Добірка наукової літератури з теми "Underwater power cables"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Underwater power cables".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Underwater power cables":

1

Xu, Chunying, Jiawang Chen, Dongxu Yan, and Jian Ji. "Review of Underwater Cable Shape Detection." Journal of Atmospheric and Oceanic Technology 33, no. 3 (March 2016): 597–606. http://dx.doi.org/10.1175/jtech-d-15-0112.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractUnderwater cables play vital roles in marine engineering because they provide power and communication connections from the shore to an increasing number of sea installations. To ensure the system is operating reliably and continuously, it is necessary to detect the shapes of underwater cables in real time. However, this task is difficult to accomplish because the underwater cables are located in a dynamic and complicated subsea environment, which can cause changes in position, depth, and visibility.In this report, the current development of underwater cable shape detection methods, including visual, acoustic, magnetic detection, and multisensor fusion detection, and the advantages and disadvantages are described and analyzed. Furthermore, the disadvantages of these methods are addressed, which, based on survey platforms with high cost, include a long detection period and the failure to reveal emergencies. Then, the need to construct a simple and reliable system to detect the shapes of underwater cables is highlighted, and one possible solution based on bend sensors embedded in underwater cables is discussed.
2

Thum, Guan Wei, Sai Hong Tang, Siti Azfanizam Ahmad, and Moath Alrifaey. "Toward a Highly Accurate Classification of Underwater Cable Images via Deep Convolutional Neural Network." Journal of Marine Science and Engineering 8, no. 11 (November 16, 2020): 924. http://dx.doi.org/10.3390/jmse8110924.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Underwater cables or pipelines are commonly utilized elements in ocean research, marine engineering, power transmission, and communication-based activities. Their performance necessitates regularly conducted inspection for maintenance purposes. A vision system is commonly used by autonomous underwater vehicles (AUVs) to track and search for underwater cable. Its traditional methods are characteristically applicable in AUVs, wherein they are equipped with handcrafted features and shallow trainable architectures. However, such methods are subpar or even incapable of tracking underwater cable in fast-changing and complex underwater conditions. In contrast to this, the deep learning method is linked with the capacity to learn semantic, high-level, and deeper features, thus rendering it recommended for performing underwater cable tracking. In this study, several deep Convolutional Neural Network (CNN) models were proposed to classify underwater cable images obtained from a set of underwater images, whereby transfer learning and data augmentation were applied to enhance the classification accuracy. Following a comparison and discussion regarding the performance of these models, MobileNetV2 outperformed among other models and yielded lower computational time and the highest accuracy for classifying underwater cable images at 93.5%. Hence, the main contribution of this study is geared toward developing a deep learning method for underwater cable image classification.
3

Gopalakrishnan, Manoj, Eldho Jacob, and Sona Kundukulam. "Relay based Coupling Scheme of High Speed Communication data, High voltage DC And High Power Pulsed AC for Coaxial Cable." Defence Science Journal 68, no. 5 (September 12, 2018): 487–93. http://dx.doi.org/10.14429/dsj.68.11907.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Coaxial cable telemetry is most commonly used in the field of underwater applications like data logging in oil rigs, underwater wireless modem, underwater acoustic measurements, borehole measurements, deep sea telemetry for sediment analysis, airborne sonars, imaging sonars etc. In all the above applications coaxial multicore cables are used. The design and development of relay based coupling scheme which helps to replace the multi core cable with a single core coaxial cable for telemetry application is described. Single core cable is suitable for long distance data communication. Multi core cables are generally heavy and due to the size, may not meet space constraints in complex systems. They are not economical too. The relay based coupling scheme is used to mix or separate the high speed bi-directional communication data, high voltage DC and high power pulsed AC. In single relay scheme one relay is used to switch the centre core of single core coaxial cable. Here the ground is common for both high power AC transmission and high speed bi-directional data path. A dual relay scheme is discussed where two relays are used to switch both the centre core and ground of the single core coaxial cable. This provides more ground isolation and can avoid ground lifting issues while high power AC transmission occurs. The simulation of the coupling scheme was done using PSpice®. A prototype of the coupling scheme was also made for analysis. Filter responses were analysed for each coupling path. The DC coupling filter has 85 Hz cut-off frequency at -3 dB. The cut-off frequency of high speed data coupler is 500 KHz at -3 dB. A 4.3KV peak to peak of 3 KHz and 7 KHz AC signals were transmitted and measurements were taken to analyse the effect of high voltage over different coupling paths. The 3 KHz signal has a peak of 61.88 dB and that of 7 KHz signal, the peak is 62.50 dB. The signal components of 3 KHz signal in the DC path has a voltage level of 9.375 dB and that of 7 KHz signal is 25.63 dB.
4

