Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Violet-blue light.

Статті в журналах з теми "Violet-blue light"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Violet-blue light".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Choi, Won Chel, Ho Nyung Lee, Eun Kyu Kim, et al. "Violet/blue light-emitting cerium silicates." Applied Physics Letters 75, no. 16 (1999): 2389–91. http://dx.doi.org/10.1063/1.125023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Felix Gomez, Grace Gomez, Frank Lippert, Masatoshi Ando, Andrea F. Zandona, George J. Eckert, and Richard L. Gregory. "Photoinhibition of Streptococcus mutans Biofilm-Induced Lesions in Human Dentin by Violet-Blue Light." Dentistry Journal 7, no. 4 (2019): 113. http://dx.doi.org/10.3390/dj7040113.

Повний текст джерела
Анотація:
This in vitro study determined the effectiveness of violet-blue light on Streptococcus mutans (UA159) biofilm induced dentinal lesions. Biofilm was formed on human dentin specimens in a 96-well microtiter plate and incubated for 13 h in the presence of tryptic soy broth (TSB) or TSB supplemented with 1% sucrose (TSBS). Violet-blue light (405 nm) from quantitative light-induced fluorescence (QLFTM) was used to irradiate the biofilm. Supernatant liquid was removed, and the biofilm was irradiated continuously with QLF for 5 min twice daily with an interval of 6 h for 5 d, except with one treatmen
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Awad, Doaa, Joanna Wilińska, Dimitra Gousia, et al. "Toxicity and phototoxicity in human ARPE-19 retinal pigment epithelium cells of dyes commonly used in retinal surgery." European Journal of Ophthalmology 28, no. 4 (2018): 433–40. http://dx.doi.org/10.1177/1120672118766446.

Повний текст джерела
Анотація:
Purpose: To compare, for the first time, systematically the toxicity and phototoxicity of dyes and dye combinations used in vitreoretinal surgery. The dyes were trypan blue, brilliant blue G, trypan blue + brilliant blue G, indocyanine green, bromophenol blue, bromophenol blue + brilliant blue G, and acid violet 17, in clinically used concentrations. Methods: Human ARPE retinal pigment epithelium cells were exposed to the dyes for 30 min. For phototoxicity, the cells were exposed for 15 min to high-intensity light from a light emitting diode source with an intensity similar to surgical conditi
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tung, Ha Thanh, Huu Phuc Dang, and Phung Ton That. "The impacts of green LaBSiO<sub>5</sub>: Tb<sup>3+</sup>, Ce<sup>3+</sup> phosphor on lumen output of white LEDs." Bulletin of Electrical Engineering and Informatics 12, no. 3 (2023): 1458–63. http://dx.doi.org/10.11591/eei.v12i3.4772.

Повний текст джерела
Анотація:
The traditional solid-state technique was used to create LaBSiO5 phosphors doped with Ce3+ and Tb3+ at 1,100 °C. These phosphors' phase purity and luminous characteristics are looked at. Under ultraviolet (UV) light stimulation, LaBSiO5: Tb3+ phosphors emit bright green light, whereas LaBSiO5 samples incorporated with Ce3+ emit blue-violet light. With UV ray stimulation, LaBSiO5 samples incorporated with Ce3+ as well as Tb3+ emit blue-violet as well as green illumination. The 5d-4f shift for Ce3+ is responsible for the blue-violet radiation, while the 5D4→7F5 transition of Tb3+ is responsible
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Veleska-Stevkoska, Daniela, and Filip Koneski. "Haemostasis in Oral Surgery with Blue-Violet Light." Open Access Macedonian Journal of Medical Sciences 6, no. 4 (2018): 687–91. http://dx.doi.org/10.3889/oamjms.2018.181.

Повний текст джерела
Анотація:
BACKGROUND: The invasive dental procedures usually result in wounds accompanied by physiological bleeding. Even though the bleeding is easily manageable, it is still one of the major concerns of the patients and a reason for their subjective discomfort. Recently, a novel approach with light-emitting diode (LED) was introduced to control the bleeding. This study aims to examine the effectiveness of the irradiation with blue-violet light LEDs on the haemostasis.MATERIAL AND METHODS: The study included 40 patients with an indication for tooth extraction, divided into two groups: examination group
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sasaki, Kentaro, Norikazu Kawamura, Haruki Tokumaru, and Yasuhiro Kuwana. "Blue-Violet Four-Beam Light Source Using Waveguides." Japanese Journal of Applied Physics 46, no. 6B (2007): 3729–36. http://dx.doi.org/10.1143/jjap.46.3729.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Qiu, Chengfeng, Haiying Chen, Man Wong, and Hoi S. Kwok. "Efficient blue-to-violet organic light-emitting diodes." Synthetic Metals 140, no. 1 (2004): 101–4. http://dx.doi.org/10.1016/s0379-6779(03)00359-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dmitriev, V. A., Ya V. Morozenko, B. V. Tzarenkov, and V. E. Chelnokov. "Silicon carbide blue and violet light-emitting diodes." Displays 13, no. 2 (1992): 97–106. http://dx.doi.org/10.1016/0141-9382(92)90104-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Brgoch, Jakoah, and Shruti Hariyani. "(Invited) Advancing Human-Centric Lighting." ECS Meeting Abstracts MA2022-02, no. 51 (2022): 1958. http://dx.doi.org/10.1149/ma2022-02511958mtgabs.

Повний текст джерела
Анотація:
The concept of human-centric lighting stems from the evolution of sunlight’s intensity and color temperature throughout the course of a day. This natural progression of bright cold-white light during the middle of the day to a softer warm-white light in the evening stimulates intrinsic photosensitive retinal ganglion cells that control our circadian rhythm. The blue-hue of daylight activates these cells to produce dopamine and cortisol while suppressing melatonin, the sleep hormone, to keep humans awake and alert. The current generation of energy-efficient LED lights reproduce daylight by conv
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sandall, Sharon K., and R. Daniel Lineberger. "Stabilization of Chimeral African Violet Clones by In Vitro Inflorescence Culture." HortScience 32, no. 4 (1997): 593D—593. http://dx.doi.org/10.21273/hortsci.32.4.593d.

Повний текст джерела
Анотація:
The pinwheel-flowering African violet `Silver Summit', apericlinal chimera, has bicolor flowers with violet-blue corolla segment margins and white central stripes. Several off types were produced during in vitro culture of `Silver Summit'—solid violet-blue flowering from leaf or petiole explants, solid white flowering from petiole core explants, and two reverse pinwheel flowering types. The reverse pinwheel types varied in color; one had deep violet-blue stripes (DR, dark reverse) and the other had lighter stripes of the same color (LR, light reverse). Plantlets derived from inflorescence cult
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Nakamura, Shuji. "Blue-Green Light-Emitting Diodes and Violet Laser Diodes." MRS Bulletin 22, no. 2 (1997): 29–35. http://dx.doi.org/10.1557/s088376940003253x.

Повний текст джерела
Анотація:
Short-wavelength-emitting devices, such as blue laser diodes (LDs) and light-emitting diodes (LEDs), are currently sought for a number of applications, including full-color electroluminescent displays, laser printers, read-write laser sources for high-density information storage on magnetic and optical media, and sources for undersea optical communications. For these purposes, II–VI materials such as ZnSe and SiC, and III–V-nitride semiconductors such as GaN have been investigated intensively for a long time. However it was impossible to obtain high-brightness (over 1 cd) blue LEDs and reliabl
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Karandashov, V. I., E. B. Petukhov, V. S. Zrodnikov, and V. A. Zhomov. "Biological and clinical effects of violet and blue light." Bulletin of Experimental Biology and Medicine 123, no. 4 (1997): 392–94. http://dx.doi.org/10.1007/bf02766197.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Park, Jeong Woo, and Chul Young Choi. "Comparative Spectrophotometer Analysis of Ultraviolet-light Filtering, Blue-light Filtering, and Violet-light Filtering Intraocular Lenses." Korean Journal of Ophthalmology 36, no. 1 (2022): 1–5. http://dx.doi.org/10.3341/kjo.2021.0157.

Повний текст джерела
Анотація:
Purpose: To compare the light transmittance property of seven currently used intraocular lens (IOL) models by spectrophotometer data.Methods: Light transmission spectra of seven IOL models were assessed with a spectrophotometer. The transmittance properties were analyzed in 1 nm units from 350 nm wavelength to 800 nm.Results: Three ultraviolet filtering IOL models (ZCB00, XC1-SP, and AT LISA 809M) showed nearly full transmittance of the light from 400 to 500 nm, while steeply attenuating light with shorter wavelengths in various degrees. Three blue-light filtering IOLs (yellow-tinted IOLs; XY1
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Oh, Jae-Hyeok, Seung-Beom Cho, Il-Kyu Park, and Sung-Nam Lee. "Monolithic Multicolor Emissions of InGaN-Based Hybrid Light-Emitting Diodes Using CsPbBr3 Green Quantum Dots." Materials 16, no. 3 (2023): 1290. http://dx.doi.org/10.3390/ma16031290.

Повний текст джерела
Анотація:
To address the increasing demand for multicolor light-emitting diodes (LEDs), a monolithic multicolor LED with a simple process and high reliability is desirable. In this study, organic–inorganic hybrid LEDs with violet and green wavelengths were fabricated by depositing CsPbBr3 perovskite green quantum dots (QDs) as the light-converting material on InGaN-based violet LEDs. As the injection current was increased, the total electroluminescence (EL) intensities of the hybrid LEDs increased, whereas the light-converted green emission efficiency of the CsPbBr3 QDs decreased. The maximum green-to-v
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Mellor, H. E., and J. G. C. Hamilton. "Navigation of Lutzomyia longipalpis (Diptera: Psychodidae) under dusk or starlight conditions." Bulletin of Entomological Research 93, no. 4 (2003): 315–22. http://dx.doi.org/10.1079/ber2003248.

Повний текст джерела
Анотація:
AbstractThe responses of male and female Lutzomyia longipalpis (Lutz &amp; Neiva) to different wavelengths of light was tested by presenting the sandflies with two light sources simultaneously, a series of test wavelengths between 350–670 nm and a 400 nm control. To test whether L. longipalpis could discriminate between the test and control, three sets of experiments were carried out in which the test wavelengths were presented at higher, equivalent or lower intensity than the control. In all three experiments, ultra-violet (350 nm) and blue-green-yellow (490–546 nm) light was more attractive
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Akansha, Elizebeth O., Bang V. Bui, Shonraj B. Ganeshrao, et al. "Blue-Light-Blocking Lenses Ameliorate Structural Alterations in the Rodent Hippocampus." International Journal of Environmental Research and Public Health 19, no. 19 (2022): 12922. http://dx.doi.org/10.3390/ijerph191912922.

Повний текст джерела
Анотація:
Evidence suggests that prolonged blue-light exposure can impact vision; however, less is known about its impact on non-visual higher-order functions in the brain, such as learning and memory. Blue-light-blocking lenses (BBLs) claim to reduce these potential impacts. Hence, we assessed structural and functional hippocampal alterations following blue-light exposure and the protective efficacy of BBLs. Male Wistar rats were divided into (n = 6 in each group) normal control (NC), blue-light exposure (LE), and blue-light with BBLs (Crizal Prevencia, CP and DuraVision Blue, DB) groups. After 28 days
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Qiu, Lei, Ying Guo, Bin Yuan, Yu Shi Su, and Yan Hui Qi. "Chromatographic Study of Blue-Violet Tanzanite’s Color Appearance." Science of Advanced Materials 14, no. 6 (2022): 1032–40. http://dx.doi.org/10.1166/sam.2022.4288.

Повний текст джерела
Анотація:
Tanzanite is a blue-purple zoisite currently produced only in Tanzania. Tanzanite is loved by the public for its attractive blue-violet color. In this study, the color appearance of tanzanite will be studied chromatically using the CIE 1976 L*a*b* unified color space and the CIECAM16 color appearance model, respectively. The blue color of tanzanite is quantitatively characterized in CIE 1976 L*a*b* uniform color space using an X-Rite SP62 spectrophotometer. The tristimulus values XYZ of tanzanite’s color are input into the CIECAM16 forward model to calculate the color appearance parameters of
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Sandall, Sharon K., and R. Daniel Lineberger. "Flowering Patterns of Reverse Pinwheel Chimeras Produced during in Vitro Culture of Saintpaulia ionantha `Silver Summit'." HortScience 32, no. 3 (1997): 547C—547. http://dx.doi.org/10.21273/hortsci.32.3.547c.

Повний текст джерела
Анотація:
The pinwheel flowering African violet `Silver Summit', a periclinal chimera, has bicolor flowers with violet-blue 93B corolla segment margins and white 155B central stripes. Several off-types were produced during in vitro culture of `Silver Summit', the two of greatest potential value having reversed color patterns with violet-blue stripes and white margins. The off-types varied in color, one with deep violet-blue stripes (DR, dark reverse) and the other with lighter stripes of the same color (LR, light reverse). Unexpanded inflorescences of both off types were cultured on Murashige and Skoog
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Kitagawa, Yuuki, Jumpei Ueda, Jian Xu, et al. "Deep-red to near-infrared luminescence from Eu2+-trapped exciton states in YSiO2N." Physical Chemistry Chemical Physics 24, no. 7 (2022): 4348–57. http://dx.doi.org/10.1039/d1cp05242j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Feezell, Daniel F., Mathew C. Schmidt, Steven P. DenBaars, and Shuji Nakamura. "Development of Nonpolar and Semipolar InGaN/GaN Visible Light-Emitting Diodes." MRS Bulletin 34, no. 5 (2009): 318–23. http://dx.doi.org/10.1557/mrs2009.93.

Повний текст джерела
Анотація:
AbstractThis article reviews the development of nonpolar and semipolar InGaN/GaN light-emitting diodes (LEDs), emphasizing structures on freestanding bulk GaN. A brief history of LED development on each orientation is provided, followed by a discussion of the most relevant and recent results. The context is related to several current LED issues, such as the realization of high-efficiency white solid-state lighting, potential solutions to the “green gap,” and applications for polarized emitters. The section on nonpolar LEDs highlights high-power violet and blue emitters and considers the effect
Стилі APA, Harvard, Vancouver, ISO та ін.
21

SPARDHAN, Shahina, and Raju P. SAPKOTA. "Eye Complications of Exposure to Ultraviolet and Blue-Violet Light." Highlights of Ophthalmology 45, no. 2ENG (2017): 2–5. http://dx.doi.org/10.5005/highlights-45-2-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Wei, Z. P., Y. M. Lu, D. Z. Shen, et al. "Room temperature p-n ZnO blue-violet light-emitting diodes." Applied Physics Letters 90, no. 4 (2007): 042113. http://dx.doi.org/10.1063/1.2435699.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Zhao, Xinwei, Olaf Schoenfeld, Junichi Kusano, Yoshinobu Aoyagi, and Takuo Sugano. "Violet and Blue Light Emissions from Nanocrystalline Silicon Thin Films." Japanese Journal of Applied Physics 33, Part 2, No. 5A (1994): L649—L651. http://dx.doi.org/10.1143/jjap.33.l649.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Mainster, M. A. "Violet and blue light blocking intraocular lenses: photoprotection versus photoreception." British Journal of Ophthalmology 90, no. 6 (2006): 784–92. http://dx.doi.org/10.1136/bjo.2005.086553.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Gomez, Grace F., Ruijie Huang, Meoghan MacPherson, Andrea G. Ferreira Zandona, and Richard L. Gregory. "Photo Inactivation of Streptococcus mutans Biofilm by Violet-Blue light." Current Microbiology 73, no. 3 (2016): 426–33. http://dx.doi.org/10.1007/s00284-016-1075-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Maciel, G. S., L. de S. Menezes, Cid B. de Araújo, and Y. Messaddeq. "Violet and blue light amplification in Nd3+-doped fluoroindate glasses." Journal of Applied Physics 85, no. 9 (1999): 6782–85. http://dx.doi.org/10.1063/1.370194.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Ragupathy, Viswanath, Mohan Haleyurgirisetty, Neetu Dahiya, et al. "Visible 405 nm Violet-Blue Light Successfully Inactivates HIV-1 in Human Plasma." Pathogens 11, no. 7 (2022): 778. http://dx.doi.org/10.3390/pathogens11070778.

Повний текст джерела
Анотація:
Despite significant advances in ensuring the safety of the blood supply, there is continued risk of transfusion transmitted infections (TTIs) from newly emerging or re-emerging infections. Globally, several pathogen reduction technologies (PRTs) for blood safety have been in development as an alternative to traditional treatment methods. Despite broad spectrum antimicrobial efficacy, some of the approved ultraviolet (UV) light-based PRTs, understandably due to UV light-associated toxicities, fall short in preserving the full functional spectrum of the treated blood components. As a safer alter
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Bao, Zhen, Zhen-Feng Jiang, Qiang Su, et al. "ZnSe:Te/ZnSeS/ZnS nanocrystals: an access to cadmium-free pure-blue quantum-dot light-emitting diodes." Nanoscale 12, no. 21 (2020): 11556–61. http://dx.doi.org/10.1039/d0nr01019g.

Повний текст джерела
Анотація:
The emission wavelength of ZnSe/ZnS quantum dots was successfully tuned from the violet (∼420 nm) to pure-blue (∼455 nm) region by doping Te into the ZnSe core. A specific structure QLED fabricated with ZnSe:0.03Te/ZnSeS/ZnS QDs realized pure-blue emission.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Chen, Wen-Cheng, Yi Yuan, Shao-Fei Ni, Qing-Xiao Tong, Fu-Lung Wong, and Chun-Sing Lee. "Achieving efficient violet-blue electroluminescence with CIEy <0.06 and EQE >6% from naphthyl-linked phenanthroimidazole–carbazole hybrid fluorophores." Chemical Science 8, no. 5 (2017): 3599–608. http://dx.doi.org/10.1039/c6sc05619a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Fornaini, Carlo, Reza Fekrazad, Jean-Paul Rocca, Shiying Zhang, and Elisabetta Merigo. "Use of Blue and Blue-Violet Lasers in Dentistry: A Narrative Review." Journal of Lasers in Medical Sciences 12, no. 1 (2021): e31-e31. http://dx.doi.org/10.34172/jlms.2021.31.

Повний текст джерела
Анотація:
Introduction: Blue and blue-violet diode lasers (450 and 405 nm) seem to represent an interesting approach for several clinical treatments today. The aim of this narrative review is to describe and comment on the literature regarding the utilization of blue and blue-violet lasers in dentistry. Methods: A search for "blue laser AND dentistry" was conducted using the PubMed database, and all the papers referring to this topic, ranging from 1990 to April 2020, were analyzed in the review. All the original in vivo and in vitro studies using 450 nm or 405 nm lasers were included in this study. All
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Cook, Javan H., José Santos, Hameed A. Al-Attar, Martin R. Bryce, and Andrew P. Monkman. "High brightness deep blue/violet fluorescent polymer light-emitting diodes (PLEDs)." Journal of Materials Chemistry C 3, no. 37 (2015): 9664–69. http://dx.doi.org/10.1039/c5tc02162f.

Повний текст джерела
Анотація:
New deep blue/violet emitting co-polymers are reported. In simple PLED architectures efficiency values as high as η<sub>ext,max</sub> 1.4% and L<sub>max</sub> 565 cd m<sup>−2</sup> with CIE<sub>x,y</sub> (0.16, 0.07) are obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Gaikwad, Asha. "COLOUR SPECTRUM." International Journal of Research -GRANTHAALAYAH 7, no. 11 (2019): 80–82. http://dx.doi.org/10.29121/granthaalayah.v7.i11.2019.3704.

Повний текст джерела
Анотація:
Colour is one of the most important elements in our life. Colour can attract our attention and change our mood. When white light dispersed by prism or a diffraction grating the colours are produce. There is a continuous change in wavelength from red to violet. Seven colours are usually distinguished – Violet, Indigo, Blue, Green Yellow, Orange and Red. It is called spectrum. A rainbow shows the colours of the spectrum. It is a range of Light waves or radio waves within particular frequencies.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Wang, Aqiang, Huaibin Shen, Shuaipu Zang, et al. "Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes." Nanoscale 7, no. 7 (2015): 2951–59. http://dx.doi.org/10.1039/c4nr06593j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

CHEN, YUAN-YUAN, MIN WANG, BO ZHANG, and BAO-KAI CUI. "Neoalbatrellus odorus sp. nov. (Albatrellaceae, Russulales) from Southwest China." Phytotaxa 309, no. 3 (2017): 217. http://dx.doi.org/10.11646/phytotaxa.309.3.2.

Повний текст джерела
Анотація:
We describe herein the Neoalbatrellus odorus sp. nov. accounting on its peculiar morphological features and molecular data. It is characterized by fleshy basidiomata with a deep violet to dark violet pileal surface, which turns blackish blue and glossy after drying. It also has a white pore surface, light violet to bluish violet stipe, simple septate generative hyphae, and thick-walled, non-amyloid basidiospores. The phylogenetic analyses, based on ITS and 28S rDNA sequences of Neoalbatrellus and its related genera, were performed using Maximum Parsimony, Maximum Likelihood and Bayesian Infere
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Chellini, Flaminia, Alessia Tani, Sandra Zecchi-Orlandini, Marco Giannelli, and Chiara Sassoli. "In Vitro Evidences of Different Fibroblast Morpho-Functional Responses to Red, Near-Infrared and Violet-Blue Photobiomodulation: Clues for Addressing Wound Healing." Applied Sciences 10, no. 21 (2020): 7878. http://dx.doi.org/10.3390/app10217878.

Повний текст джерела
Анотація:
Although photobiomodulation (PBM) has proven promising to treat wounds, the lack of univocal guidelines and of a thorough understanding of light–tissue interactions hampers its mainstream adoption for wound healing promotion. This study compared murine and human fibroblast responses to PBM by red (635 ± 5 nm), near-infrared (NIR, 808 ± 1 nm), and violet-blue (405 ± 5 nm) light (0.4 J/cm2 energy density, 13 mW/cm2 power density). Cell viability was not altered by PBM treatments. Light and confocal laser scanning microscopy and biochemical analyses showed, in red PBM irradiated cells: F-actin as
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Greer, Alexander. "Violet‐blue Light Induces “Natural” Photodynamic Plasma Disinfection with Endogenous Sensitizers." Photochemistry and Photobiology 98, no. 2 (2022): 513–15. http://dx.doi.org/10.1111/php.13591.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Felix Gomez, Grace, Frank Lippert, Masatoshi Ando, Andrea Zandona, George Eckert, and Richard Gregory. "Effect of Violet-Blue Light on Streptococcus mutans-Induced Enamel Demineralization." Dentistry Journal 6, no. 2 (2018): 6. http://dx.doi.org/10.3390/dj6020006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Shakibaie, F., and LJ Walsh. "Violet and blue light-induced green fluorescence emissions from dental caries." Australian Dental Journal 61, no. 4 (2016): 464–68. http://dx.doi.org/10.1111/adj.12414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Quintana, Andrea, Jana Albrechtova, Tom Davis, Robert J. Griesbach, and Rosanna Freyre. "(239) Genetics, Anatomy and Biochemistry of Flower Color in Anagallis monelli (L.) `Pimpernel'." HortScience 40, no. 4 (2005): 1002E—1003. http://dx.doi.org/10.21273/hortsci.40.4.1002e.

Повний текст джерела
Анотація:
Wild Anagallis monelli has blue or orange flowers. Hybrids with red flowers were developed at the Univ. of New Hampshire. Orange is due to pelargonidin, but delphinidin and malvidin can also be present; red is due to delphinidin and malvidin; and blue is due to malvidin only. In this study, blue and orange wild diploid accessions were used to develop four F2 populations (n = 46 to 81). In three populations, segregation ratios supported a previously proposed three-gene model for flower color in this species (P&gt; 0.01). In the fourth population, white flower color was obtained in addition to b
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Lu, Hsin-Wei, Huei-Ling Weng, Po-Ching Kao, Sheng-Yuan Chu, and Yung-Der Juang. "Fabrication of Color-Tunable Blue-Violet Organic Light Emitting Diodes for White Light Source." ECS Journal of Solid State Science and Technology 5, no. 6 (2016): R104—R109. http://dx.doi.org/10.1149/2.0151606jss.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Nakano, Shinichiro, Akira Miyata, Junya Kizawa, Daijiro Kurosaka, Kazunori Miyata, and Tetsuro Oshika. "Blue light–filtering and violet light–filtering hydrophobic acrylic foldable intraocular lenses: Intraindividual comparison." Journal of Cataract & Refractive Surgery 45, no. 10 (2019): 1393–97. http://dx.doi.org/10.1016/j.jcrs.2019.05.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Sun, Chen, Kuan Jiang, Meng-Fei Han, et al. "A zero-dimensional hybrid lead perovskite with highly efficient blue-violet light emission." Journal of Materials Chemistry C 8, no. 34 (2020): 11890–95. http://dx.doi.org/10.1039/d0tc02351e.

Повний текст джерела
Анотація:
By using a structural slicing strategy toward 3D CsPbCl<sub>3</sub>, we successfully constructed the first 0D perovskite displaying the highest-energy blue-violet light emission (392 nm) with improved photoluminescence quantum yield ranging from &lt;5% to 21.3%.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

De Sousa, Samuel, Siliu Lyu, Laurent Ducasse, Thierry Toupance, and Céline Olivier. "Tuning visible-light absorption properties of Ru–diacetylide complexes: simple access to colorful efficient dyes for DSSCs." Journal of Materials Chemistry A 3, no. 35 (2015): 18256–64. http://dx.doi.org/10.1039/c5ta04498g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Hooks, Triston, Joseph Masabni, Ling Sun, and Genhua Niu. "Effect of Pre-Harvest Supplemental UV-A/Blue and Red/Blue LED Lighting on Lettuce Growth and Nutritional Quality." Horticulturae 7, no. 4 (2021): 80. http://dx.doi.org/10.3390/horticulturae7040080.

Повний текст джерела
Анотація:
Blue light and ultra-violet (UV) light have been shown to influence plant growth, morphology, and quality. In this study, we investigated the effects of pre-harvest supplemental lighting using UV-A and blue (UV-A/Blue) light and red and blue (RB) light on growth and nutritional quality of lettuce grown hydroponically in two greenhouse experiments. The RB spectrum was applied pre-harvest for two days or nights, while the UV-A/Blue spectrum was applied pre-harvest for two or four days or nights. All pre-harvest supplemental lighting treatments had a same duration of 12 h with a photon flux densi
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Klyachkin, L. N. "On the treatment of Basedow's disease with a mercury-quartz lamp." Kazan medical journal 20, no. 4 (2021): 362–66. http://dx.doi.org/10.17816/kazmj76506.

Повний текст джерела
Анотація:
Even Finsen, when observing lupus, found that the active principle of any light source is not all its rays, but only those that make up the extreme right part of the solar spectrum, namely: blue, violet and, mainly, ultraviolet.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Buller, Gayle M., JiXiang Liu, Stephen Yue, Jolene A. Bradford, and William L. Godfrey. "Use of Pacific Orange™ Dye with Qdot® Nanocrystals and Other Violet-Excited Dyes in Polychromatic Flow Cytometry." Blood 108, no. 11 (2006): 3901. http://dx.doi.org/10.1182/blood.v108.11.3901.3901.

Повний текст джерела
Анотація:
Abstract Violet-excited fluorochromes are becoming more commonly used in polychromatic flow cytometry experiments. However, violet-excited fluorochromes with emissions longer than 450 nm have been shown to produce small signals relative to the autofluorescent background, usable only on densely expressed antigens, and are sometimes excited by a 488 nm argon ion laser. We have developed a novel violet-excited organic fluor, Pacific Orange™ dye, which has an emission maximum at 551 nm and which is not excited by 488 nm light. Pacific Orange dye is at least twice as bright as the other green emitt
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Kelly, Richard O., Zhanao Deng, and Brent K. Harbaugh. "Evaluation of 125 Petunia Cultivars as Bedding Plants and Establishment of Class Standards." HortTechnology 17, no. 3 (2007): 386–96. http://dx.doi.org/10.21273/horttech.17.3.386.

Повний текст джерела
Анотація:
Central Florida has a climate similar to many locations in the southeastern United States and parts of Asia, Europe, and Australia. Thus, Florida is an important testing ground for new bedding plant cultivars not only in the United States, but around the world. The authors evaluated 125 petunia (Petunia ×hybrida) cultivars in replicated class tests at Bradenton, Fla. (lat. 27º4′N, long. 82º5′W) in 2000–04 and at Balm, Fla. (lat. 27º8′N, long. 82º2′W) in 2005–06. In this report they establish petunia classes and cultivar standards for each class, and provide objective plant measurements of vege
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Zhai, Xiaoyu, Siqi Li, Yufeng Ding, et al. "Fabrication and Investigation of Two-Component Film of 2,5-Diphenyloxazole and Octafluoronaphthalene Exhibiting Tunable Blue/Bluish Violet Fluorescence Based on Low Vacuum Physical Vapor Deposition Method." Journal of Nanomaterials 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/4363541.

Повний текст джерела
Анотація:
Organic luminescent materials play an important role in the fields of light-emitting diodes and fluorescent imaging. Moreover, new synthetic approaches towardsπ-conjugated molecular systems with high fluorescence quantum efficiency are highly desired. Herein, different 2,5-diphenyloxazole-octafluoronaphthalene (DPO-OFN) films with tunable fluorescence have been prepared by Low Vacuum Physical Vapor Deposition (LVPVD) method. DPO-OFN films showed some changed properties, such as molecular vibration and fluorescence. All films exhibited blue/bluish violet fluorescence and showed blue shift, in c
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Ohta, Hiroaki, and Kuniyoshi Okamoto. "Nonpolar/Semipolar GaN Technology for Violet, Blue, and Green Laser Diodes." MRS Bulletin 34, no. 5 (2009): 324–27. http://dx.doi.org/10.1557/mrs2009.94.

Повний текст джерела
Анотація:
AbstractTo achieve 520–532 nm green laser diodes (LDs), nonpolar and semipolar nitrides have attracted much attention because their usage leads to the elimination of the quantum-confined Stark effect and higher optical gains in this wavelength region. Since the breakthrough in the homoepitaxial growth technology for them, many nonpolar m -plane devices such as mW-class blue light-emitting diodes, violet 405 nm LDs, blue 460 nm LDs, and blue-green LDs beyond 490 nm have been announced. Advantages such as small blueshift and high slope efficiency (high output power to injected current ratio) hav
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Hessling, Martin, Tobias Meurle, and Katharina Hoenes. "Surface disinfection with white-violet illumination device." AIMS Bioengineering 9, no. 2 (2022): 93–101. http://dx.doi.org/10.3934/bioeng.2022008.

Повний текст джерела
Анотація:
&lt;abstract&gt; &lt;p&gt;The spread of infections, as in the coronavirus pandemic, leads to the desire to perform disinfection measures even in the presence of humans. UVC radiation is known for its strong antimicrobial effect, but it is also harmful to humans. Visible light, on the other hand, does not affect humans and laboratory experiments have already demonstrated that intense visible violet and blue light has a reducing effect on bacteria and viruses. This raises the question of whether the development of pathogen-reducing illumination is feasible for everyday applications. For this pur
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!