Добірка наукової літератури з теми "Variable magnetic field"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Variable magnetic field".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Variable magnetic field":

1

Jaafar, M., J. Gómez-Herrero, A. Gil, P. Ares, M. Vázquez, and A. Asenjo. "Variable-field magnetic force microscopy." Ultramicroscopy 109, no. 6 (May 2009): 693–99. http://dx.doi.org/10.1016/j.ultramic.2009.01.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mohanty, J., R. Engel-Herbert, and T. Hesjedal. "Variable magnetic field and temperature magnetic force microscopy." Applied Physics A 81, no. 7 (November 2005): 1359–62. http://dx.doi.org/10.1007/s00339-005-3277-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shuaib, Muhammad, Rehan Ali Shah, and Muhammad Bilal. "Von-Karman rotating flow in variable magnetic field with variable physical properties." Advances in Mechanical Engineering 13, no. 2 (February 2021): 168781402199046. http://dx.doi.org/10.1177/1687814021990463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The steady incompressible slip flow with convective heat transport under the impact of a variable magnetic field has been taken into an account over a revolving disk. The temperature dependent viscosity, density, and thermal conductivity has been scrutinized. The obtained system of nonlinear differential equations governing the induced magnetic field, steady flow, and heat transmission has put down in polar cylindrical coordinates. The subsequent arrangement of nonlinear PDEs are subside into dimensionless system of ordinary equations, while making use of similarity abstraction. The modeled equations are tackled through Homotopy Analysis Method (HAM). The skin fraction coefficient, heat transmission rate, and Nusselt number (skin effects coefficient) are deliberated. From the results, It can be perceived that the slip factor effectively controls the heat and the flow characteristics. The influence of dimensionless numbers such as Batcheler number [Formula: see text] and magnetic strength [Formula: see text] and [Formula: see text] are explored and shown graphically. Further the out-turn of Prandtl number, relative temperature difference, suction parameter, and slip factor on the temperature fields and velocity profile are discussed.
4

Kichigin, G. N. "Plasma heating in a variable magnetic field." Plasma Physics Reports 39, no. 5 (May 2013): 406–11. http://dx.doi.org/10.1134/s1063780x13050073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tyrała, Edward. "Phase Composition Using a Variable Magnetic Field." ISIJ International 54, no. 3 (2014): 700–703. http://dx.doi.org/10.2355/isijinternational.54.700.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Петухова, Анастасия, Anastasia Petukhova, Станислав Петухов, and Stanislav Petukhov. "Toroidal models of magnetic field with twisted structure." Solar-Terrestrial Physics 5, no. 2 (June 28, 2019): 69–75. http://dx.doi.org/10.12737/stp-52201910.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We present and discuss properties of the following magnetic field models in a magnetic cloud: Miller and Turner solution, modified Miller–Turner solution, Romashets–Vandas toroidal and integral models, and Krittinatham–Ruffolo model. Helicity of the magnetic field in all the models is the main feature of magnetic clouds. The first three models describe the magnetic field inside an ideal torus. In the integral model, parameters of a generating torus ambiguously determine the volume and form of the magnetic field region. In the Krittinatham–Ruffolo model, the cross-section radius of the torus is variable, thereby it corresponds more closely to the real form of magnetic clouds in the inner heliosphere. These models can be used to interpret in-situ observations of the magnetic flux rope, to study a Forbush decrease in magnetic clouds and transport effects of solar energetic particles injected into a coronal mass ejection.
7

