Добірка наукової літератури з теми "Wave mechanics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Wave mechanics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

За допомогою хмари тегів ви можете побачити ще більше пов’язаних тем досліджень, а відповідні кнопки після кожного розділу сторінки дозволяють переглянути розширені списки книг, статей тощо на обрану тему.

Пов'язані теми наукових робіт:

Статті в журналах з теми "Wave mechanics":

1
Shang-Wu, Qian, and Xu Lai-Zi. "Wave Mechanics or Wave Statistical Mechanics." Communications in Theoretical Physics 48, no. 2 (August 2007): 243–44. http://dx.doi.org/10.1088/0253-6102/48/2/008.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Widrow, Lawrence M. "Galactic wave mechanics." Nature Physics 10, no. 7 (June 2014): 477–78. http://dx.doi.org/10.1038/nphys3020.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Wódkiewicz, K., and M. O. Scully. "Weinberg’s nonlinear wave mechanics." Physical Review A 42, no. 9 (November 1990): 5111–16. http://dx.doi.org/10.1103/physreva.42.5111.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
McCrea, William. "Origin of wave mechanics." Contemporary Physics 31, no. 1 (January 1990): 43–48. http://dx.doi.org/10.1080/00107519008222000.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Engelbrecht, J. "Wave equations in mechanics." Estonian Journal of Engineering 19, no. 4 (2013): 273. http://dx.doi.org/10.3176/eng.2013.4.02.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Wang, Lipo, and R. F. O'Connell. "Quantum mechanics without wave functions." Foundations of Physics 18, no. 10 (October 1988): 1023–33. http://dx.doi.org/10.1007/bf01909937.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Treder, Hans-Jürgen, and Wilfried Schröder. "Magnetohydrodynamics corresponding with wave mechanics." Foundations of Physics 27, no. 6 (June 1997): 875–79. http://dx.doi.org/10.1007/bf02550346.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Stewart, A. M. "Wave mechanics without gauge fixing." Journal of Molecular Structure: THEOCHEM 626, no. 1-3 (May 2003): 47–51. http://dx.doi.org/10.1016/s0166-1280(02)00718-2.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Wall, F. T. "Discrete wave mechanics: Multidimensional systems." Proceedings of the National Academy of Sciences 84, no. 10 (May 1987): 3091–94. http://dx.doi.org/10.1073/pnas.84.10.3091.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Wall, F. T. "Discrete wave mechanics: An introduction." Proceedings of the National Academy of Sciences 83, no. 15 (August 1986): 5360–63. http://dx.doi.org/10.1073/pnas.83.15.5360.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Wave mechanics":

1
Judd, Thomas Edward. "The wave mechanics of cold atoms." Electronic Thesis or Dissertation, University of Nottingham, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.490985.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis presents theoretical investigations on a range of topics in cold atom physics, primarily by means of wave mechanical simulations, implemented on High-Performance computers. Two particular concerns are the interaction of Bose-Einstein condensates with microfabricated surfaces, and the behaviour of strongly interacting Fermi atoms. In the course of this work. we have developed new theoretical models and computational techniques to handle problems which were beyond the scope of previous calculations.
2
Thomson, Edward Andrew. "Schrodinger wave-mechanics and large scale structure." Electronic Thesis or Dissertation, University of Glasgow, 2011. http://theses.gla.ac.uk/2976/.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In recent years various authors have developed a new numerical approach to cosmological simulations that formulates the equations describing large scale structure (LSS) formation within a quantum mechanical framework. This method couples the Schrodinger and Poisson equations. Previously, work has evolved mainly along two different strands of thought: (1) solving the full system of equations as Widrow & Kaiser attempted, (2) as an approximation to the full set of equations (the Free Particle Approximation developed by Coles, Spencer and Short). It has been suggested that this approach can be considered in two ways: (1) as a purely classical system that includes more physics than just gravity, or (2) as the representation of a dark matter field, perhaps an Axion field, where the de Broglie wavelength of the particles is large. In the quasi-linear regime, the Free Particle Approximation (FPA) is amenable to exact solution via standard techniques from the quantum mechanics literature. However, this method breaks down in the fully non-linear regime when shell crossing occurs (confer the Zel'dovich approximation). The first eighteen months of my PhD involved investigating the performance of illustrative 1-D and 3-D ``toy" models, as well as a test against the 3-D code Hydra. Much of this work is a reproduction of the work of Short, and I was able to verify and confirm his results. As an extension to his work I introduced a way of calculating the velocity via the probability current rather than using a phase unwrapping technique. Using the probability current deals directly with the wavefunction and provides a faster method of calculation in three dimensions. After working on the FPA I went on to develop a cosmological code that did not approximate the Schrodinger-Poisson system. The final code considered the full Schrodinger equation with the inclusion of a self-consistent gravitational potential via the Poisson equation. This method follows on from Widrow & Kaiser but extends their method from 2D to 3D, it includes periodic boundary conditions, and cosmological expansion. Widrow & Kaiser provided expansion via a change of variables in their Schrodinger equation; however, this was specific only to the Einstein-de Sitter model. In this thesis I provide a generalization of that approach which works for any flat universe that obeys the Robertson-Walker metric. In this thesis I aim to provide a comprehensive review of the FPA and of the Widrow-Kaiser method. I hope this work serves as an easy first point of contact to the wave-mechanical approach to LSS and that this work also serves as a solid reference point for all future research in this new field.
3
Coughtrie, David James. "Gaussian wave packets for quantum statistical mechanics." Electronic Thesis or Dissertation, University of Bristol, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.682558.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thermal (canonical) condensed-phase systems are of considerable interest in computational science, and include for example reactions in solution. Time-independent properties of these systems include free energies and thermally averaged geometries - time-dependent properties include correlation functions and thermal reaction rates. Accounting for quantum effects in such simulations remains a considerable challenge, especially for large systems, due to the quantum nature and high dimensionality of the phase space. Additionally time-dependent properties require treatment of quantum dynamics. Most current methods rely on semi-classical trajectories, path integrals or imaginary-time propagation of wave packets. Trajectory based approaches use continuous phase-space trajectories, similar to classical molecular dynamics, but lack a direct link to a wave packet and so the time-dependent schrodinger equation. Imaginary time propagation methods retain the wave packet, however the imaginary-time trajectory cannot be used as an approximation for real-time dynamics. We present a new approach that combines aspects of both. Using a generalisation of the coherent-state basis allows for mapping of the quantum canonical statistical average onto a phase-space average of the centre and width of thawed Gaussian wave packets. An approximate phase-space density that is exact in the low-temperature harmonic limit, and is a direct function of the phase space is proposed, defining the Gaussian statistical average. A novel Nose-Hoover looped chain thermostat is developed to generate the Gaussian statistical average via the ergodic principle, in conjunction with variational thawed Gaussian wave-packet dynamics. Numerical tests are performed on simple model systems, including quartic bond stretching modes and a double well potential. The Gaussian statistical average is found to be accurate to around 10% for geometric properties at room temperature, but gives energies two to three times too large. An approach to correct the Gaussian statistical average and ensure classical statistics is retrieved at high temperature is then derived, called the switched statistical average. This involves transitioning the potential surface upon which the Gaussian wave packet propagates, and the system property being averaged. Switching functions designed to perform these tasks are derived and tested on model systems. Bond lengths and their uncertainties calculated using the switched statistical average were found to be accurate to within 1% relative to exact results, and similarly for energies. The switched statistical average, calculated with Nose- Hoover looped chain thermostatted Gaussian dynamics, forms a new platform for evaluating statistical properties of quantum condensed-phase systems using an explicit real-time wave packet, whilst retaining appealing features of trajectory based approaches.
4
Lennon, Francis. "Shock wave propagation in water." Electronic Thesis or Dissertation, Manchester Metropolitan University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240559.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Bell, James Andrew, and andrew bell@anu edu au. "The Underwater Piano: A Resonance Theory of Cochlear Mechanics." The Australian National University. Research School of Biological Sciences, 2006. http://thesis.anu.edu.au./public/adt-ANU20080706.141018.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis takes a fresh approach to cochlear mechanics. Over the last quarter of a century, we have learnt that the cochlea is active and highly tuned, observations suggesting that something may be resonating. Rather than accepting the standard traveling wave interpretation, here I investigate whether a resonance theory of some kind can be applied to this remarkable behaviour.¶ A historical survey of resonance theories is first conducted, and advantages and drawbacks examined. A corresponding look at the traveling wave theory includes a listing of its short-comings.¶ A new model of the cochlea is put forward that exhibits inherently high tuning. The surface acoustic wave (SAW) model suggests that the three rows of outer hair cells (OHCs) interact in a similar way to the interdigital transducers of an electronic SAW device. Analytic equations are developed to describe the conjectured interactions between rows of active OHCs in which each cell is treated as a point source of expanding wavefronts. Motion of a cell launches a wave that is sensed by the stereocilia of neighbouring cells, producing positive feedback. Numerical calculations confirm that this arrangement provides sharp tuning when the feedback gain is set just below oscillation threshold.¶ A major requirement of the SAW model is that the waves carrying the feedback have slow speed (5-200 mm/s) and high dispersion. A wave type with the required properties is identified - a symmetric Lloyd-Redwood wave (or squirting wave) - and the physical properties of the organ of Corti are shown to well match those required by theory.¶ The squirting wave mechanism may provide a second filter for a primary traveling wave stimulus, or stand-alone tuning in a pure resonance model. In both, cyclic activity of squirting waves leads to standing waves, and this provides a physical rendering of the cochlear amplifier. In keeping with pure resonance, this thesis proposes that OHCs react to the fast pressure wave rather than to bending of stereocilia induced by a traveling wave. Investigation of literature on OHC ultrastructure reveals anatomical features consistent with them being pressure detectors: they possess a cuticular pore (a small compliant spot in an otherwise rigid cell body) and a spherical body within (Hensens body) that could be compressible. I conclude that OHCs are dual detectors, sensing displacement at high intensities and pressure at low. Thus, the conventional traveling wave could operate at high levels and resonance at levels dominated by the cochlear amplifier. ¶ The latter picture accords with the description due to Gold (1987) that the cochlea is an ‘underwater piano’ - a bank of strings that are highly tuned despite immersion in liquid.¶ An autocorrelation analysis of the distinctive outer hair cell geometry shows trends that support the SAW model. In particular, it explains why maximum distortion occurs at a ratio of the two primaries of about 1.2. This ratio also produces near-integer ratios in certain hair-cell alignments, suggesting that music may have a cochlear basis.¶ The thesis concludes with an evaluation and proposals to experimentally test its validity.
6
Weaver, P. M. "Shock wave interactions with aqueous foams." Electronic Thesis or Dissertation, University of Southampton, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292434.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Li, Dongli. "Computational and experimental study of shock wave interactions with cells." Electronic Thesis or Dissertation, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:38beffe8-06c9-4b49-89f8-f5318c527800.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis presents a combined numerical and experimental study on the response of kidney cells to shock waves. The motivation was to develop a mechanistic model of cell deformation in order to improve the clinical use of shock waves, by either enhancing their therapeutic action against target cells or minimising their impact on healthy cells. An ultra-high speed camera was used to visualise individual cells, embedded in tissue-mimicking gel, in order to measure their deformation when subject to a shock wave from a clinical shock wave source. Advanced image processing was employed to extract the contour of the cell from the images. The evolution of the observed cell contour revealed a relatively small deformation during the compressional phase and a much larger deformation during the tensile phases of a shock wave. The experimental observations were captured by a numerical model which describes the volumetric cell response with a bilinear Equation of State and the deviatoric cell response with a viscoelastic framework. Experiments using human kidney cancer cells (CAKI-2) and noncancerous kidney cells (HRE and HK-2) were compared to the model in order to determine their mechanical properties. The differences between cancerous and noncancerous cells were exploited to demonstrate a design process by which shock waves may be able to improve the specificity on targeted cancer cells while having minimal effect on normal cells. The cell response to shock waves was studied in a more biophysically realistic environment to include influence of cell size, shape and orientation, and the presence of neighbouring cells. The most significant difference was predicted when cells were in a cluster in which case the presence of neighbouring cells resulted in a four-fold increase on the von Mises stress and the membrane strain. Finally the numerical model was extended to capture the effect of cell damage using one of two paradigms. In the first paradigm the model captured microdamage during one shock wave but then assumed that the cell recovered by the time the next shock wave arrived. The second model allowed microdamage to accumulate with increasing number of shock waves. These models may be able to explain the strong effect that shock wave loading rate has on tissue damage. In conclusion a validated numerical model has been developed which provides a mechanistic understanding of how cells respond to shock waves. The model has application in suggesting improved strategies for current uses of shock waves, e.g., lithotripsy, as well as opening up new indications such as cancer treatment.
8
Lee, Man-yip Mark, and 李文業. "Wave transformation due to vertical barriers in fluids." PG_Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B29812781.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Shaarawi, Amr Mohamed. "Nondispersive wave packets." Dissertation, Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/54417.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this work, nondispersive wave packet solutions to linear partial differential equations are investigated. These solutions are characterized by infinite energy content; otherwise, they are continuous, nonsingular and propagate in free space without spreading out. Examples of such solutions are Berry and Balazs’ Airy packet, MacKinnon’s wave packet and Brittingham’s Focus Wave Mode (FWM). It is demonstrated in this thesis that the infinite energy content is not a basic problem per se and that it can be dealt with in two distinct ways. First these wave packets can be used as bases to construct highly localized, slowly decaying, time-limited pulsed solutions. In the case of the FWMs, this path leads to the formulation of the bidirectional representation, a technique that provides the most natural basis for synthesizing Brittingham-like solutions. This representation is used to derive new exact solutions to the 3-D scalar wave equation. It is also applied to problems involving boundaries, in particular to the propagation of a localized pulse in an infinite acoustic waveguide and to the launch ability of such a pulse from the opening of a semi-infinite waveguide. The second approach in dealing with the infinite energy content utilizes the bump-like structure of nondispersive solutions. With an appropriate choice of parameters, these bump fields have very large amplitudes around the centers, in comparison to their tails. In particular, the FWM solutions are used to model massless particles and are capable of providing an interesting interpretation to the results of Young’s two slit experiment and to the wave-particle duality of light. The bidirectional representation provides, also, a systematic way of deriving packet solutions to the Klein-Gordon, the Schrodinger and the Dirac equations. Nondispersive solutions of the former two equations are compared to previously derived ones, e.g., the Airy packet and MacKinnon's wave packet.
Ph. D.
10
Aldridge, Christopher John. "Density-wave oscillations in two-phase flows." Electronic Thesis or Dissertation, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260741.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Wave mechanics":

1
Pauli, Wolfgang. Wave mechanics. Mineola, N.Y: Dover Publications, 2000.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Sundar, V. Ocean Wave Mechanics. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781119241652.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Greiner, Walter. Relativistic quantum mechanics: Wave equations. 2nd ed. Berlin: Springer, 1994.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Greiner, Walter. Relativistic Quantum Mechanics: Wave Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Greiner, Walter. Relativistic quantum mechanics: Wave equations. 3rd ed. Berlin: Springer, 2000.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Greiner, Walter. Relativistic quantum mechanics: Wave equations. Berlin: Springer-Verlag, 1990.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Greiner, Walter. Relativistic Quantum Mechanics. Wave Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04275-5.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Shorr, B. F. The Wave Finite Element Method. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Cook, David B. Schrödinger's mechanics. Singapore: World Scientific, 1988.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Brekhovskikh, L. M. Mechanics of continua and wave dynamics. Berlin: Springer-Verlag, 1985.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Wave mechanics":

1
de Cogan, Donard. "Wave Mechanics." In Solid State Devices, 28–51. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-18658-7_3.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Anderson, J. C., K. D. Leaver, R. D. Rawlings, and J. M. Alexander. "Wave Mechanics." In Materials Science, 23–36. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-6826-5_2.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Elbaz, Edgard. "Wave Mechanics." In Quantum, 49–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-60266-5_2.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Nettel, Stephen. "Wave Mechanics." In Wave Physics, 141–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-10870-3_6.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Gooch, Jan W. "Wave Mechanics." In Encyclopedic Dictionary of Polymers, 806. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12730.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Kuehn, Kerry. "Wave Mechanics." In Undergraduate Lecture Notes in Physics, 423–41. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21828-1_31.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Breinig, Marianne. "Wave Mechanics." In Compendium of Quantum Physics, 822–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_231.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Nettel, Stephen. "Wave Mechanics." In Wave Physics, 157–215. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05317-1_6.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Nettel, Stephen. "Wave Mechanics." In Wave Physics, 135–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02825-4_6.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
de Cogan, Donard. "Wave Mechanics." In Solid State Devices — A Quantum Physics Approach, 28–51. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4684-0621-4_3.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Wave mechanics":

1
Smith, Brian J., and M. G. Raymer. "Photon wave mechanics." In 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE, 2006. http://dx.doi.org/10.1109/cleo.2006.4629000.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
"Acoustic wave transmission on homogenized perforated plate." In Engineering Mechanics 2018. Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, 2018. http://dx.doi.org/10.21495/91-8-713.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Maksuwan, Atirat. "Discrete element modelling of wave mechanics." In INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2016 (ICoMEIA2016): Proceedings of the 2nd International Conference on Mathematics, Engineering and Industrial Applications 2016. Author(s), 2016. http://dx.doi.org/10.1063/1.4965182.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Hayashi, Takahiro, Koichiro Kawashima, Zongqi Sun, and Joseph L. Rose. "Guided Wave Focusing Mechanics in Pipe." In ASME 2003 Pressure Vessels and Piping Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/pvp2003-1850.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Guided waves can be used in pipe inspection over long distances. Presented in this paper is a beam focusing technique to improve the S/N ratio of the reflection from a tiny defect. Focusing is accomplished by using non-axisymmetric waveforms and subsequent time delayed superposition at a specific point in a pipe. A semi-analytical finite element method is used to present wave structure in the pipe. Focusing potential is also studied with various modes and frequencies.
5
"Numerical study of elastic wave propagation in a layered bar." In Engineering Mechanics 2018. Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, 2018. http://dx.doi.org/10.21495/91-8-389.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Ozeren, Y., and D. G. Wren. "Laboratory Measurements of Wave Attenuation through Model and Live Vegetation." In Engineering Mechanics Conference. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784412664.005.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Ju, Feng, Ningqun Guo, Weimin Huang, and Saravanan Subramanian. "Lamb-wave-based damage detection using wave signal demodulation and artificial neural networks." In Fourth International Conference on Experimental Mechanics, edited by Chenggen Quan, Kemao Qian, Anand K. Asundi, and Fook S. Chau. SPIE, 2009. http://dx.doi.org/10.1117/12.851002.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Davis, Dominic, A. Khorrami, and Frank Smith. "Vortex/wave interaction in compressible boundary-layer transition." In Theroretical Fluid Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2124.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Matsumoto, Kenshi, Riichi Murayama, and Kenji Ushitani. "Transmission system of guide-wave for a pipe using a long distance wave guide." In International Conference on Experimental Mechanics 2014, edited by Chenggen Quan, Kemao Qian, Anand Asundi, and Fook Siong Chau. SPIE, 2015. http://dx.doi.org/10.1117/12.2075240.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
"RESEARCH OF VIBROACOUSTIC DISTURBENCES INFLUENCE ON THE SHOCK WAVE DETECTION PROCESS." In Engineering Mechanics 2019. Institute of Thermomechanics of the Czech Academy of Sciences, Prague, 2019. http://dx.doi.org/10.21495/71-0-129.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Wave mechanics":

1
Tellander, Felix B. A., and Karl-Fredrik Berggren. Non-Hermitian Wave Mechanics: An Unorthodox Way into Embedded Systems. Journal of Young Investigators, September 2017. http://dx.doi.org/10.22186/jyi.33.4.87-90.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Monin, A. S., and A. M. Yaglom. Statistical Fluid Mechanics: The Mechanics of Turbulence. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada398728.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Maudlin, P. J., J. C. Jr Foster, and S. E. Jones. On the Taylor test, Part 3: A continuum mechanics code analysis of steady plastic wave propagation. Office of Scientific and Technical Information (OSTI), November 1994. http://dx.doi.org/10.2172/10192108.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Raboin, P. J. Computational mechanics. Office of Scientific and Technical Information (OSTI), January 1998. http://dx.doi.org/10.2172/15009523.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Goudreau, G. L. ,. LLNL. Computational mechanics. Office of Scientific and Technical Information (OSTI), February 1997. http://dx.doi.org/10.2172/16316.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Goudreau, G. L. Computational mechanics. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/10194488.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Drake, Thomas G. Megaripple Mechanics. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada627967.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Liu, C. T. Material Mechanics Research. Fort Belvoir, VA: Defense Technical Information Center, February 2003. http://dx.doi.org/10.21236/ada412622.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Kadum, Hawwa. Mechanics of Canopy Turbulence. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.7392.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Robertson, Brett Anthony. Phase Field Fracture Mechanics. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1227184.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії

Будь ласка, вимкніть ваш блокувальник реклами

Adblock logo Adblock logo Adblock logo

"Grafiati" – це незалежний сервіс, що забезпечує унікальну якість оформлення бібліографічних посилань. Ви можете користуватися нашим сайтом безоплатно, дозволивши показ реклами, або оформити передплату.

Передплатити