, Gert, Reinhard Blessing, Markus Haass, Roger Kranzhöfer, and Albert Schömig. "Cardiac adenosine release during inhibition of neuronal noradrenaline transport." Japanese Journal of Pharmacology 52 (1990): 110. http://dx.doi.org/10.1016/s0021-5198(19)32991-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Tas, Roderick P., Anaël Chazeau, Bas M. C. Cloin, Maaike L. A. Lambers, Casper C. Hoogenraad, and Lukas C. Kapitein. "Differentiation between Oppositely Oriented Microtubules Controls Polarized Neuronal Transport." Neuron 96, no. 6 (2017): 1264–71. http://dx.doi.org/10.1016/j.neuron.2017.11.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Takeda, Sen, Toru Misawa, and Kentaro Yoshimura. "Analysis of the intraciliary transport of neuronal primary cilium." Neuroscience Research 68 (January 2010): e124. http://dx.doi.org/10.1016/j.neures.2010.07.2120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Tsuboi, Daisuke, and Kozo Kaibuchi. "Disrupted-In-Schizoprenia-1 regulates transport of neuronal mRNA." Neuroscience Research 68 (January 2010): e21. http://dx.doi.org/10.1016/j.neures.2010.07.330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Plenge, Per, and Erling T. Mellerup. "An Affinity-Modulating Site on Neuronal Monoamine Transport Proteins." Pharmacology & Toxicology 80, no. 4 (1997): 197–201. http://dx.doi.org/10.1111/j.1600-0773.1997.tb00396.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Burack, Michelle A., Michael A. Silverman, and Gary Banker. "The Role of Selective Transport in Neuronal Protein Sorting." Neuron 26, no. 2 (2000): 465–72. http://dx.doi.org/10.1016/s0896-6273(00)81178-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!