Ma, Hui, Jianhua Wang, Zhiyuan Liu, Yingsan Geng, Zhenxing Wang, and Jing Yan. "Vacuum arcing behavior between transverse magnetic field contacts subjected to variable axial magnetic field." Physics of Plasmas 23, no. 6 (June 2016): 063517. http://dx.doi.org/10.1063/1.4954301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Patel, A. D., M. Sharma, N. Ramasubramanian, R. Ganesh, and P. K. Chattopadhyay. "A new multi-line cusp magnetic field plasma device (MPD) with variable magnetic field." Review of Scientific Instruments 89, no. 4 (April 2018): 043510. http://dx.doi.org/10.1063/1.5007142.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rossi, Giorgio, Giancarlo Panaccione, Fausto Sirotti, and Nikolai A. Cherepkov. "Magnetic-field-averaged photoemission experiments with variable chirality." Physical Review B 55, no. 17 (May 1, 1997): 11483–87. http://dx.doi.org/10.1103/physrevb.55.11483.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hudson, E. D., J. A. Martin, and R. S. Lord. "A Variable Field Magnetic Extraction Channel for ORIC." IEEE Transactions on Nuclear Science 32, no. 5 (October 1985): 3030–32. http://dx.doi.org/10.1109/tns.1985.4334264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Variable magnetic field":

1

Attar, Kamel. "Le modèle de Ginzburg-Landau avec champ magnétique variable." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112087/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La thèse de doctorat comporte trois parties rédigées en anglais. Les deux premières parties correspondent principalement à l'étude de l'énergie de l'état fondamental. La dernière partie est consacrée à l'analyse de l'effet de pinning dans la supraconductivité.Dans une première partie de cette thèse, nous considérons la fonctionnelle de Ginzburg -Landau avec un champ magnétique variable appliqué dans un domaine borné et régulier de dimension 2. Nous déterminons le comportement asymptotique du paramètre d'ordre dans le régime o\`u le paramètre de Ginzburg-Landau et le champ magnétique sont grands et de même ordre. Comme conséquence, nous montrons que le paramètre d'ordre est localisé asymptotiquement dans la région où le profil du champ magnétique appliqué est petit.Dans une autre partie, nous considérons la fonctionnelle de Ginzburg -Landau avec un champ magnétique variable appliqué dans un domaine borné et régulier de dimension 2. Le profil du champ magnétique appliqué varie régulièrement et peut s'annuler exactement à l'ordre 1 le long d'une courbe. En supposant que la l'intensité du champ magnétique appliqué varie entre deux échelles caractéristiques, et que le paramètre de Ginzburg- Landau tend vers l'infini, nous déterminons une formule asymptotique précise pour minimiser l'énergie et montrer que les minimiseurs de l'énergie ont des vortex. Nous mettons en évidence que la présence d'un champ magnétique variable implique que la distribution de la vorticité dans l'échantillon n'est pas uniforme.Dans la dernière partie, nous étudions l'énergie de Ginzburg-Landau d'un supraconducteur avec un champ magnétique variable et un terme de pinning dans un domaine borné et régulier de dimension 2. En supposant que le paramètre de Ginzburg-Landau et l'intensité du champ magnétique sont grands et de même ordre, nous déterminons une formule asymptotique précise pour l'énergie. De plus, nous discutons l'existence des solutions non-triviales et déterminons le comportement asymptotique du troisième champ critique de la supraconductivité
The PHD thesis has three parts, the first and the second part correpond mainly to study the groundstate energy, the last one being devoted to the analysis of the pinning effect in superconductivity.In a first part of this thesis, we consider the Ginzburg-Landau functional with a variable applied magnetic field in a bounded and smooth two-dimensional domain. We determine an accurate asymptotic formula for the minimizing energy when the Ginzburg-Landau parameter and the magnetic field are large and of the same order. As a consequence, it is shown how bulk superconductivity decreases in average as the applied magnetic field increases.In another part, we consider the Ginzburg-Landau functional with a variable applied magnetic field in a bounded and smooth two-dimensional domain. The profile of the applied magnetic field varies smoothly and is allowed to vanish non-degenerately along a curve. Assuming that the strength of the applied magnetic field varies between two characteristic scales, and that the Ginzburg-Landau parameter tends to , we determine an accurate asymptotic formula for the minimizing energy and show that the energy minimizers have vortices. The new aspect in the presence of variable magnetic field is that the distribution of vortices in the sample is not uniform.In the final part, we study the Ginzburg-Landau energy of a superconductor with a variable magnetic field and a pinning term in a bounded and smooth two-dimensional domain . Supposing that the Ginzburg-Landau parameter and the intensity of magnetic field are large and of the same order, we determine an accurate asymptotic formula for the minimizing energy. Also, we discuss the existence of non-trivial solutions and prove an asymptotics of the third critical field
2

