Дисертації з теми "Turbulent fluid flows"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Turbulent fluid flows".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Leeming, Angus David. "Particle deposition from turbulent flows." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242996.
Повний текст джерелаGodden, Paul James. "Turbulent buoyant fluid flows in confined regions." Thesis, University of Bristol, 2002. http://hdl.handle.net/1983/7f335a17-90bb-4229-b264-36c470f573f7.
Повний текст джерелаMastorakos, Epaminondas. "Turbulent combustion in opposed jet flows." Thesis, Imperial College London, 1994. http://hdl.handle.net/10044/1/11820.
Повний текст джерелаBernard, Donald Edward. "Optimization of Turbulent Prandtl Number in Turbulent, Wall Bounded Flows." ScholarWorks @ UVM, 2018. https://scholarworks.uvm.edu/graddis/824.
Повний текст джерелаVassilicos, J. C. "Fractal and moving interfaces in turbulent flows." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293384.
Повний текст джерелаMurray, Kevin B. "Wavelet transform analysis of turbulent wake flows." Thesis, Edinburgh Napier University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322272.
Повний текст джерелаKarim, Othman A. "Prediction of two and three dimensional turbulent flows." Thesis, University of Liverpool, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266196.
Повний текст джерелаNeel, Reece E. "Advances In Computational Fluid Dynamics: Turbulent Separated Flows And Transonic Potential Flows." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/30677.
Повний текст джерелаPh. D.
Vosskuhle, Michel. "Particle collisions in turbulent flows." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2013. http://tel.archives-ouvertes.fr/tel-00946618.
Повний текст джерелаRamsay, Euan Grant. "Nonlinear microscopy of semiconductor devices and turbulent fluid flows." Thesis, Heriot-Watt University, 2005. http://hdl.handle.net/10399/260.
Повний текст джерелаWilson, Dean Robert. "Computational modelling of turbulent magnetohydrodynamic flows." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/computational-modelling-of-turbulent-magnetohydrodynamic-flows(787a2a9d-f2f6-42e0-b218-a7b6e3041e04).html.
Повний текст джерелаLi, Zhaorui. "Modeling and simulation of turbulent multiphase flows." Diss., Connect to online resource - MSU authorized users, 2008.
Знайти повний текст джерелаPlasting, Stephen Christopher. "Turbulence has its limits : a priori estimates of transport properties in turbulent fluid flows." Thesis, University of Bristol, 2004. http://hdl.handle.net/1983/ca76fd77-e2a3-4eed-8a34-39203e11c84f.
Повний текст джерелаMossi, Michele. "Simulation of benchmark and industrial unsteady compressible turbulent fluid flows /." [S.l.] : [s.n.], 1999. http://library.epfl.ch/theses/?nr=1958.
Повний текст джерелаNemouchi, Zoubir. "The computation of turbulent thin shear flows associated with flow around multi-element aerofoils." Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.480482.
Повний текст джерелаFu, Song. "Computational modelling of turbulent swirling flows with second-moment closures." Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267917.
Повний текст джерелаDuffy, Graham James. "A computational study of particulate deposition from turbulent gas flows." Thesis, University of Salford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334338.
Повний текст джерелаKvick, Mathias. "Transitional and turbulent fibre suspension flows." Doctoral thesis, KTH, Strömningsfysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-153018.
Повний текст джерелаQC 20141003
Smith, Thomas M. "Unsteady simulations of turbulent premixed reacting flows." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/13097.
Повний текст джерелаWitz, Matthew J. "Mechanics of particle entrainment in turbulent open-channel flows." Thesis, University of Aberdeen, 2015. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=225690.
Повний текст джерелаShipton, Jemma. "Balance, gravity waves and jets in turbulent shallow water flows." Thesis, University of St Andrews, 2009. http://hdl.handle.net/10023/708.
Повний текст джерелаLindgren, Björn. "Flow facility design and experimental studies of wall-bounded turbulent shear-flows." Doctoral thesis, KTH, Mechanics, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3454.
Повний текст джерелаThe presen present thesis spans a range of topics within thearea of turbulent flows, ranging from design of flow facilitiesto evaluation aluation of scaling laws and turbulence modelingdeling aspects through use of experimental data. A newwind-tunnel has been designed, constructed and evaluated at theDept. of Mechanics, KTH. Special attention was directed to thedesign of turning vanes that not only turn the flow but alsoallow for a large expansion without separation in the corners.The investigation of the flow quality confirmed that theconcept of expanding corners is feasible and may besuccessfully incorporated into low turbulence wind-tunnels. Theflow quality in the MTL wind-tunnel at the Dept. of Mechanics,KTH, was as also in investigated confirming that it still isvery good. The results are in general comparable to thosemeasured when the tunnel was as new, with the exception of thetemperature variation ariation that has decreased by a factorof 4 due to an improved cooling system.
Experimental data from high Reynolds number zeropressure-gradient turbulent layers have been investigated.These studies have primarily focused on scaling laws withe.g.confirmation of an exponential velocity defect lawin a region, about half the size of the boundary layerthickness, located outside the logarithmic overlap region. Thestreamwise velocity probability density functions in theoverlap region was found to be self-similar when scaled withthe local rms value. Flow structures in the near-wall andbuffer regions were studied ande.g. the near-wall streak spacing was confirmed to beabout 100 viscous length units although the relative influenceof the near-wall streaks on the flow was as found to decreasewith increasing Reynolds number.
The separated flow in an asymmetric plane diffuser wasdetermined using PIV and LDV. All three velocity componentswere measured in a plane along the centerline of the diffuser.Results for mean velocities, turbulence intensities andturbulence kinetic energy are presented, as well as forstreamlines and backflow coefficientcien describing theseparated region. Instantaneous velocity fields are alsopresented demonstrating the highly fluctuating flow. Resultsfor the above mentioned velocity quantities, together with theproduction of turbulence kinetic energy and the secondanisotropy inariant are also compared to data from simulationsbased on the k -wformulation with an EARSM model. The simulation datawere found to severely underestimate the size of the separationbubble.
Keywords:Fluid mechanics, wind-tunnels, asymmetricdiffuser, turbulent boundary layer, flow structures, PDFs,modeling, symmetry methods.
Törnblom, Olle. "Experimental and computational studies of turbulent separating internal flows." Doctoral thesis, KTH, Mekanik, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4071.
Повний текст джерелаQC 20100923
Yates, Matthew. "The measurement of particle dispersions in turbulent, four-way coupled flows." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/55293/.
Повний текст джерелаFornari, Walter. "Suspensions of finite-size rigid particles in laminar and turbulent flows." Doctoral thesis, KTH, Mekanik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217812.
Повний текст джерелаQC 20171117
Shipton, Jemma. "Balance, gravity waves and jets in turbulent shallow water flows /." St Andrews, 2008. http://hdl.handle.net/10023/708.
Повний текст джерелаMårtensson, Gustaf. "Analysis of laminar and turbulent flows with turbomachinery, biotechnology and biomechanical applications." Doctoral thesis, KTH, Mechanics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3928.
Повний текст джерелаThe goal of this study was initially to gain a better understanding of the effects of rotation on turbulent flow in ducts. Knowledge concerning the influence of rotation on the structures of turbulence is of fundamental importance in many applications, e.g. centrifugal separators, turbines or cooling channels in rotating machinery, as well as meteorology and oceanography. Rapidly rotating duct flow is studied experimentally with rotation numbers in the interval [ 0, 1] . To achieve this, in combination with relatively high Reynolds numbers (5000 – 30000 based on the hydraulic radius), water was used as the working medium. The influence of the rotation on the pressure drop in the duct was investigated and suitable scalings of this quantity were studied. Due to questions that arose in the experimental study, two numerical studies were initiated. The first study probed the effect of rotation and geometrical configuration on the development length for turbulent flow, while the second comprised a direct numerical simulation of turbulent flow in a rotating duct. It is shown that while system rotation does not have a marked effect on the development length in a plane channel, the development length is substantially shortened in a duct.
Additional systems subject to rotation or curvature effects were studied. The laminar flow of fluid in a rotating PCR-cone was analysed analytically and numerically to understand the increased mixing and temperature homogenization. The flow field in the cone was described and the increased mixing was due to a strong boundary layer flow incited by Coriolis and buoyancy effects. Comparisons of the numerical simulations with experiments yielded good results.
A study to quantify the flow of blood in cerebral malformations using three-dimensional videodensitometry was performed. Data from experiments with an idealized flow phantom, as well clinical pathologies, showed that the proposed methodology in conjunction with clinical injection protocols can yield mean flux data with an error less than 20%. Protocol improvements are proposed.
Aichouni, Mohamed. "Development and decay of turbulent pipe flows : an experimental and computational study." Thesis, University of Salford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305082.
Повний текст джерелаHuval, Danny J. "Heat transfer in variable density, low mach number, stagnating turbulent flows." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/12394.
Повний текст джерелаSan, Omer. "Multiscale Modeling and Simulation of Turbulent Geophysical Flows." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/28031.
Повний текст джерелаPh. D.
Chen, Zhuo. "Scalar dispersion in turbulent open channel flows over smooth and rough beds." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44896.
Повний текст джерелаFarbos, De Luzan Charles. "Numerical Analysis of Turbulent Flows in Channels of Complex Geometry." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1468511618.
Повний текст джерелаStrömgren, Tobias. "Model predictions of turbulent gas-particle shear flows." Doctoral thesis, KTH, Mekanik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12135.
Повний текст джерелаQC20100726
Tselepidakis, Demetrios P. "Development and application of a new second-moment closure for turbulent flows near walls." Thesis, University of Manchester, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332657.
Повний текст джерелаCiofalo, Michele. "Large-eddy simulation of turbulent flows with heat transfer in simple and complex geometries." Thesis, University of London, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262005.
Повний текст джерелаHayes, E. R. "The prediction of droplet motion and breakup using a vortex model for turbulent flows." Thesis, Cranfield University, 1988. http://dspace.lib.cranfield.ac.uk/handle/1826/10285.
Повний текст джерелаKupiainen, Marco. "Compressible Turbulent Flows : LES and Embedded Boundary Methods." Doctoral thesis, KTH, Numerisk analys, NA, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10090.
Повний текст джерелаAzouz, Idir. "Numerical simulation of laminar and turbulent flows of wellbore fluids in annular passages of arbitrary cross-section /." Access abstract and link to full text, 1994. http://0-wwwlib.umi.com.library.utulsa.edu/dissertations/fullcit/9500702.
Повний текст джерелаAlhamdi, Sabah Falih Habeeb. "INTERMITTENCY EFFECTS ON THE UNIVERSALITY OF LOCAL DISSIPATION SCALES IN TURBULENT BOUNDARY LAYER FLOWS WITH AND WITHOUT FREE-STREAM TURBULENCE." UKnowledge, 2018. https://uknowledge.uky.edu/me_etds/116.
Повний текст джерелаNiazi, Ardekani Mehdi. "Numerical study of non-spherical/spherical particles in laminar and turbulent flows." Licentiate thesis, KTH, Mekanik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-204421.
Повний текст джерелаQC 20170328
Bussman, Wesley Ryan. "A theoretical and experimental investigation of near-wall turbulence in drag reducing flows /." Access abstract and link to full text, 1990. http://0-wwwlib.umi.com.library.utulsa.edu/dissertations/fullcit/9111869.
Повний текст джерелаStrömgren, Tobias. "Modelling of turbulent gas-particle flow." Licentiate thesis, KTH, Mechanics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4639.
Повний текст джерелаAn Eulerian-Eulerian model for dilute gas-particle turbulent flows is
developed for engineering applications. The aim is to understand the effect of particles on turbulent flows. The model is implemented in a finite element code which is used to perform numerical simulations. The feedback from the particles on the turbulence and the mean flow of the gas in a vertical channel flow is studied. In particular, the influence of the particle response time and particle volume fraction on the preferential concentration of the particles near the walls, caused by the turbophoretic effect is explored. The study shows that the particle feedback decreases the accumulation of particles on the walls. It is also found that even a low particle volume fraction can have a significant impact on the turbulence and the mean flow of the gas. A model for the particle fluctuating velocity in turbulent gas-particle flow is derived using a set of stochastic differential
equations. Particle-particle collisions were taken into account. The model shows that the particle fluctuating velocity increases with increasing particle-particle collisions and that increasing particle response times decrease the fluctuating velocity.
Springer, Matthias [Verfasser], and Stefan [Gutachter] Becker. "Fluid–Structure–Acoustics Interaction of Turbulent Wall–Bounded Flows / Matthias Springer ; Gutachter: Stefan Becker." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2018. http://d-nb.info/1153203278/34.
Повний текст джерелаHawkins, Marion Joyce. "A study of turbulent flows and curved jets, including application of the laser Doppler anemometry technique." Thesis, Durham University, 1988. http://etheses.dur.ac.uk/1535/.
Повний текст джерелаWiberg, Roland. "A study of heat transfer from cylinders in turbulent flows by using thermochromic liquid crystals." Licentiate thesis, KTH, Mechanics, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1695.
Повний текст джерелаIn gas quenching, metal parts are rapidly cooled from hightemperatures, and the convection heat transfer coefficientdistributions are of importance for the hardness and thedistortion (the shape nonuniformities) of the quenched parts.Thermochromic liquid crystals (TLC) and a thin foil techniques,were investi- gated and used for studies of a circular cylinderin axial flows, affected and not affected by upstream owmodifying inserts. Quadratic prisms in cross ows were alsostudied, a single prism, two prisms arranged in-line, and forfour prisms arranged in a square pattern. In this study,particle image velocime- try (PIV) was used for visualizationof the flow, giving physical insight to the convection heattransfer data. Further, relations of the typeNu=CReewere established. The TLC and thin foil techniques werealso used to indicate the dimensions of separated flowregions.
Descriptors:Fluid mechanics, wind-tunnel, turbulence,gas quenching, con- vection heat transfer, thermochromic liquidcrystals, calibration, temperature measurement errors, thinfoils, particle image velocimetry, cylinder in axial flow, flowmodifying inserts, quadratic prisms in cross flow
Ferro, Marco. "Experimental study on turbulent boundary-layer flows with wall transpiration." Doctoral thesis, KTH, Mekanik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217125.
Повний текст джерелаGenom att använda sig av genomströmmande ytor, med sugning eller blåsning, kan man relativt enkelt och effektivt påverka ett gränsskikts tillstånd. Genom sin potential att påverka olika strömningsfysikaliska fenomen så som att senarelägga både avlösning och omslaget från laminär till turbulent strömning (genom sugning) eller som att exempelvis minska luftmotståndet i turbulenta gränsskikt och ge kyleffekt (genom blåsning), så har ett otaligt antal studier genomförts på området de senaste decennierna. Trots detta så är den grundläggande förståelsen bristfällig för de strömningsfenomen som inträffar i turbulenta gränsskikt över genomströmmande ytor. Det råder stora meningsskiljaktigheter om de mest elementära strömningskvantiteterna, såsom medelhastigheten, när sugning och blåsning tillämpas även i det mest förenklade gränsskiktsfallet nämligen det som utvecklar sig över en plan platta utan tryckgradient. För att ta fram nya experimentella data på gränsskikt med sugning och blåsning genom ytan så har vi designat en ny experimentell uppställning samt tagit den i bruk.Den genomströmmande ytan spänner över hela bredden av vindtunnelns mätsträcka (1.2 m) och är 6.5 m lång i strömningsriktningen och är därmed betydligt längre än vad som använts i tidigare studier. Detta gör det möjligt att bättre utforska gränsskiktet som utvecklas över ytan i strömningsriktningen. Kvaliteten på den experimentella uppställningen och valda mätprocedurerna har verifierats genom omfattande tester, som även inkluderar benchmarking mot tidigare resultat på turbulenta gränsskikt utan tryckgradient eller blåsning/sugning och på laminära asymptotiska sugningsgränsskikt. De experimentella resultaten på turbulenta gränsskikt med sugning bekräftar för första gången att det är möjligt att experimentellt sätta upp ett turbulent asymptotiskt sugningsgränsskikt där gränsskiktets medelhastighetsprofil blir oberoende av strömningsriktningen och där sugningshastigheten utgör den enda kontrollparametern. Det turbulenta asymptotiska sugningsgränsskiktet visar sig ha en medelhastighetsprofil normalt mot ytan med en lång logaritmisk region och utan förekomsten av en yttre vakregion. Om man använder yttre skalning av medelhastigheten, med friströmshastigheten och gränsskiktstjockleken som karaktäristisk hastighet respektive längdskala, så kan det logaritmiska området beskrivas med en lutning på Ao=0.064 och ett korsande värde med y-axeln på Bo=0.994, som är oberoende av sugningshastigheten. Om sugningshasigheten normaliserad med friströmshastigheten överskrider värdet 3.70x10^-3 så återgår det ursprungligen turbulenta gränsskiktet till att vara laminärt. Sugningen genom väggen dämpar hastighetsfluktuationerna i gränsskiktet med upp till 50-60% vid direkt jämförelse av det inre toppvärdet i ett turbulent gränsskikt utan sugning och vid jämförbart Reynolds tal. Denna minskning av turbulent aktivitet verkar härstamma från en ökad stabilitet av hastighetsstråken närmast ytan. Mätningar på turbulenta gränsskikt med blåsning har genomförts för blåsningshastigheter mellan 0.1 och 0.37% av friströmshastigheten och täcker Reynoldstalområdet (10-36)x10^3, med Reynolds tal baserat på rörelsemängds-tjockleken. Vid blåsning genom ytan får man en stark modifiering av formen på hastighetesfördelningen genom gränsskiktet. När blåsningshastigheten ökar så kommer till slut den logaritmiska regionen av medelhastigheten, karaktäristisk för turbulent gränsskikt utan blåsning, att gradvis försvinna. God överens-stämmelse av medelhastighetsprofiler mellan turbulenta gränsskikt med och utan blåsning erhålls för alla Reynoldstal och blåsningshastigheter när profilerna normaliseras med Zagarola-Smits hastighetsskala. Blåsning vid väggen ökar intensiteten av hastighetsfluktuationerna, speciellt i den yttre regionen av gränsskiktet. Vid riktigt höga blåsningshastigheter och Reynoldstal så kommer den yttre toppen av hastighetsfluktuationer i gränsskiktet att överskrida den inre toppen, som i sig gradvis försvinner.
QC 20171101
Martins, Ramon Silva. "Numerical simulation of turbulent viscoelastic fluid flows : flow classification and preservation of positive-definiteness of the conformation tensor." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10127/document.
Повний текст джерелаThe purpose of this work is to provide an enhancement of the knowledge about the polymer-induced drag reduction phenomenon by considering some aspects of its numerical simulation and the changes that occur in the flow kinematics. In the first part, the square root and kernel root-k formulations for the conformation tensor in the FENE-P model were implemented and showed to preserve the positiveness of the conformation tensor. However, they led to numerical divergence due to the loss of boundedness of the conformation tensor. This constraint was violated even with the inclusion of artificial diffusion. The damping effect of artificial diffusion helped to ensure numerical stability, but led to relative drag reduction from 22% to 42% lower than expected from traditional methods. In the second part, the hyperbolic, parabolic and elliptic modes of turbulent viscoelastic flows were evaluated by means of different flow classification criteria. Some advantages of considering objective criteria were discussed. It was shown that the hyperbolic domains significantly contribute to the flow kinematics. Finally, a tendency of both elliptic and hyperbolic domains to become parabolic was observed and found to increase with the elasticity
Buckland, Hannah. "Combined current, wave and turbulent flows and their effects on tidal energy devices." Thesis, Swansea University, 2014. https://cronfa.swan.ac.uk/Record/cronfa42509.
Повний текст джерелаSchulz, Joseph C. "A study of magnetoplasmadynamic effects in turbulent supersonic flows with application to detonation and explosion." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53971.
Повний текст джерелаSigfrids, Timmy. "Hot wire and PIV studies of transonic turbulent wall-bounded flows." Licentiate thesis, KTH, Mechanics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1577.
Повний текст джерелаThe compressible turbulent boundary layer developing over atwo-dimensional bump which leads to a supersonic pocket with aterminating shock wave has been studied. The measurements havebeen made with hot-wire anemometry and Particle ImageVelocimetry (PIV).
A method to calibrate hot-wire probes in compressible ow hasbeen developed which take into account not only the ow velocitybut also the inuence of the Mach number, stagnation temperatureand uid density. The calibration unit consists of a small jetow facility, where the temperature can be varied. The hot wiresare calibrated in the potential core of the free jet. The jetemanates in a container where the static pressure can becontrolled, and thereby the gas density. The calibration methodwas verfied in the at plate zero pressure gradient turbulentboundary layer in front of the bump at three different Machnumbers, namely 0.3, 0.5 and 0.7. The profiles were alsomeasured at different static pressures in order to see theinuence of varying density. Good agreement between the profilesmeasured at different pressures, as well as with the standardlogarithmic profile was obtained.
The PIV measurements of the boundary layer ow in front ofthe 2D bump showed good agreement with the velocity profilesmeasured with hotwire anemometry. The shock wave boundary layerinteraction was investigated for an inlet Mach number of 0.69.A lambda shock wave was seen on the downstream side of thebump. The velocity on both sides of the shock wave as measuredwith the PIV was in good agreement with theory. The shock wavewas found to cause boundary layer separation, which was seen asa rapid growth of the boundary layer thickness downstream theshock. However, no back ow was seen in the PIV-data, probablybecause the seeding did not give enough particles in theseparated region. The PIV data also showed that the shock wavewas oscillating, i.e. it was moving approximately 5 mm back andforth. This distance corresponds to about five boundary layerthicknesses in terms of the boundary layer upstream theshock.
Descriptors:Fluid mechanics, compressible ow,turbulence, boundary layer, hot-wire anemometry, PIV, shockwave boundary layer interaction, shape factor.