Керестень, И. А., И. А. Попов, and М. В. Ховайко. "Numerical simulation of underwater cable laying with account of non-uniform hydrostatic force at Arctic basin condition." MORSKIE INTELLEKTUAL`NYE TEHNOLOGII), no. 3(53) (August 27, 2021): 267–73. http://dx.doi.org/10.37220/mit.2021.53.3.032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Статья посвящена моделированию динамического равновесия установившегося движения протяженной кабельной линии с учетом действия гидродинамических сил сопротивления и неоднородной гидростатической силы. Учитывая различные условия и глубины укладки, а также требования функционального назначения и защиты от враждебных факторов морского дна, необходимо рассмотреть широкий диапазон кабелей с различными механическими характеристиками: трехжильный кабель с одиночным бронированием 2XS2YRAA, одножильный кабель с одиночным бронированием ZS-YJQ41 и одножильный кабель с двойным бронированием – аналог GASLMLTV. Целью работы является развитие цифровой технологии по моделированию укладки подводных коммуникационных и силовых кабелей, позволяющей учитывать многочисленные физико-механические явления, имеющие место при проведении реальных морских работ. Для достижения поставленной цели работы используется программная среда Matlab Math Works с использованием разработанного комплекса программ для инженерной оценки формы и натяжения провисающего участка кабеля. Научная новизна состоит в апробации модели подводной укладки кабеля, учитывающей действие неоднородной гидростатической силы. Результаты моделирования представлены в виде формы и натяжения провисающей части кабеля при различных углах схода кабеля с движущегося судна при различных механических параметрах кабелей. Практическое значение работы состоит в повышении эффективности освоения перспективных месторождений, путем определения характеристик укладки кабеля в условиях Арктического бассейна: газовое месторождение Лудловское, газоконденсатное месторождение Ленинградское, нефтяное месторождение Медынское-море. This article studies the numerical simulation of underwater steady motion of the cable line with account of hydrodynamic water resistance forces and non-uniform hydrostatic force. It is necessary to consider distinctive types of cables due to various depths, laying conditions, functional requirements and protection requirements against adverse factors of seabed. Three-core single armoured cable 2XS2YRAA, one-core single armoured cable ZS-YJQ41 and one-core double armoured cable – analogue GASLMLTV are considered in this article. The aim of the research consists in digital technology development for underwater cable laying modeling, which allows taking into account numerous physical and mechanical features. These features occur during real marine operations for communication and power cables. Programming and numeric computing platform Matlab Math Works with developed software package is chosen as the research method. Simulation results are presented in dimensionless form for cable shape and tension for engineering purposes. The novelty of the work consists in approbation of underwater cable laying analytical model considering non-uniform hydrostatic force. Simulation results are presented for underwater cable laying during reeling from spool mounted on the vessel, moving with constant speed for distinctive types of cables. The influence of the cable run-off angle on the investigated characteristics was also considered. The practical value of the research consists in increasing of efficiency of exploration of oil, gas and condensate fields by determining underwater cable laying characteristics for perspective fields. At the end of the paper, the results of estimation of the shape and tension of the cable being laid undersea were presented for several fields at Arctic basin condition: gas field Ludlovskoe, condensate field Leningradskoe and oil field Medinskoe sea.
5

Northcutt, Jay G., Art A. Kleiner, Thomas S. Chance, and Joe Lee. "Cable Route Surveys Utilizing Autonomous Underwater Vehicles (AUVs)." Marine Technology Society Journal 34, no. 3 (January 1, 2000): 11–16. http://dx.doi.org/10.4031/mtsj.34.3.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Detailed geophysical surveys are required in both deep and shallow water to avoid potential hazards and to provide for the installation and safety of fiber optic telecommunication cables. Unfortunately, data obtained in potential burial zones with existing technology are slow and often data accuracy may be questionable. Towing cabled or tethered survey systems, from a project perspective, is time consuming and provides marginally adequate data. Additionally, a launch is usually required to survey between the surf and the safe working limits of the survey ship. This requires additional equipment that is weather sensitive and subject to failure.To address this problem, C & C Technologies, Inc. of Lafayette, Louisiana, USA has contracted with Kongsberg Simrad for the construction of a Hugin 3000 autonomous underwater vehicle (AUV). C & C Technologies’ Hugin 3000 AUV, which is to be delivered in July of 2000, will be integrated with a variety of sensors including high frequency multibeam swath bathymetry and imagery. Other survey sensors include chirp side scan sonar, chirp sub-bottom profiler, and magnetometer. Vehicle positioning will be provided by a USBL acoustic positioning system, integrated with Doppler speed log, an inertial navigation system, and for surface operations, DGPS. AUV power will be delivered by aluminum oxygen fuel cells.This paper will address AUV operations, platform performance, sensor specifications and integration, project milestones, and system economics with regards to cable route surveys.
6

Briskin, E. S., and V. N. Platonov. "On Math Modeling of Solid Body’s Motion Control with an Excess Number of Rope Propulsion Devices." Mekhatronika, Avtomatizatsiya, Upravlenie 20, no. 7 (July 4, 2019): 422–27. http://dx.doi.org/10.17587/mau.20.422-427.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A design scheme and a mathematical model of the dynamics of the translational motion of a solid body, which simulate the movement of an underwater platform using anchor-cable propulsion devices, are proposed, and examples of the use of such platforms during the mining and exploration of new hydrocarbon deposits on the continental shelf are given. A diagram of the underwater platform with anchor-cable propulsion devices, as well as the method of its movement. The peculiarity of the mathematical model of the process of moving a platform with this type of propulsion devices is in the dependence of the developed efforts on the position of the cables relative to the moving body and the excess of the number of control actions over the number of degrees of freedom of the mechanical system. The mathematical model describing the movement of the platform is based on geometric equations with simultaneous operation of propulsion drives on the one hand, and on the equation of the dynamics of the translational motion of the body on the other. It is shown that the task of the control system in this process is to provide the necessary balance of forces in the cables going to the propulsion anchor. As drives, DC motors and stepper motors are considered due to their ability to operate from an independent power source, such as batteries. The features of control of DC motors and stepper motors as part of anchor-cable drives drives are established. To resolve dynamic uncertainty, the necessity of introducing an additional equation into a mathematical model has been proved. In accordance with the developed mathematical model, the laws of changes in time of control actions are obtained, in particular, such as the voltage applied to the armatures of DC motors and the switching frequency of the windings when using stepping motors. A method for controlling the movement of a solid body under the influence of two drives has been developed. It can be used to study the translational movement of an underwater platform with anchor-cable propulsion devices. The features of control of DC motors and stepper motors are considered to change the length of cable drives according to a given law.
7

Lee, Hsien Hua. "Performance of a Covering Pipe for the Protection of Underwater Cable Subjected to on-Site Impact Loadings." Applied Mechanics and Materials 82 (July 2011): 810–15. http://dx.doi.org/10.4028/www.scientific.net/amm.82.810.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study, a protection-pipe system has been developed for the protection of undersea electricity cable layout along shoreline with medium deep water. The protection pipes are made of cast-iron alloys while the dimensions are designed corresponding to the balk diameter of electricity cables. The water depth of the area with cable layout is ranged from several meters to a hundred meters, where berthing anchoring from commercial ships and towing operation from fishing boats are constantly found. Therefore, to make sure that the protection pipe can work dependably against the loadings mainly from the operation as was mentioned, both analytical analysis and experimental tests were carried out. In the experimental studies, the full-scale model of several sets of protection-pipe system was tested for impact loadings. It was found from the results of both the analysis and experimental tests that the protection-pipes are able to meet the requirements of the local power company TPC set for the cable layout under seawater.
8

Weedy, B. M. "Prediction of return currents and losses in underwater single-core armoured AC cables with large spacings." Electric Power Systems Research 10, no. 1 (January 1986): 77–85. http://dx.doi.org/10.1016/0378-7796(86)90052-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hemery, Lenaïg G., Kailan F. Mackereth, Cailene M. Gunn, and Edward B. Pablo. "Use of a 360-Degree Underwater Camera to Characterize Artificial Reef and Fish Aggregating Effects around Marine Energy Devices." Journal of Marine Science and Engineering 10, no. 5 (April 19, 2022): 555. http://dx.doi.org/10.3390/jmse10050555.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Marine energy devices must be attached to the seafloor by their foundations, pilings, or anchors, and will have other parts in the water column like the devices themselves, mooring lines, and power export cables running along the seafloor. The installation and presence of these artificial structures will create physical changes that can disrupt or create new habitats, and potentially alter the behavior of mobile organisms such as fish around a device by attracting them to these new artificial reefs and fish aggregating devices. In this study, we tested a new approach for monitoring fish activity around a marine energy device anchor: a 360-degree underwater camera to keep the target (a wave energy converter’s anchor) in the field of view of the camera. The camera was deployed in three configurations (hand-held, tripod, video lander) at sites with different hydrodynamics and underwater visibilities. The video lander was the best configuration: very stable, versatile, and easy to handle. The 360-degree field of view enabled observing and counting fishes, which were more abundant at dusk than dawn or noon, around the anchor. Despite remaining challenges, 360-degree cameras are useful tools for monitoring animal interactions with marine energy devices.
10

Copping, Andrea E., Mikaela C. Freeman, Alicia M. Gorton, and Lenaïg G. Hemery. "Risk Retirement—Decreasing Uncertainty and Informing Consenting Processes for Marine Renewable Energy Development." Journal of Marine Science and Engineering 8, no. 3 (March 4, 2020): 172. http://dx.doi.org/10.3390/jmse8030172.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Marine renewable energy (MRE) is under development in many coastal nations, adding to the portfolio of low carbon energy sources that power national electricity grids as well as off-grid uses in isolated areas and at sea. Progress in establishing the MRE industry, largely wave and tidal energy, has been slowed in part due to uncertainty about environmental risks of these devices, including harm to marine animals and habitats, and the associated concerns of regulators and stakeholders. A process for risk retirement was developed to organize and apply knowledge in a strategic manner that considered whether specific environmental effects are likely to cause harm. The risk retirement process was tested against two key MRE stressors: effects of underwater noise from operational MRE devices on marine animals, and effects of electromagnetic fields from MRE electrical export cables on marine animals. The effects of installation of MRE devices were not accounted for in this analysis. Applying the risk retirement process could decrease the need for costly investigations of each potential effect at every new MRE project site and help move the industry beyond current barriers.

Дисертації з теми "Underwater power cables":

1

Taormina, Bastien. "Potential impacts of submarine power cables from marine renewable energy projects on benthic communities A review of potential impacts of submarine power cables on the marine environment: Knowledge gaps, recommendations and future directions, in Renewable and Sustainable Energy Reviews 96, November 2018 Optimizing image-based protocol to monitor macroepibenthic communities colonizing artificial structures, in ICES Journal of marine science 77(2), March 2020." Thesis, Brest, 2019. http://theses-scd.univ-brest.fr/2019/These-2019-SML-Ecologie_marine-TAORMINA_Bastien.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans un contexte de développement rapide des projets d’énergies marines renouvelables, le but de cette thèse était d’améliorer les connaissances sur les impacts potentiels des câbles électriques sous-marins sur les écosystèmes benthiques côtiers. En se focalisant sur la phase de fonctionnement, ce travail était essentiellement dédié à la caractérisation de l’effet récif généré par ces câbles et leurs structures associées (protection, stabilisation) sur les communautés épibenthiques fixées et la mégafaune mobile. L’étude était principalement basée sur l’utilisation d’images sous-marines (photo et vidéo) prises in situ par des plongeurs. Ce travail a mené à des réflexions méthodologiques sur la manière la plus efficace d’analyser ce genre de données afin d’appréhender pleinement la dynamique de colonisation des structures artificielles et leur rôle d’habitat pour des espèces commerciales. Outre cet effet récif, certains organismes se retrouvent exposés à des champs magnétiques émis par les câbles électriques. Ceci m’a conduit à mesurer expérimentalement l’impact de champs magnétiques artificiels sur le comportement du homard Européen (Homarus gammarus) au stade juvénile. Finalement, nous avons étudié in situ les potentiels bénéfices pour la macrofaune benthique de l’exclusion d’activités anthropiques autour de la route de câbles électriques. Le couplage d’approches in situ et ex situ m’a permis de mieux appréhender les impacts environnementaux associés aux câbles électriques sous-marins. Ces résultats permettront d’améliorer l’évaluation de l’empreinte écologique des futurs raccordements électriques
In a global context of rapid development of marine renewable energy projects, the aim of this PhD thesis was to better characterise the potential impacts of submarine power cables on coastal benthic ecosystems. The work specifically focused on the impacts associated with the operational phase. The major part of this work was dedicated to the reef effect created by these cables and their protective and stabilising structures on sessile epibenthic communities and mobile megafauna. This work was mainly based on underwater imagery, either video or photo collected in situ by divers. The challenge of working with underwater imagery has led me to optimise image analyses so as to effectively monitor benthic colonisation and to quantify artificial reef habitat provision to commercial species.In addition to this reef effect, colonising organisms are exposed to magnetic fields generated by the power cables. Thus, I designed an experimental study to assess the impact of realistic magnetic fields on the behaviour of juvenile European lobsters (Homarus gammarus). Finally, we explored the ecological impacts of excluding anthropogenic activity from the cables routes and potential benefits for benthic macrofauna. By coupling both in situ and ex situ approaches, my PhD research better characterises the environmental impacts associated with submarine power cables. These results will help to assess the ecological footprint of future power grid connections
2

Ech, Cheikh Fouad. "Modélisations numérique et analytique du comportement mécanique et multiphysique d'une phase haute-tension pour fermes offshores." Thesis, Ecole centrale de Nantes, 2022. http://www.theses.fr/2022ECDN0004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les travaux menés dans cette thèse visent à étudier le comportement mécanique sous sollicitations quasi-statiques et en fatigue cyclique afin de corréler les niveaux de déformation atteinte aux mécanismes d’endommagement opérants et qui reflètent la prolifération des défauts microstructuraux au sein des composants de la phase (Conducteur et isolants). Pour ce faire, nous proposons une modélisation numérique à l’aide d’Abaqus. Ensuite, toujours à l’aide de modélisations numériques, cette fois-ci utilisant Comsol, nous avons essayé de montrer l’impact des endommagements mécaniques sur les propriétés physiques (électrique et thermique) de la phase. Il est très important de préciser que dans toutel’étude proposée, nous nous sommes concentrés sur le conducteur cuivre. Ce choix est justifié par le caractère crucial du conducteur dans ce type de câble… Un endommagement partiel et/ou total de cet élément conduirait inévitablement à de graves conséquences (court-circuit ou shut-down !) avec interruption totale de conduction d’électricité et donc des pertes financières énormes. Il est bien entendu que l’isolant ou les isolants revêtent une influence critique également. Néanmoins, gardons en mémoire que la thèse proposée ne peut pas s’attaquer exhaustivement à l’ensemble des variables et un choix de priorisation devait être fait, à savoir de travailler sur le conducteur
OTDR-based electrical cable diagnostic methods exist that allow the detection and localization of faults, but the analysis of the measured signals needs to be improved, particularly through the use of models. The link between the physical degradation of the cable and the values of the electrical parameters has, to our knowledge, never yet been realized. As a result, we are not able to know the actual condition of the cable in its natural evolution environment, let alone its residual life. The work carried out in this thesis aims at studying the mechanical behavior in both quasistatic and cyclic fatigue loadings in order to correlate the deformation levels reached to the operating mechanisms of damage and which reflect the proliferation of microstructural defects within the components of the phase (Conductor and insulators). To do this, we propose a numerical modeling using Abaqus. Then, again using numerical modeling, this time using Comsol, we tried to show the impact of mechanical damage on the physical properties (electrical and thermal) of the phase, emphasizing the role of copper. Insulators are playing a key role as well. However, the contour of the thesis had to be well defined in accordance with the time allocated and it seemed to us that a lot of information can be got out of the study of the conductor
3

MacNeill, Aaron. "Submarine Power Cable Transmission Line Parameters and Performance." 2012. http://hdl.handle.net/10222/15470.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Submarine power production installations use the power of the ocean to generate renewable energy for the population to use. To bring this electricity back to land, use of electrical cables is required. The choice of cable will affect both the quality of received power and the security of the transmission line. To find the inductance and capacitance of these submarine transmission lines, a study of the electric and magnetic fields that are produced due to the power flow on these cables must be performed. The armor that is used to protect the cable from underwater hazards is significant in determining the cable losses and finding the equivalent inductance and capacitance. Finding the inductance and capacitance of the submarine cable will allow for the determination of the two port parameters of the cable. These parameters will allow for the analysis of the transient and steady state performance of the cable.

Частини книг з теми "Underwater power cables":

1

Homer, A. "Power Cable Repair Underwater." In Advances in Underwater Technology, Ocean Science and Offshore Engineering, 361–66. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4203-5_42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

"Underwater Power Cables." In Power and Communication Cables. IEEE, 2009. http://dx.doi.org/10.1109/9780470545546.ch13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

"Underground Cables Layout." In Advances in Computer and Electrical Engineering, 40–67. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-6509-5.ch003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This chapter discusses the different ways of cables installation such as open wire, aerial cable, above-ground conduits, underground ducts and underwater (Submarine) cables. The chapter explains the precautions to protect cables from moisture, general drum handling, power cable Installation guide and after installation field tests
4

"Terrestrial and Underwater Optical Fiber Cables." In Power and Communication Cables. IEEE, 2009. http://dx.doi.org/10.1109/9780470545546.ch17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Meier, Paul F. "Wind Energy." In The Changing Energy Mix, 185–227. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190098391.003.0007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A wind farm is a collection of wind turbines, sufficiently spaced to avoid wind interference between turbines. Onshore and offshore are the two basic types of wind farms. The cost of building an offshore farm is greater because of the need for turbines that withstand high wind and corrosive conditions of the sea, plus the expense of installing underwater transmission cables to shore. For an onshore wind farm, the land area for the farm is large, but the direct impact area is relatively small. The direct impact area includes the turbine pads, roads, substations, and transmission equipment, and only makes up about 2% of the total wind farm area. Since the direct impact area is small compared to the total wind farm area, agriculture and ranching can coexist with the wind farm. Wind is a very fast growing renewable energy technology. In the ten years since 2009, the worldwide capacity for wind power increased 276% while US capacity increased 175%.

Тези доповідей конференцій з теми "Underwater power cables":

1

Nordebo, Sven, Borje Nilsson, Thomas Biro, Gokhan Cinar, Mats Gustafsson, Stefan Gustafsson, Anders Karlsson, and Mats Sjoberg. "Wave modeling and fault localization for underwater power cables." In 2011 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications. IEEE, 2011. http://dx.doi.org/10.1109/apwc.2011.6046793.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Takagawa, Shinichi. "Feasibility Study on DMFC Power Source for Underwater Vehicles." In 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies. IEEE, 2007. http://dx.doi.org/10.1109/ut.2007.370798.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Barlow, Stewart, John Flynn, Shu Terada, and Will Mudge. "Power and Communication Architectures for Cabled Subsea Observatories." In 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies. IEEE, 2007. http://dx.doi.org/10.1109/ut.2007.370956.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ramji, S., S. Ramakrishanan, and G. Latha. "Analysis of Short Term Temporal Fluctuations in Noise Power Spectrum of Shallow Water Ambient Noise." In 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies. IEEE, 2007. http://dx.doi.org/10.1109/ut.2007.370950.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Minami, Y., T. Nimura, N. Sasaki, H. Murayama, K. Uzawa, and H. Wada. "Development of tidal and ocean current power plant using elastic turbine." In 2011 IEEE Symposium on Underwater Technology (UT) and Workshop on Scientific Use of Submarine Cables and Related Technologies (SSC). IEEE, 2011. http://dx.doi.org/10.1109/ut.2011.5774146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kojima, Junichi. "Optimization of pulse width for electric time domain reflectometry for fault point localization of power feeding lines of optical submarine cables." In 2011 IEEE Symposium on Underwater Technology (UT) and Workshop on Scientific Use of Submarine Cables and Related Technologies (SSC). IEEE, 2011. http://dx.doi.org/10.1109/ut.2011.5774129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chatzigiannakou, Maria A., Irina Dolguntseva, and Mats Leijon. "Offshore Deployment of Point Absorbing Wave Energy Converters With a Direct Driven Linear Generator Power Take-Off at the Lysekil Test Site." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Within the year 2013, four linear generators with point absorber buoy systems were deployed in the Lysekil test site. Until now, deployments of these point absorbing wave energy converters have been expensive, time consuming, complicated and raised safety issues. In the present paper, we focus on the analysis and optimization of the offshore deployment process of wave energy converters with a linear generator power take-off which has been constructed by Uppsala University. To address the crucial issues regarding the deployment difficulties, case study of previous offshore deployments at the Lysekil test site are presented regarding such parameters as safety, cost and time efficiency. It was discovered that the deployment process can be improved significantly, mainly by using new technologies, e.g., new specialized deployment vessels, underwater robots for inspections and for connecting cables and an automatized pressurizing process. Addressing the main deployment difficulties and constrains leads us to discovery of methods that makes offshore deployments more cost-efficient and faster, in a safety context.
8

Haneda, Ken, Motohiko Murai, and Jun Yamanoi. "Experimental Study on a 3-Dimensional Hydro-Elastic Deformation of “Underwater Platform” With Multi-Towers in Waves." In ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54744.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Underwater platform was proposed in OMAE 2015 for the purpose of enhancing productivity of various types of renewable energy converter on the sea and its feasibility study was carried out through 2 types of tank experiment [1]. The underwater platform which is a very large frame shape structure connects several floaters under the sea to share power cables and mooring lines and to keep relative distances between the floaters. In the experiment, 1/200 scale elastic model with three spar buoys was used. The buoys imitated spar type floating offshore wind turbines (FOWTs). From the experiment, it was shown that the platform with large draft can reduce its response in waves. In this paper, we report new result and knowledge obtained by additional model experiments use the 1/200 model. In the experiment, we changed the arrangement and draft of the model and measured hydro-elastic deformation of the underwater platform in waves. From the last experiment, relationship between draft settings and response was shown. In the experiment, relationship between wave angles and response was surveyed. From the experiment, we have confirmed followings: 1. Rigid-body motion is remarkable in beam waves, 2. Elastic response is remarkable in head waves, and 3. Remarkable torsional motion is occurred in 45 degrees’ waves. The more important thing, however, is that the experimental result indicated that the platform of large draft decreases its motion in the all the wave angles.
9

Yu, Hsin Her, Min-Hsun Cheng, Rong-Yuan Jou, Kuang-Chyi Lee, and Chien-Chang Lin. "Development of the New Generation Materials for the Soft Pipe Lining Rehabilitation." In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
With increasing global urbanization and industrialization, many more pipelines for gas, potable water, sewer, oil, and power cables have been installed underground, underwater, in buildings and in factories. Maintenance of such pipelines is crucial. However, it is often difficult and has become a growing problem these days. The PALTEM-HL (Trade mark and stands for Pipeline Automatic Lining SysTEM, Hose Lining Method), a pipeline relining system, was developed as an effective and inexpensive solution for this problem. In this project, we try to develop a new resins and the adhesives system to replace the raw materials used in the PALTEM-HL system. Anionic harder combined two different types of epoxy resins were investigated in this study. After curing, the mechanical properties and glass transition temperature of the mixture were examined and the optimum sample preparation prescription was also found. FTIR (Fourier Transform Infrared Spectroscopy) and DSC (Differential Scanning Calorimeter) were employed to monitor the curing process of the mixtures. The mechanical properties of the mixture were also measured by Instron and micro Vickers.
10

MacNeill, Aaron, and Mohamed El-Hawary. "Underwater power cable approximation models for offshore applications." In OCEANS 2014. IEEE, 2014. http://dx.doi.org/10.1109/oceans.2014.7003293.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії