Добірка наукової літератури з теми "Unipore calcique mitochondrial"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Unipore calcique mitochondrial".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Unipore calcique mitochondrial"
Wang, Guang Jian, and Stanley A. Thayer. "NMDA-Induced Calcium Loads Recycle Across the Mitochondrial Inner Membrane of Hippocampal Neurons in Culture." Journal of Neurophysiology 87, no. 2 (February 1, 2002): 740–49. http://dx.doi.org/10.1152/jn.00345.2001.
Повний текст джерелаDubinin, Mikhail V., Eugeny Yu Talanov, Kirill S. Tenkov, Vlada S. Starinets, Natalia V. Belosludtseva, and Konstantin N. Belosludtsev. "The Effect of Deflazacort Treatment on the Functioning of Skeletal Muscle Mitochondria in Duchenne Muscular Dystrophy." International Journal of Molecular Sciences 21, no. 22 (November 19, 2020): 8763. http://dx.doi.org/10.3390/ijms21228763.
Повний текст джерелаRimessi, Alessandro, Chiara Pozzato, Lorenzo Carparelli, Alice Rossi, Serena Ranucci, Ida De Fino, Cristina Cigana, et al. "Pharmacological modulation of mitochondrial calcium uniporter controls lung inflammation in cystic fibrosis." Science Advances 6, no. 19 (May 2020): eaax9093. http://dx.doi.org/10.1126/sciadv.aax9093.
Повний текст джерелаNaon, Deborah, Marta Zaninello, Marta Giacomello, Tatiana Varanita, Francesca Grespi, Sowmya Lakshminaranayan, Annalisa Serafini, et al. "Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum–mitochondria tether." Proceedings of the National Academy of Sciences 113, no. 40 (September 19, 2016): 11249–54. http://dx.doi.org/10.1073/pnas.1606786113.
Повний текст джерелаTedesco, Scattolini, Albiero, Bortolozzi, Avogaro, Cignarella, and Fadini. "Mitochondrial Calcium Uptake Is Instrumental to Alternative Macrophage Polarization and Phagocytic Activity." International Journal of Molecular Sciences 20, no. 19 (October 8, 2019): 4966. http://dx.doi.org/10.3390/ijms20194966.
Повний текст джерелаZhang, Linlin, Jingyi Qi, Xu Zhang, Xiya Zhao, Peng An, Yongting Luo, and Junjie Luo. "The Regulatory Roles of Mitochondrial Calcium and the Mitochondrial Calcium Uniporter in Tumor Cells." International Journal of Molecular Sciences 23, no. 12 (June 15, 2022): 6667. http://dx.doi.org/10.3390/ijms23126667.
Повний текст джерелаMONTERO, Mayte, Carmen D. LOBATÓN, Esther HERNÁNDEZ-SANMIGUEL, Jaime SANTODOMINGO, Laura VAY, Alfredo MORENO, and Javier ALVAREZ. "Direct activation of the mitochondrial calcium uniporter by natural plant flavonoids." Biochemical Journal 384, no. 1 (November 9, 2004): 19–24. http://dx.doi.org/10.1042/bj20040990.
Повний текст джерелаSatrústegui, Jorgina, Beatriz Pardo, and Araceli del Arco. "Mitochondrial Transporters as Novel Targets for Intracellular Calcium Signaling." Physiological Reviews 87, no. 1 (January 2007): 29–67. http://dx.doi.org/10.1152/physrev.00005.2006.
Повний текст джерелаTsai, Chen-Wei, Yujiao Wu, Ping-Chieh Pao, Charles B. Phillips, Carole Williams, Christopher Miller, Matthew Ranaghan, and Ming-Feng Tsai. "Proteolytic control of the mitochondrial calcium uniporter complex." Proceedings of the National Academy of Sciences 114, no. 17 (April 10, 2017): 4388–93. http://dx.doi.org/10.1073/pnas.1702938114.
Повний текст джерелаZavodnik, I. B. "Mitochondria, calcium homeostasis and calcium signaling." Biomeditsinskaya Khimiya 62, no. 3 (2016): 311–17. http://dx.doi.org/10.18097/pbmc20166203311.
Повний текст джерелаДисертації з теми "Unipore calcique mitochondrial"
Lamonzie, Elodie. "Nouvelles stratégies thérapeutiques cardiaques portées par le kaempférol et les vésicules extracellulaires." Electronic Thesis or Diss., Université de Montpellier (2022-....), 2025. http://www.theses.fr/2025UMONT002.
Повний текст джерелаThe search for innovative molecules or therapeutic tools is at the heart of scientific concerns. In cardiology, the development of pathologies such as ischemia-reperfusion and diabetic cardiomyopathy has deleterious effects on the structure and function of the heart. In our study, we tested two promising substances: kaempferol and extracellular vesicles carrying the Sonic Hedgehog morphogen (EVSHH).Kaempferol, a polyphenol found in fruits and vegetables, has anti-inflammatory, antioxidant, and anti-apoptotic properties. It has shown anti-arrhythmic effects, particularly in diabetic cardiomyopathy, by activating the MCU complex that regulates calcium entry into the mitochondria. However, the precise effects of kaempferol on the MCU complex depending on its assembly remain undetermined. On one hand, we demonstrated that calcium modifies the conformation of MICU1 subunits, allowing kaempferol to bind and rearrange these subunits. On the other hand, the effects of kaempferol on the biophysical properties of the MCU complex are governed by the MICU1/MCU ratio. Indeed, kaempferol does not induce any modification of MCUC unitary currents with a high MICU1/MCU ratio, as found in heart sub-mitochondrial particles. Conversely, the activating effect of kaempferol on the biophysical properties of MCUC is observed with a low MICU1/MCU ratio in liver SMPs from 1 µM calcium. Thus, the use of kaempferol to activate mitochondrial calcium uptake by MCUC must be adapted according to the cardiac pathology and its metabolic dysfunctions, as well as the MICU1/MCU ratio. Moreover, the diversity of kaempferol's effects makes its clinical use complex and uncertain depending on the targeted pathologies.EVSHH were tested in a 28-day ischemia-reperfusion model in pigs. Produced from T lymphocytes, EVSHH did not show beneficial effects on cardiac damage, regardless of the reperfusion time, due to their inactivity. While the results of EVSHH are inconclusive in this study, previous work highlights their therapeutic potential in cardiac ischemia-reperfusion after 24 hours of reperfusion in large animals, being much more promising when they are biologically active, by reducing markers of myocardial injury, infarct size, and even ventricular arrhythmias during reperfusion.In summary, although kaempferol and EVSHH are different therapeutic approaches targeting different mechanisms and distinct cardiac pathologies, they appear as promising molecules. Further research will be necessary to deepen their potential as therapeutic treatments
Doonan, Patrick John. "Mitochondrial Calcium Uptake: LETM1 and MICU1 Are Mitochondrial Proteins That Regulate Mitochondrial Calcium Homeostasis and Cellular Bioenergetics." Diss., Temple University Libraries, 2012. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/214818.
Повний текст джерелаPh.D.
Mitochondrial calcium (Ca2+) uptake has been studied for over five decades, with crucial insights into its underlying mechanisms enabled by development of the chemi-osmotic hypothesis and appreciation of the considerable voltage present across the inner mitochondrial membrane (ΔΨm) generated by proton pumping by the respiratory chain (Carafoli, 1987; Nicholls, 2005). However, the molecules that regulate mitochondrial Ca2+ uptake have only recently been identified (Jiang et. al., 2009; Perocchi et. al., 2010) and further work was needed to clarify how these molecules regulate mitochondrial Ca2+ uptake. Leucine Zipper EF hand containing Transmembrane Protein 1 (LETM1) acts as a regulator of mitochondrial Ca2+ uptake distinct from the mitochondrial Ca2+ uniporter (MCU) pathway (Jiang et. al., 2009). However, a controversy exists regarding the function of LETM1 (Nowikovsky et. al., 2004). Therefore, I asked if LETM1 played a role in mitochondrial Ca2+ uptake and if LETM1 regulated cellular bioenergetics and basal autophagy. To further characterize mitochondrial calcium uptake, we asked how Mitochondrial Calcium Uptake 1 (MICU1) regulates MCU activity by quantifying basal mitochondrial Ca2+ and MCU uptake rates in MICU1 ablated cells. The following work characterizes the molecules that regulate mitochondrial Ca2+ uptake and their mechanistic function on decoding calcium signals. Since LETM1 is the Ca2+/H+ antiporter, I hypothesize that alterations in LETM1 expression and activity will decrease mitochondrial Ca2+ uptake and will result in impaired mitochondrial bioenergetics. As a regulator of free intracellular Ca2+, mitochondrial Ca2+ uptake and the orchestra of its regulatory molecules have been implicated in many human diseases. Mitochondria act both upstream by regulating cytosolic Ca2+ concentration and as downstream effectors that respond to Ca2+ signals. Recently, LETM1 was proposed as a mitochondrial Ca2+/H+ antiporter (Jiang et. al., 2009); however characterization of the functional role of LETM1-mediated Ca2+ transfer remained unstudied. Therefore the specific aims of this project were to determine how LETM1 regulates Ca2+ homeostasis and bioenergetics under physiological settings. Secondly, this project aimed to characterize how LETM1-dependent Ca2+ signaling regulates ROS production and autophagy. The data presented here confirmed that LETM1 knockdown significantly impairs mitochondrial Ca2+ uptake. Furthermore, in-depth approaches including either deletion of EF-hand or mutation of critical EF-hand residues (D676A D688KLETM1) impaired histamine (GPCR agonist)-induced mitochondrial Ca2+ uptake. Knockdown of LETM1 resulted in bioenergetic collapse and promoted LC3-positive multilamellar vesicle formation, indicative of autophagy induction. Interestingly, knockdown of LETM1 significantly reduced complex IV but not complex I and complex II-mediated oxygen consumption rate (OCR). In contrast, cellular NADH and mitochondrial membrane potential (ΔΨm) were unaltered in both control and LETM1 knockdown cells. LETM1 has been implicated in formation of the supercomplexes of the electron transport chain (Tamai et. al., 2008). In support, these studies show that LETM1 knockdown results in increased reactive oxygen species (ROS) production. These results for the first time demonstrate that LETM1 controls cellular bioenergetics through regulation of mitochondrial Ca2+ and ROS. MICU1 was identified as an essential regulator of the mitochondrial Ca2+ uniporter (Perocchi et. al., 2010). Therefore, this project specifically aimed to determine how MICU1 regulates the mitochondrial Ca2+ uniporter. Interestingly, the data presented here suggest that MICU1 is not necessary for uniporter activity. Instead, loss of MICU1 caused mitochondria to constitutively load Ca2+ at rest which resulted in a host of cellular phenotypes. This result led to further questions on how MICU1 knockdown affects cellular bioenergetics and if MICU1 is essential for cell survival under stress. MICU1 ablation influenced pyruvate dehydrogenase activity and ROS production. Subsequent investigations demonstrated that increased basal ROS left cells poised to ceramide-induced cell death thereby suggesting the role of MICU1 in cell survival. Collectively, the data presented here show that MICU1 is necessary to control constitutive mitochondrial Ca2+ uptake during rest. This work demonstrates that LETM1 regulates a distinct mode of mitochondrial Ca2+ uptake pathway whereas MICU1 controls mitochondrial Ca2+ uniporter activity. Further studies are required to uncover the potential role of these two mitochondrial-resident Ca2+ regulators in health and disease.
Temple University--Theses
Rysted, Jacob Eugene. "Molecular mechanisms and functions of mitochondrial calcium transport in neurons." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6632.
Повний текст джерелаPlovanich, Molly. "The Molecular Characterization of the Mitochondrial Calcium Uniporter." Thesis, Harvard University, 2014. http://etds.lib.harvard.edu/hms/admin/view/63.
Повний текст джерелаGherardi, Gaia. "The physiopathological role of mitochondrial calcium uptake in skeletal muscle homeostasis." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3424681.
Повний текст джерелаIn diversi tipi cellulari, i transienti di Ca2+ citosolico, generati da stimoli fisiologici, provocano ampi aumenti della concentrazione di Ca2+ nella matrice mitocondriale, che, a loro volta, stimolano le deidrogenasi Ca2+-sensibili del ciclo di Krebs. Questo rapido accumulo è favorito dalla vicinanza al principale deposito di Ca2+ della cellula, il reticolo endo/sarcoplasmatico (RE/RS), e di conseguenza dalla generazione di microdomini ad elevata concentrazione di Ca2+. Inoltre, il Ca2+ mitocondriale contribuisce all’omeostasi cellulare grazie all’esistenza di un complesso macchinario che permette a questo organello di accumulare rapidamente grandi quantità di Ca2+ (Rizzuto et al., 2012). Questo situazione è presente anche nel muscolo scheletrico, in cui la stimolazione che genera contrazione induce ampi transienti di Ca2+ mitocondriale in vivo (Rudolf et al., 2004), che sono in grado di tamponare gli aumenti della concentrazione di Ca2+ citosolica. Infine, il Ca2+ mitocondriale stimola il metabolismo aerobico e la produzione di ATP, che sono essenziali per l’attività muscolare. Infatti, i mitocondri rappresentano la principale fonte di ATP nelle fibre ossidative. Tuttavia, un accumulo eccessivo di Ca2+ nei mitocondri può anche portare a morte cellulare. La recente scoperta dell’identità molecolare del Mitochondrial Calcium Uniporter (MCU), il canale altamente selettivo responsabile dell’entrata di Ca2+ nei mitocondri, permette lo studio dettagliato del suo ruolo nei diversi aspetti della biologia del muscolo scheletrico (Baughman et al., 2011; De Stefani et al., 2011). L’obiettivo principale del mio progetto di tesi è stato quello di scoprire il ruolo del Ca2+ mitocondriale nell’omeostasi del muscolo scheletrico. Per fare questo, per prima cosa abbiamo indagato in vivo come le funzioni muscolari vengono controllate dall’omeostasi mitocondriale del Ca2+ attraverso la sovraespressione o il silenziamento di MCU. Abbiamo dimostrato che la modulazione di MCU controlla la dimensione del muscolo scheletrico sia durante la crescita post-natale che nell’età adulta. In particolare, abbiamo osservato un aumento nella dimensione delle fibre nei muscoli infettati con MCU. Al contrario, i muscoli in cui MCU è stato silenziato risultano atrofici. Questo straordinario fenomeno dipende dal coinvolgimento delle due principali vie di segnalazione che mediano l’ipertrofia, ovvero PGC-1α4 e IGF1-AKT. Di conseguenza, abbiamo studiato due diversi meccanismi potenzialmente in grado di spiegare il controllo delle vie anaboliche dipendente da MCU, i) l’attivazione di una comunicazione diretta fra mitocondrio e nucleo, ii) l’azione di metaboliti come segnali. Per quanto riguarda la comunicazione mitocondrio-nucleo, abbiamo studiato l’attività del promotore di PGC-1α4, dimostrando che il Ca2+ mitocondriale la controlla. Invece, nel contesto dei metaboliti come molecole segnale, abbiamo svolto un’analisi metabolomica di muscoli in cui MCU è stato sovraespresso o silenziato. Abbiamo rilevato un notevole rimodellamento della rete metabolica nei muscoli silenziati, compresa una chiara deviazione dal metabolismo del glucosio verso la preferenziale ossidazione degli acidi grassi. In seguito, abbiamo generato un modello murino privo di mcu esclusivamente nel muscolo scheletrico (mlc1f-Cre-mcu-/-), incrociando un topo mcu fl/fl con una linea che esprime la Cre ricombinasi sotto il controllo del promotore per la catena leggera della miosina 1f (mlc1f). Abbiamo osservato differenze marginali per quanto riguarda la dimensione delle fibre muscolari di questo modello. Tuttavia, abbiamo poi sottoposto questi topi ad esercizio fisico, attraverso diversi protocolli di corsa su tapis roulant. In queste condizioni, è stata evidenziata una compromessa capacità di corsa, indicando che l’accumulo di Ca2+ mitocondriale è richiesto per garantire performance muscolari ottimali. Infine, è ampiamente riconosciuto che il Ca2+ giochi un ruolo fondamentale nella regolazione dell’autofagia. Abbiamo quindi deciso di studiare questo processo in muscoli in cui MCU è stato sovraespresso o silenziato. Abbiamo dimostrato che i segnali Ca2+ mitocondriali controllano selettivamente la via autofagica che degrada i mitocondri disfunzionali, la mitofagia. In conclusione, questi dati indicano che l’accumulo mitocondriale di Ca2+ controlla il trofismo del muscolo scheletrico. In futuro saranno necessari ulteriori studi per caratterizzare meglio gli effetti di MCU sull’omeostasi del muscolo scheletrico. Questo studio fornirà nuovi potenziali bersagli che sarà possibile utilizzare in clinica, in tutte quelle patologie caratterizzate dalla perdita di massa muscolare, come ad esempio le distrofie, la cachessia neoplastica e l’invecchiamento.
DE, MARCHI Elena. "Mitochondrial calcium uptake and release mechanisms as key regulators of cell life or death." Doctoral thesis, Università degli studi di Ferrara, 2014. http://hdl.handle.net/11392/2388964.
Повний текст джерелаLambert, Jonathan Paul. "MCUB REGULATES THE MOLECULAR COMPOSITION OF THE MITOCHONDRIAL CALCIUM UNIPORTER CHANNEL TO LIMIT MITOCHONDRIAL CALCIUM OVERLOAD DURING STRESS." Diss., Temple University Libraries, 2019. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/575724.
Повний текст джерелаPh.D.
Mitochondrial Calcium (mCa2+) overload is a central event in myocardial-ischemia reperfusion (IR) injury that leads to metabolic derangement as well as activation of the mitochondrial permeability transition pore (mPTP). mPTP activation results in necrosis and loss of cardiomyocytes which results in acute death in some individuals while survivors are prone to developing heart failure and are predisposed to recurrent infarction events. mCa2+ has also long been known to activate cellular bioenergetics implicating mCa2+ in the highly metabolically demanding state of cardiac contractility. The mitochondrial calcium uniporter channel (mtCU) is a multi-subunit complex that resides in the inner mitochondrial membrane and is required for mitochondrial Ca2+ (mCa2+) uptake. Mitochondrial Calcium Uniporter B (MCUB, CCDC109B gene), a recently identified paralog of MCU, is reported to negatively regulate mCa2+ uptake; however, its precise regulation of uniporter function and contribution to cardiac physiology remain unresolved. Size exclusion chromatography of mitochondria isolated from ventricular tissue revealed MCUB was undetectable in the high-molecular weight (MW) fraction of sham animals (~700kD, size of functional mtCU), but 24 hours following myocardial ischemia-reperfusion injury (IR) MCUB was clearly observed in the high-MW fraction. To investigate how MCUB contributes to mtCU regulation we created a stable MCUB-/- HeLa cell line using CRISPR-Cas9n. MCUB deletion increased histamine-mediated mCa2+ transient amplitude by ~50% versus Wild-Type (WT) controls (mito-R-GECO1). Further, MCUB deletion increased mtCU capacitance (patch-clamp) and rate of [mCa2+] uptake. Fast protein liquid chromatography (FPLC) fractionation of the mtCU revealed that loss of MCUB increased MCU incorporation into the high-MW complex suggesting stoichiometric replacement and overall increase in functional mtCU complexes. Next, we generated a cardiac-specific, tamoxifen-inducible MCUB mouse model (CAG-CAT-MCUB x MCM; MCUB-Tg) to examine how the MCUB/MCU ratio regulates mtCU function and contributes to cardiac physiology. MCUB-Tg mice were infected with AAV9-mitycam (genetic mCa2+ reporter) and adult cardiomyocytes were isolated to record [mCa2+] transients during pacing using live cell imaging. Increasing the MCUB/MCU ratio decreased [mCa2+] peak amplitude by ~30% and significantly reduced the [mCa2+] uptake rate. FPLC assessment revealed MCUB was undetectable in the high-MW fraction of MerCreMer controls, but enriched in MCUB-Tg hearts. MCUB incorporation into the mtCU decreased the overall size of the uniporter and reduced the presence of channel gatekeepers, MICU1/2. Immunoprecipitations suggest that MCUB directly interacts with MCU but does not bind MICU1/2. These results suggest that MCUB replaces MCU in the mtCU and thereby modulates the association of MICU1/2 to regulate channel gating. Cardiomyocytes isolated from MCUB-Tg hearts displayed decreased maximal respiration and reserve capacity, which correlated with a severe impairment in isoproterenol-induced contractile reserve (LV invasive hemodynamics). MCUB-Tg cardiac mitochondria were resistant to Ca2+-induced mitochondrial swelling suggesting MCUB limits mitochondrial permeability transition. Further, MCUB-Tg mice subjected to in vivo myocardial IR revealed a ~50% decrease in infarct size per area-at-risk suggesting increased MCUB expression prevents mCa2+ overload and limits cell death. These data suggest that MCUB regulation of the mtCU is an endogenous compensatory mechanism to decrease mCa2+ overload during ischemic injury, but this expression is maladaptive to cardiac energetic responsiveness and contractility.
Temple University--Theses
Hartmann, Magnus [Verfasser]. "Characterization of Mitochondrial Calcium Uniporter in Barth Syndrome Models / Magnus Hartmann." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/1213974925/34.
Повний текст джерелаHoulihan, Patrick Ryan. "The role of mitochondrial restructuring in neuronal calcium homeostasis and excitotoxicity." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/2522.
Повний текст джерелаcampesan, marika. "THE ROLE OF THE MITOCHONDRIAL CALCIUM UNIPORTER (MCU) IN THE CARDIAC INJURY INDUCED BY ISCHEMIA AND REPERFUSION." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424426.
Повний текст джерелаL’uptake di Ca2+ mitocondriale contribuisce al danno cardiaco indotto da ischemia/riperfusione. Questo concetto è derivato da numerosi studi che hanno valutato il ruolo della proteina deputata all’uptake di Ca2+ mitocondriale servendosi di un approccio farmacologico. Tuttavia, la recente identificazione della struttura molecolare del canale responsabile dell’uptake di calcio definito MCU, ha reso possibile un approccio di tipo genetico, evitando i numerosi effetti collaterali degli inibitori farmacologici. Basandosi su i dati finora raccolti si presuppone che il silenziamento di MCU porti ad una riduzione del danno cardiaco in seguito ad I/R, e al contrario la sua sovraespressione ad un aumento del danno. Tuttavia i dati presentati in questa tesi mostrano un quadro più complesso in cui un moderato aumento del Ca2+ induce un effetto cardioprotettivo, che invece viene abrogato da un eccessivo carico di Ca2+ a livello mitocondriale. Cardiomiociti neonatali di ratto sovraesprimenti MCU tramite un infezione con adenovirus, mostrano una riduzione della mortalità sottoposti ad un protocollo di I/R (41.82%±8.37 vs 60.44%±11.68, p<0.05). L’evidenzia di questo effetto cardioprotettivo viene confermato anche da dati ottenuti ex vivo, in topi infettati con un virus adeno-associato di tipo 9 codificante per MCU-flag. Il cuore isolato sovraesprimente MCU sottoposto ad un protocollo di I/R in Langendorff mostra una riduzione della mortalità se comparato ad animali controllo (17.14±7.71 vs 30.16 ±10.35). Questa marcata riduzione della mortalità è accompagnata da una riduzione dello stress ossidativo in seguito all’evento post ischemico. Tuttavia, i cardiomiociti neonatali sovraesprimenti MCU mostrano un aumento dei ROS a livello basale, che correla con l’attivazione di Akt, chinasi coinvolta nei meccanismi di sopravvivenza cellulare. PP2A, fosfatasi coinvolta nella regolazione a monte di Akt, risulta essere più fosforilata quando MCU è sovraespresso, risultando perciò inattiva. Inoltre, l’attivazione di Akt viene abolita in seguito al trattamento con antiossidanti. Queste evidenze suggeriscono che un moderato aumento dell’uptake di Ca2+ mitocondriale indotto dalla sovraespressione di MCU sia responsabile dell’attivazione di un meccanismo di cardioprotezione che porta all’attivazione di meccanismi di sopravvivenza cellulare. Tuttavia, la cardioprotezione indotta dalla sola sovraespressione di MCU viene abrogata dalla co-espressione di MCU e MICU1, che determinano un massivo aumento di Ca2+ mitocondriale. Quest’ultima osservazione conferma che l’overload di Ca2+ mitocondriale è un fattore determinante nella mortalità indotta dal danno ischemico. Inoltre, appare evidente che il livello di Ca2+ mitocondriale sia il fattore determinante tra danno e protezione cardiaca. Questa tesi dimostra come un moderato aumento di Ca2+ mitocondriale possa determinare un effetto cardio-protettivo mediato da ROS. Inoltre, si potrebbe speculare che questo meccanismo di protezione rimandi all’effetto cardio-protettivo indotto dall’esercizio fisico.
Книги з теми "Unipore calcique mitochondrial"
Plovanich, Molly. The Molecular Characterization of the Mitochondrial Calcium Uniporter. 2014.
Знайти повний текст джерелаЧастини книг з теми "Unipore calcique mitochondrial"
Garg, Vivek, and Yuriy Y. Kirichok. "Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter." In Calcium Signalling, 75–86. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9018-4_7.
Повний текст джерелаLiu, Julia C., Randi J. Parks, Jie Liu, Justin Stares, Ilsa I. Rovira, Elizabeth Murphy, and Toren Finkel. "The In Vivo Biology of the Mitochondrial Calcium Uniporter." In Advances in Experimental Medicine and Biology, 49–63. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55330-6_3.
Повний текст джерелаMcCormack, James G., and Martin Crompton. "The Role and Study of Mammalian." In Cellular Calcium, 345–82. Oxford University PressOxford, 1991. http://dx.doi.org/10.1093/oso/9780199631315.003.0015.
Повний текст джерелаBalderas, Enrique, Salah Sommakia, David Eberhardt, Sandra Lee, and Dipayan Chaudhuri. "The structural era of the mitochondrial calcium uniporter." In Calcium Signals, 12–1. IOP Publishing, 2023. http://dx.doi.org/10.1088/978-0-7503-2009-2ch12.
Повний текст джерелаТези доповідей конференцій з теми "Unipore calcique mitochondrial"
Shehwar, D., A. Aliotta, S. Barki, DB Calderara, L. Veuthey, CP Portela, R. M. Alam, and L. Alberio. "The role of Mitochondrial Calcium Uniporter in platelet signalling." In GTH Congress 2023 – 67th Annual Meeting of the Society of Thrombosis and Haemostasis Research – The patient as a benchmark. Georg Thieme Verlag, 2023. http://dx.doi.org/10.1055/s-0042-1760599.
Повний текст джерелаZhang, Xinyan, Ryan J. Pachucki, Chelsea Corradetti, John Elrod, Stefania Gallucci, and Roberto Caricchio. "1013 The role of mitochondrial calcium uniporter (MCU) in lupus." In Lupus 21st Century 2023 Abstracts, September 27–30, Naples, Florida. Lupus Foundation of America, 2024. http://dx.doi.org/10.1136/lupus-2023-lupus21century.78.
Повний текст джерелаGu, L., J. L. Casey, D. Davis, J. Kang, and A. B. B. Carter. "Bcl-2 Regulation by the Mitochondrial Calcium Uniporter Modulates Pulmonary Fibrosis." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a7875.
Повний текст джерелаWang, Xiuchao, Shengchen Lin, Jianwei Sun, Jiaxin Kang, Jihui Hao, and Shengyu Yang. "Abstract 2776: Mitochondrial calcium uniporter in pancreatic cancer metastasis and metabolic stress resistance." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-2776.
Повний текст джерелаWang, Xiuchao, Shengchen Lin, Jianwei Sun, Jiaxin Kang, Jihui Hao, and Shengyu Yang. "Abstract 2776: Mitochondrial calcium uniporter in pancreatic cancer metastasis and metabolic stress resistance." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-2776.
Повний текст джерелаWeissenrieder, Jillian S., Jason R. Pitarresi, Emily Fernandez-Garcia, Ben Z. Stanger, Anil K. Rustgi, and J. Kevin Foskett. "Abstract PO-026: The mitochondrial calcium uniporter contributes to PDAC development and invasion." In Abstracts: AACR Virtual Special Conference on Pancreatic Cancer; September 29-30, 2020. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.panca20-po-026.
Повний текст джерелаShehwar, D., A. Aliotta, S. Barki, D. Bertaggia Calderara, L. Veuthey, C. Pereira Portela, M. Rizwam Alam, and L. Alberio. "Mitochondrial calcium uniporter as a Key Regulator in the Generation of Procoagulant COAT Platelets." In GTH Congress 2024 – 68th Annual Meeting of the Society of Thrombosis and Haemostasis Research – Building Bridges in Coagulation. Georg Thieme Verlag, 2024. http://dx.doi.org/10.1055/s-0044-1779176.
Повний текст джерелаIslam, M. N., G. A. Gusarova, S. Das, and J. Bhattacharya. "The Mitochondrial Calcium Uniporter of Pulmonary Type 2 Cells Determines Severity of Acute Lung Injury." In American Thoracic Society 2023 International Conference, May 19-24, 2023 - Washington, DC. American Thoracic Society, 2023. http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a1243.
Повний текст джерелаLaura Dias Ramos, Ana, Natália Caroline Costa Coelho, Marcia Aparecida Silva Graminha, and Eduardo Maffud Cilli. "PEPTÍDEOS ANTILEISHMANIAIS: PLANEJAMENTO, SÍNTESE E CARACTERIZAÇÃO QUÍMICA DE NOVOS PEPTÍDEOS SINTÉTICOS DIRECIONADOS PARA O ALVO MOLECULAR MCU (MITOCHONDRIAL CALCIUM UNIPORTER) DE LEISHMANIA." In XI Congresso Farmacêutico e VII Jornada de Engenharia de Bioprocessos e Biotecnologia. Rio Grande do Sul: Softaliza Tecnologias LTDA, 2023. http://dx.doi.org/10.55592/jfunesp.2023.8315966.
Повний текст джерела