Leto, P., Corrado Trigilio, Lidia M. Oskinova, Richard Ignace, C. S. Buemi, G. Umana, A. Ingallinera, H. Todt, and F. Leone. "The Detection of Variable Radio Emission from the Fast Rotating Magnetic Hot B-Star HR 7355 and Evidence for Its X-Ray Aurorae." Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etsu-works/2695.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper we investigate the multiwavelengths properties of the magnetic early B-type star HR7355. We present its radio light curves at several frequencies, taken with the Jansky Very Large Array, and X-ray spectra, taken with the XMM X-ray telescope. Modeling of the radio light curves for the Stokes I and V provides a quantitative analysis of the HR7355 magnetosphere. A comparison between HR7355 and a similar analysis for the Ap star CUVir, allows us to study how the different physical parameters of the two stars affect the structure of the respective magnetospheres where the non-thermal electrons originate. Our model includes a cold thermal plasma component that accumulates at high magnetic latitudes that influences the radio regime, but does not give rise to X-ray emission. Instead, the thermal X-ray emission arises from shocks generated by wind stream collisions close to the magnetic equatorial plane. The analysis of the X-ray spectrum of HR7355 also suggests the presence of a non-thermal radiation. Comparison between the spectral index of the power-law X-ray energy distribution with the non-thermal electron energy distribution indicates that the non-thermal X-ray component could be the auroral signature of the non-thermal electrons that impact the stellar surface, the same non-thermal electrons that are responsible for the observed radio emission. On the basis of our analysis, we suggest a novel model that simultaneously explains the X-ray and the radio features of HR7355 and is likely relevant for magnetospheres of other magnetic early type stars.
3

Törnquist, Martin. "Investigation of rotational velocity sensors." Thesis, Linköping University, Department of Electrical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-15904.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

To improve the speed measurement of construction equipment, different sensor technologies have been investigated. Many of these sensor technologies are very interesting but to keep the extent of the thesis only two was chosen for testing, magnetic absolute angle sensors using Hall and GMR technology, to investigate if those are a valid replacement for the current measurement system that is using a passive sensor. Tests show that these sensors are capable of speed measurement, but because of noisy angle estimates they need filtering for good speed computation. This filtering introduces a large time delay that is of significance for the quality of the estimate. A Kalman filter has been implemented in an attempt to lower the time delays but since only a very simple model has been used it does not give any improvements over ordinary low pass filtering. For these sensors the mounting tolerance is of great interest. For best performance the offset between the sensor and magnet centres need to be kept small for both sensors. This is due to a non-linearity effect this causes. The distance between the sensors and the magnet is not critical for linearity issues, but only for the quality of the signal, where it might drop out when the distance is too large. This is where the sensor using GMR technology stands out. Compared to the Hall technology sensor, the GMR sensor can handle distances that are more than 10 times larger. The conclusion is that these sensors can be a valid replacement of the current measurement system. They will introduce more functionality with the capability of detecting rotational direction and zero velocity. In an application with more than one sensor they can also be used for more purposes, like detecting slip in clutches etc. Depending on the application, the time delays may not be critical, else more work need to be done to improve the estimate, e.g. with a more advanced model for the Kalman filter.

 

4

McKinnon, Douglas John Electrical Engineering &amp Telecommunications Faculty of Engineering UNSW. "Novel efficiency evaluation methods and analysis for three-phase induction machines." Awarded by:University of New South Wales. Electrical Engineering and Telecommunications, 2005. http://handle.unsw.edu.au/1959.4/21869.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis describes new methods of evaluating the efficiency of three-phase induction machines using synthetic loading. Synthetic loading causes the induction machine to draw full-load current without the need to connect a mechanical load to the machine's drive shaft. The synthetic loading methods cause the machine to periodically accelerate and decelerate, producing an alternating motor-generator action. This action causes the machine, on average over each synthetic loading cycle, to operate at rated rms current, rated rms voltage and full-load speed, thereby producing rated copper losses, iron loss and friction and windage loss. The excitation voltages are supplied from a PWM inverter with a large capacity DC bus capable of supplying rated rms voltage. The synthetic loading methods of efficiency evaluation are verified in terms of the individual losses in the machine by using a new dynamic model that accounts for iron loss and all parameter variations. The losses are compared with the steady-state loss distribution determined using very accurate induction machine parameters. The parameters were identified using a run-up-to-speed test at rated voltage and the locked rotor and synchronous speed tests conducted with a variable voltage supply. The latter tests were used to synthesise the variations in stator leakage reactance, magnetising reactance and the equivalent iron loss resistance over the induction machine's speed range. The run-up-to-speed test was used to determine the rotor resistance and leakage reactance variations over the same speed range. The test method results showed for the first time that the rotor leakage reactance varied in the same manner as the stator leakage and magnetising reactances with respect to current. When all parameter variations are taken into account there is good agreement between theoretical and measured results for the synthetic loading methods. The synthetic loading methods are applied to three-phase induction machines with both single- and double-cage rotors to assess the effect of rotor parameter variations in the method. Various excitation waveforms for each method were used and the measured and modelled efficiencies compared to conventional efficiency test results. The results verify that it is possible to accurately evaluate the efficiency of three-phase induction machines using synthetic loading.
5

Papakonstantinou, Nikolaos. "Investigation of variable Ap Stars in TESS continuous viewing zone." Thesis, Uppsala universitet, Observationell astrofysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-441349.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hubrig, S., K. Scholz, Wolf-Rainer Hamann, M. Schöller, Richard Ignace, I. Ilyin, K. G. Gayley, and Lidia M. Oskinova. "Searching for a Magnetic Field in Wolf-Rayet Stars Using FORS 2 Spectropolarimetry." Digital Commons @ East Tennessee State University, 2016. https://dc.etsu.edu/etsu-works/2694.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
To investigate if magnetic fields are present in Wolf–Rayet stars, we selected a few stars in the Galaxy and one in the Large Magellanic Cloud (LMC). We acquired low-resolution spectropolarimetric observations with the European Southern Observatory FORS 2 (FOcal Reducer low dispersion Spectrograph) instrument during two different observing runs. During the first run in visitor mode, we observed the LMC Wolf–Rayet star BAT99 7 and the stars WR 6, WR 7, WR 18, and WR 23 in our Galaxy. The second run in service mode was focused on monitoring the star WR 6. Linear polarization was recorded immediately after the observations of circular polarization. During our visitor observing run, the magnetic field for the cyclically variable star WR 6 was measured at a significance level of 3.3σ (〈Bz〉 = 258 ± 78 G). Among the other targets, the highest value for the longitudinal magnetic field, 〈Bz〉 = 327 ± 141 G, was measured in the LMC star BAT99 7. Spectropolarimetric monitoring of the star WR 6 revealed a sinusoidal nature of the 〈Bz〉 variations with the known rotation period of 3.77 d, significantly adding to the confidence in the detection. The presence of the rotation-modulated magnetic variability is also indicated in our frequency periodogram. The reported field magnitude suffers from significant systematic uncertainties at the factor of 2 level, in addition to the quoted statistical uncertainties, owing to the theoretical approach used to characterize it. Linear polarization measurements showed no line effect in the stars, apart from WR 6. BAT99 7, WR 7, and WR 23 do not show variability of the linear polarization over two nights.
7

Fraschetti, F., J. J. Drake, O. Cohen, and C. Garraffo. "Mottled Protoplanetary Disk Ionization by Magnetically Channeled T Tauri Star Energetic Particles." IOP PUBLISHING LTD, 2018. http://hdl.handle.net/10150/627037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The evolution of protoplanetary disks is believed to be driven largely by angular momentum transport resulting from magnetized disk winds and turbulent viscosity. The ionization of the disk that is essential for these processes has been thought to be due to host star coronal X-rays but could also arise from energetic particles produced by coronal flares, or traveling shock waves, and advected by the stellar wind. We have performed test-particle numerical simulations of energetic protons propagating into a realistic T. Tauri stellar wind, including a superposed small-scale magnetostatic turbulence. The isotropic (Kolmogorov power spectrum) turbulent component is synthesized along the individual particle trajectories. We have investigated the energy range [0.1-10] GeV, consistent with expectations from Chandra X-ray observations of large flares on T. Tauri stars and recent indications by the Herschel Space Observatory of a significant contribution of energetic particles to the disk ionization of young stars. In contrast with a previous theoretical study finding a dominance of energetic particles over X-rays in the ionization throughout the disk, we find that the disk ionization is likely dominated by X-rays over much of its area, except within narrow regions where particles are channeled onto the disk by the strongly tangled and turbulent magnetic field. The radial thickness of such regions is 5 stellar radii close to the star and broadens with increasing radial distance. This likely continues out to large distances from the star (10 au or greater), where particles can be copiously advected and diffused by the turbulent wind.
8

Tutar, Özdarcan D., P. S. Smith, and V. Keskin. "Time-resolved spectropolarimetric observations of polars WX LMi and BY Cam." OXFORD UNIV PRESS, 2017. http://hdl.handle.net/10150/624423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Time-series spectropolarimetric observations of polar WX LMi and asynchronous polar BY Cam are presented. Magnetic field properties, radial velocities and optical polarization are investigated via consecutive observations with good phase sampling during a single orbital cycle. Both systems are found to have a decentred dipole magnetic field configuration. One of the poles of WX LMi has a field strength of 49 MG, while the other pole may have possible field strengths of 69, 104 or 207 MG, depending on the harmonic numbers of the cyclotron humps observed in the circularly polarized spectrum. For BY Cam, a field strength of 168 MG is found for one of the poles, while field strengths of 70, 160 or 212 MG are possible for the other pole.
9

Hubrig, S., M. Schöller, A. Kholtygin, H. Tsumura, A. Hoshino, S. Kitamoto, L. Oskinova, Richard Ignace, H. Todt, and I. Ilyin. "New Multiwavelength Observations of the Of?p Star CPD -28◦ 2561." Digital Commons @ East Tennessee State University, 2015. https://dc.etsu.edu/etsu-works/6241.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A rather strong mean longitudinal magnetic field of the order of a few hundred gauss was detected a few years ago in the Of?p star CPD −28° 2561 using FORS2 (FOcal Reducer low dispersion Spectrograph 2) low-resolution spectropolarimetric observations. In this work, we present additional low-resolution spectropolarimetric observations obtained during several weeks in 2013 December using FORS 2 mounted at the 8-m Antu telescope of the Very Large Telescope (VLT). These observations cover a little less than half of the stellar rotation period of 73.41 d mentioned in the literature. The behaviour of the mean longitudinal magnetic field is consistent with the assumption of a single-wave variation during the stellar rotation cycle, indicating a dominant dipolar contribution to the magnetic field topology. The estimated polar strength of the surface dipole Bd is larger than 1.15 kG. Further, we compared the behaviour of the line profiles of various elements at different rotation phases associated with different magnetic field strengths. The strongest contribution of the emission component is observed at the phases when the magnetic field shows a negative or positive extremum. The comparison of the spectral behaviour of CPD −28° 2561 with that of another Of?p star, HD 148937 of similar spectral type, reveals remarkable differences in the degree of variability between both stars. Finally, we present new X-ray observations obtained with the Suzaku X-ray Observatory. We report that the star is X-ray bright with log LX/Lbol ≈ −5.7. The low-resolution X-ray spectra reveal the presence of a plasma heated up to 24 MK. We associate the 24 MK plasma in CPD −28° 2561 with the presence of a kG strong magnetic field capable to confine stellar wind.
10

León, Vanegas Álvaro Augusto [Verfasser], Jürgen [Akademischer Betreuer] Kirschner, Georg [Akademischer Betreuer] Schmidt, and Yukio [Akademischer Betreuer] Hasegawa. "Superconducting properties of Pb nanoislands on Pb/Ag/Si(111) studied by a 3He-cooled scanning tunnelling microscope in magnetic fields at variable temperatures / Álvaro Augusto León Vanegas. Betreuer: Jürgen Kirschner ; Georg Schmidt ; Yukio Hasegawa." Halle, Saale : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2015. http://d-nb.info/1070497800/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Variable magnetic field":

1

Cape Workshop on Magnetic Cataclysmic Variables (1995 Cape Town, South Africa). Cape Workshop on Magnetic Cataclysmic Variables: Held in Cape Town, 23-27 January 1995. San Francisco: Astronomical Society of the Pacific, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

IAU Colloquium (190th 2002 Cape Town, South Africa). Magnetic cataclysmic variables: IAU Colloquium 190 : proceedings of a conference held at Cape Town, South Africa, 8-13 December 2002. San Francisco, Calif: Astronomical Society of the Pacific, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Annapolis Workshop on Magnetic Cataclysmic Variables (1998). Annapolis Workshop on Magnetic Cataclysmic Variables: Proceedings of a conference held in Annapolis, Maryland, 13-17 July 1998. San Francisco, Calif: Astronomical Society of the Pacific, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

(Editor), Sonja Vrielmann, and Karen J. Meech (Editor), eds. Magnetic Cataclysmic Variables: IAU Colloguium 190 Meeting Held 8-13 December 2002 at Cape Town, South Africa (Astronomical Society of the Pacific Conference Series). Astronomical Society of the Pacific, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tuttle, Michael C. Search and Documentation of Underwater Archaeological Sites. Edited by Ben Ford, Donny L. Hamilton, and Alexis Catsambis. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780199336005.013.0005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Archaeological survey is fundamental to archaeological data collection. Underwater archaeology is developing and maturing as a discipline. The levels of technology available for investigations are variable depending on the objectives of surveys. Prior to entering the field, it is essential to do a complete desktop research, an in-office examination of available literature, and to develop a survey plan. This article describes different methods and the tools used for probing, which are used for examining subsurface features or defining the extent of a site. Remote sensing is an effective method to search for cultural material in a marine context. Once a general survey has located acoustic targets, magnetic anomalies, or other areas of interest, a predisturbance site survey of the targets may be conducted. Accurate positioning during a predisturbance investigation is critical. With an area survey complete or a predisturbance survey conducted, the next step in the archaeological process is excavation.
6

Wassermann, Eric M. Inter- and intra-individual variation in the response to TMS. Edited by Charles M. Epstein, Eric M. Wassermann, and Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The variable amplitude of motor cortex is a striking aspect of the muscle response to transcranial magnetic stimulation. It is easy to produce large motor-evoked potentials (MEPs) in some healthy subjects, while others' cortico-muscular pathways seem barely excitable, even by the strongest available stimuli. MEP amplitude and other measures also vary widely within individuals over time. The factors of these differences among and within individuals are age, gross anatomy of the individuals, genetic factors, and physiological differences associated with behavioural and other traits such as personality, conditions like migraine. The MEP varies over time within individuals at rest under laboratory conditions. These variations can be short term or long term. Differences among neurologically normal individuals have important implications for research using TMS. These differences open doors to new fields of study to neurophysiologists in the treatment and etiology of brain disease.
7

Classen, Joseph, and Katja Stefan. Changes in TMS Measures induced by repetitive TMS. Edited by Charles M. Epstein, Eric M. Wassermann, and Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This article reviews several protocols of repetitive transcranial magnetic stimulation (rTMS)-induced plasticity. rTMS, when applied to the motor cortex or other cortical regions of the brain, may induce effects that outlast the stimulation period. The neural plasticity, which emerges as a result of such interventions, has been studied to gain insight into plasticity mechanisms of the brain. In two protocols the structure of rTMS trains is modified, informed by the knowledge of the physiological properties of the corticospinal system. Pulse configuration, stimulus frequency, stimulus intensity, the duration of the application period, and the total number of stimuli are some variables that have to be taken into account when reviewing the physiological effects of rTMS. This article also introduces the concept of patterned rTMS pulses and rTMS with ischemic nerve block. In addition, rTMS has raised considerable interest because of its therapeutic potential; however, much needs to be done in this field.
8

United States. National Aeronautics and Space Administration., ed. The diagnostics of the external plasma for the plasma rocket: Final report, NASA Graduate Student Researchers Program, Johnson Space Center, contract number--NGT9-5. [Washington, DC: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

United States. National Aeronautics and Space Administration., ed. The diagnostics of the external plasma for the plasma rocket: Final report, NASA Graduate Student Researchers Program, Johnson Space Center, contract number--NGT9-5. [Washington, DC: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Variable magnetic field":

1

Majorana, Ettore. "Oriented Atoms in a Variable Magnetic Field." In Scientific Papers of Ettore Majorana, 77–88. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-23509-3_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Herbert, Patrick J., and Kenneth L. Knappenberger. "Determination of Nanomaterial Electronic Structure via Variable-Temperature Variable-Field Magnetic Circular Photoluminescence (VTVH-MCPL) Spectroscopy." In 21st Century Nanoscience – A Handbook, 20–1. Boca Raton, Florida : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429340420-20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Solomon, Edward I., Mindy I. Davis, Frank Neese, and Monita Y. M. Pau. "Variable-Temperature Variable-Field Magnetic Circular Dichroism Combined with Electron Paramagnetic Resonance: Polarizations of Electronic Transitions in Solution." In ACS Symposium Series, 328–39. Washington, DC: American Chemical Society, 2003. http://dx.doi.org/10.1021/bk-2003-0858.ch018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Baskin, Lev, Pekka Neittaanmäki, Boris Plamenevskii, and Oleg Sarafanov. "Effect of Magnetic Field on Resonant Tunneling in 3D Waveguides of Variable Cross-Section." In Resonant Tunneling, 197–222. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15105-2_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Baskin, Lev, Pekka Neittaanmäki, Boris Plamenevskii, and Oleg Sarafanov. "Effect of Magnetic Field on Resonant Tunneling in 3D Waveguides of Variable Cross-Section." In Resonant Tunneling, 269–94. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66456-5_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Guhathakurta, M., and R. R. Fisher. "Latitudinal Variability of Large-Scale Coronal Temperature and its Association with the Density and the Global Magnetic Field." In The Sun as a Variable Star: Solar and Stellar Irradiance Variations, 181–88. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0950-5_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shafarman, W., and T. G. Castner. "The Magnetic-Field Dependence of Variable Range Hopping Conduction for Barely Insulating Arsenic-Doped Silicon Samples." In Proceedings of the 17th International Conference on the Physics of Semiconductors, 1079–82. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4615-7682-2_243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mason, Paul A., G. Chanmugam, I. L. Andronov, S. V. Koleskinov, E. P. Pavlenko, and N. M. Shakovskoy. "By Cam: A Multipole Magnetic Field Model." In Cataclysmic Variables, 426. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0335-0_119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jesenik, Marko, Mladen Trlep, and Božidar Hribernik. "Automatic 2D Discretization with Variable Mesh Density for Numerical Methods." In Electric and Magnetic Fields, 181–84. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1961-4_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Regös, E., and C. A. Tout. "Formation of Cataclysmic Variables by Magnetic Fields in Common-Envelopes." In Cataclysmic Variables, 424. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0335-0_117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Variable magnetic field":

1

Ismail, Ali Ahmed Adam. "Simple variable power frequency magnetic field measurement." In 2016 International conference on Signal Processing, Communication, Power and Embedded System (SCOPES). IEEE, 2016. http://dx.doi.org/10.1109/scopes.2016.7955651.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shirokova, Elena I., Igor B. Shirokov, and Georgy A. Ivanov. "Low-Frequency Variable Magnetic Field Propagation in Seawater." In 2019 Antennas Design and Measurement International Conference (ADMInC). IEEE, 2019. http://dx.doi.org/10.1109/adminc47948.2019.8969406.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kanonik, P., S. Khruschev, N. Mezentsev, V. Shkaruba, O. Tarasenko, V. Tsukanov, A. Volkov, A. Zorin, A. Erokhin, and A. Bragin. "Superconducting undulator with variable configuration of magnetic field." In SYNCHROTRON AND FREE ELECTRON LASER RADIATION: Generation and Application (SFR-2020). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0034757.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Caponero, M. A., C. Cianfarani, D. Davino, A. Polimadei, and C. Visone. "Magnetic field sensors based on galfenol with variable measurable ranges." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7156950.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Baiburin, V. B., and A. S. Rozov. "Electrons trajectories analysis in crossed constant electric field and variable magnetic field." In 2014 International Conference on Actual Problems of Electron Devices Engineering (APEDE). IEEE, 2014. http://dx.doi.org/10.1109/apede.2014.6958736.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Matsuoka, Taichi. "Vibration Suppression Device Having Variable Inertia Mass by MR-Fluid." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Authors have proposed a new type of vibration suppression device that utilizes variable inertia mass by fluid which acts as a series inertia mass. The series inertia mass is proportional to not only square of a ratio between a diameter of a piston cylinder and a by-pass pipe, and also a density of the fluid. The resisting force characteristics in case of water or turbine oil were measured. To confirm the proposed theory and investigate effects of vibration control, vibration tests of frequency response and seismic response of one-degree-of-freedom system with the test device were carried out. The experimental results were compared with the calculated results, and the effects of vibration suppression are confirmed experimentally and theoretically. In this paper, in order to derive the effect of a variable inertia mass by using a magnet-rheological fluid, resisting force characteristics of the test device are measured in several cases of magnetic field. The orifice of the by-pass pipe can be changed in virtual, since some rare-earth magnets are installed around the by-pass pipe. It can be seen from experimental results that the inertia force is increasing as stronger magnetic fields. It is pointed out that the variable inertia mass can be derived since clustered magnetic particles in the by-pass pipe act as a virtual orifice under strong magnetic field. The relation between magnetic flux and variable inertia mass are estimated experimentally.
7

Uda, T., M. Tanaka, T. Kawano, Y. Kamimura, J. Wang, and O. Fujiwara. "Monitoring of static magnetic field and variable electromagnetic fields in a large magnetic fusion plasma experimental facility." In 2009 20th International Zurich Symposium on Electromagnetic Compatibility. IEEE, 2009. http://dx.doi.org/10.1109/emczur.2009.4783489.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gorbachev, Yaroslav, Igor Davidyuk, Stanislav Serednyakov, Nikolay Vinokurov, Vladimir Tcheskidov, Anton Pavlenko, Alexandr Batrakov, Konstantin Shtro, and Oleg Shevchenko. "Measurements of magnetic field of variable period undulator and correction of field errors." In SYNCHROTRON AND FREE ELECTRON LASER RADIATION: Generation and Application (SFR-2020). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0031522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Namba, M., K. Hiramoto, and H. Nakai. "Novel variable-field machine with a three-dimensional magnetic circuit." In 2016 XXII International Conference on Electrical Machines (ICEM). IEEE, 2016. http://dx.doi.org/10.1109/icelmach.2016.7732881.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chautems, Christophe, Alice Tonazzini, Dario Floreano, and Bradley J. Nelson. "A variable stiffness catheter controlled with an external magnetic field." In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017. http://dx.doi.org/10.1109/iros.2017.8202155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Variable magnetic field":

1

Cada, Glenn F., Mark S. Bevelhimer, Allison M. Fortner, Kristina P. Riemer, and Peter E. Schweizer. Laboratory Studies of the Effects of Static and Variable Magnetic Fields on Freshwater Fish. Office of Scientific and Technical Information (OSTI), April 2012. http://dx.doi.org/10.2172/1038484.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії