Добірка наукової літератури з теми "Wave models"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Wave models".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Wave models"

1

Verao Fernandez, Gael, Vasiliki Stratigaki, Panagiotis Vasarmidis, Philip Balitsky, and Peter Troch. "Wake Effect Assessment in Long- and Short-Crested Seas of Heaving-Point Absorber and Oscillating Wave Surge WEC Arrays." Water 11, no. 6 (May 29, 2019): 1126. http://dx.doi.org/10.3390/w11061126.

Повний текст джерела
Анотація:
In the recent years, the potential impact of wave energy converter (WEC) arrays on the surrounding wave field has been studied using both phase-averaging and phase-resolving wave propagation models. Obtaining understanding of this impact is important because it may affect other users in the sea or on the coastline. However, in these models a parametrization of the WEC power absorption is often adopted. This may lead to an overestimation or underestimation of the overall WEC array power absorption, and thus to an unrealistic estimation of the potential WEC array impact. WEC array power absorpti
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhang, Huichen, and Markus Brühl. "GENERATION OF EXTREME TRANSIENT WAVES IN EXPERIMENTAL MODELS." Coastal Engineering Proceedings, no. 36 (December 30, 2018): 51. http://dx.doi.org/10.9753/icce.v36.waves.51.

Повний текст джерела
Анотація:
The transfer of natural waves and sea states into small- and large-scale model teste contributes to the proper design of offshore and coastal structure. Such shallow-water ocean surface waves are highly nonlinear and subject to wave transformation and nonlinear wave-wave interactions. However, the standard methods of wave generation according to conventional wave theories and wave analysis methods are limited to simple regular waves, simple sea states and low-order wave generation without considering the nonlinear wave-wave interactions. The research project Generation of Extreme Transient Wav
Стилі APA, Harvard, Vancouver, ISO та ін.
3

BAL, GUILLAUME, and OLIVIER PINAUD. "IMAGING USING TRANSPORT MODELS FOR WAVE–WAVE CORRELATIONS." Mathematical Models and Methods in Applied Sciences 21, no. 05 (May 2011): 1071–93. http://dx.doi.org/10.1142/s0218202511005258.

Повний текст джерела
Анотація:
We consider the imaging of objects buried in unknown heterogeneous media. The medium is probed by using classical (e.g. acoustic or electromagnetic) waves. When heterogeneities in the medium become too strong, inversion methodologies based on a microscopic description of wave propagation (e.g. a wave equation or Maxwell's equations) become strongly dependent on the unknown details of the heterogeneous medium. In some situations, it is preferable to use a macroscopic model for a quantity that is quadratic in the wave fields. Here, such macroscopic models take the form of radiative transfer equa
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zappa, Giuseppe, Valerio Lucarini, and Antonio Navarra. "Baroclinic Stationary Waves in Aquaplanet Models." Journal of the Atmospheric Sciences 68, no. 5 (May 1, 2011): 1023–40. http://dx.doi.org/10.1175/2011jas3573.1.

Повний текст джерела
Анотація:
Abstract An aquaplanet model is used to study the nature of the highly persistent low-frequency waves that have been observed in models forced by zonally symmetric boundary conditions. Using the Hayashi spectral analysis of the extratropical waves, the authors find that a quasi-stationary wave 5 belongs to a wave packet obeying a well-defined dispersion relation with eastward group velocity. The components of the dispersion relation with k ≥ 5 baroclinically convert eddy available potential energy into eddy kinetic energy, whereas those with k < 5 are baroclinically neutral. In agreemen
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dalrymple, Robert A., and James T. Kirby. "Models for very wide-angle water waves and wave diffraction." Journal of Fluid Mechanics 192 (July 1988): 33–50. http://dx.doi.org/10.1017/s0022112088001776.

Повний текст джерела
Анотація:
For a bathymetry consisting of parallel bottom contours, wide-angle parabolic models are developed to describe the diffraction of linear water waves. The first model, developed by operator correspondence, extends the validity of conventional forms of the parabolic model for wave angles up to 70° from the assumed wave direction. Through the use of Fourier decomposition, wave models valid to 90° are developed for three different lateral boundary conditions. By application, it is shown that the diffraction of waves through gaps or around structures is governed by the initial wave condition at the
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Geller, Marvin A., Tiehan Zhou, Reto Ruedy, Igor Aleinov, Larissa Nazarenko, Nikolai L. Tausnev, Shan Sun, Maxwell Kelley, and Ye Cheng. "New Gravity Wave Treatments for GISS Climate Models." Journal of Climate 24, no. 15 (August 1, 2011): 3989–4002. http://dx.doi.org/10.1175/2011jcli4013.1.

Повний текст джерела
Анотація:
Abstract Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity wave
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pruser, H. H., H. Schaper, and W. Zielke. "IRREGULAR WAVE TRANSFORMATION IN A BOUSSINESO WAVE MODEL." Coastal Engineering Proceedings 1, no. 20 (January 29, 1986): 205. http://dx.doi.org/10.9753/icce.v20.205.

Повний текст джерела
Анотація:
Numerical wave models for shallow water waves are of particular importance for the calculation of the wave climate in harbours and coastal areas. Especially nonlinear time domain models, which are based on the Boussinesq-Wave- Equations, may be helpful in the future for simulating the interaction of currents with refraction, diffraction, reflection and for simulating shoaling..-of irregular waves in natural areas; a potential which has not yet been fully developed. During the last ten years numerical models, based on these equations, have been published; such as ABBOTT et. al. , HAUGUEL and SC
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ito, Masahiro, and Yoshito Tsuchiya. "REPRODUCTION MODELS OF BEACH CHANGE BY STORM WAVES." Coastal Engineering Proceedings 1, no. 21 (January 29, 1988): 115. http://dx.doi.org/10.9753/icce.v21.115.

Повний текст джерела
Анотація:
This paper presents a technique to reproduce, by a twodimensional moveable-bed model, beach change due to the timedependent storm waves which are generated by the passage of an atmospheric depression. In the model test, scaling conditions for sand grain-size, vertical and horizontal lengths, and wave height and period characteristics were established by applying the authors' scale-model relationship which was reported; and wave duration time also was decided. A method of employing regular waves in the model to represent irregular waves in the field is proposed. From the results, it was shown t
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kichenassamy, Satyanad. "Existence of solitary waves for water-wave models." Nonlinearity 10, no. 1 (January 1, 1997): 133–51. http://dx.doi.org/10.1088/0951-7715/10/1/009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Niedzwecki, John M., Eric W. Sandt, and Oriol R. Rijken. "Slepian models for waves and wave-structure interaction." Engineering Structures 17, no. 10 (December 1995): 696–704. http://dx.doi.org/10.1016/0141-0296(95)00060-k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Wave models"

1

Gidel, Floriane Marie Pauline. "Variational water-wave models and pyramidal freak waves." Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/21730/.

Повний текст джерела
Анотація:
A little-known fact is that, every week, two ships weighing over 100 tonnes sink in oceans, sometimes with tragic consequences. This alarming observation suggests that maritime structures may be struck by stronger waves than those they were designed to withstand. These are the legendary rogue (or freak) waves, i.e., suddenly appearing huge waves that have traumatised mariners for centuries and currently remain an unavoidable threat to ships, and to their crews and passengers. Thus motivated, an EU-funded collaboration between the Department of Applied Mathematics (Leeds University) and the Mar
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yildirim, Baran. "Acoustic Wave Analysis Using Different Wave Propagation Models." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609527/index.pdf.

Повний текст джерела
Анотація:
In this study in order to simulate the acoustic waves, Ray Theory and Normal Mode models are used. These methods are analyzed using MATLAB simulation tool<br>differences between two models are examined and a region with a known bottom profile and sound velocity profiles is investigated. The Ray Theory is used in acoustic systems which is the one of the applications of wave modeling. Ray theory is solved with standard Ordinary Differential Equation solvers and normal mode with finite element method. Different bottom profiles and sound velocity profiles previously taken are interpolated to form
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mei, Zhongtao. "Wave Functions of Integrable Models." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1530880774625297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Du, Chenguang. "How Well Can Two-Wave Models Recover the Three-Wave Second Order Latent Model Parameters?" Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103856.

Повний текст джерела
Анотація:
Although previous studies on structural equation modeling (SEM) have indicated that the second-order latent growth model (SOLGM) is a more appropriate approach to longitudinal intervention effects, its application still requires researchers to collect at least three-wave data (e.g. randomized pretest, posttest, and follow-up design). However, in some circumstances, researchers can only collect two-wave data for resource limitations. With only two-wave data, the SOLGM can not be identified and researchers often choose alternative SEM models to fit two-wave data. Recent studies show that the two
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hill, David J. Saffman P. G. Saffman P. G. "Part I. Vortex dynamics in wake models. : Part II. Wave generation /." Diss., Pasadena, Calif. : California Institute of Technology, 1998. http://resolver.caltech.edu/CaltechETD:etd-04052007-141032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Murray, Stuart William. "Wave radiation in simple geophysical models." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7922.

Повний текст джерела
Анотація:
Wave radiation is an important process in many geophysical flows. In particular, it is by wave radiation that flows may adjust to a state for which the dynamics is slow. Such a state is described as “balanced”, meaning there is an approximate balance between the Coriolis force and horizontal pressure gradients, and between buoyancy and vertical pressure gradients. In this thesis, wave radiation processes relevant to these enormously complex flows are studied through the use of some highly simplified models, and a parallel aim is to develop accurate numerical techniques for doing so. This thesi
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Timmermans, Ben. "Uncertainty in numerical wind-wave models." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/378996/.

Повний текст джерела
Анотація:
The modelling of ocean waves is now carried out routinely at meteorological centres around the world. However, little is know about the source of the uncertainty in the predictions of waves produced, and sources can be numerous depending on the specific application. Historically it was felt that the dominant source of uncertainty originated from incomplete knowledge and expression of forcing winds. However more recent studies have focused on the underlying physical processes and their representations, with some authors questioning whether the limitation of the current modelling approach has be
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Clavica, Francesco. "Computational and experimental time domain, one dimensional models of air wave propagation in human airways." Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/9622.

Повний текст джерела
Анотація:
The scientific literature on airflow in the respiratory system is usually associated with rigid ducts. Many studies have been conducted in the frequency domain to assess respiratory system mechanics. Time-domain analyses appear more independent from the hypotheses of periodicity, required by frequency analysis, providing data that are simpler to interpret since features can be easily associated to time. However, the complexity of the bronchial tree makes 3-D simulations too expensive computationally, limiting the analysis to few generations. 1-D modelling in space-time variables has been exten
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Alves, Jose Henrique Gomes de Mattos Mathematics UNSW. "A Saturation-Dependent Dissipation Source Function for Wind-Wave Modelling Applications." Awarded by:University of New South Wales. Mathematics, 2000. http://handle.unsw.edu.au/1959.4/17786.

Повний текст джерела
Анотація:
This study reports on a new formulation of the spectral dissipation source term Sds for wind-wave modelling applications. This new form of Sds features a nonlinear dependence on the local wave spectrum, expressed in terms of the azimuthally integrated saturation parameter B(k)=k^4 F(k). The basic form of this saturation-dependent Sds is based on a new framework for the onset of deep-water wave breaking due to the nonlinear modulation of wave groups. The new form of Sds is succesfully validated through numerical experiments that include exact nonlinear computations of fetch-limited wind-wave ev
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Poon, Chun-Kin, and 潘俊健. "Numerical simulation of coupled long wave-short wave system with a mismatch in group velocities." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B35381334.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Wave models"

1

Kashchenko, Serguey. Models of Wave Memory. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19866-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jeng, Dong-Sheng. Porous Models for Wave-seabed Interactions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Piechna, Janusz. Wave machines, models, and numerical simulation. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jeng, Dong-Sheng. Porous Models for Wave-seabed Interactions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33593-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Leeuwen, P. J. van. Low frequency wave generation due to breaking wind waves. [Delft]: Faculty of Civil Engineering, Delft University of Technology, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

(Firm), Knovel, ed. Waves and wave forces on coastal and ocean structures. Hackensack, N.J: World Scientific, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Berezin, I︠U︡ A. Modelling non-linear wave processes. Utrecht, The Netherlands: VNU Science Press, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Suttles, John T. Angular radiation models for earth-atmosphere system. Hampton, Va: Langley Research Center, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Guinot, Vincent. Wave propagation in fluids: Models and numerical techniques. Hoboken, NJ: ISTE/Wiley, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Guinot, Vincent. Wave propagation in fluids: Models and numerical techniques. 2nd ed. London: ISTE, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Частини книг з теми "Wave models"

1

Sandev, Trifce, and Živorad Tomovski. "Fractional Wave Equations." In Fractional Equations and Models, 213–45. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29614-8_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ebert, Marcelo R., and Michael Reissig. "Semilinear Classical Wave Models." In Methods for Partial Differential Equations, 351–65. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-66456-9_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Khandekar, M. L. "Wave Prediction: Spectral Models." In Operational Analysis and Prediction of Ocean Wind Waves, 68–103. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4613-8952-1_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Khandekar, M. L. "Validation of Wave Models." In Operational Analysis and Prediction of Ocean Wind Waves, 127–64. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4613-8952-1_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Buldakov, Eugeny. "Wave Propagation Models for Numerical Wave Tanks." In Advanced Numerical Modelling of Wave Structure Interactions, 36–68. First edition. 1 Boca Raton, FL : CRC Press/Taylor & Francis: CRC Press, 2020. http://dx.doi.org/10.1201/9781351119542-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tanguy, Jean-Michel, Jean-Michel Lefèvre, and Philippe Sergent. "Wave Generation and Coastal Current Models." In Mathematical Models, 235–333. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557853.ch8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Doyle, James F. "Higher Order Waveguide Models." In Wave Propagation in Structures, 123–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59679-8_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Van Groesen, E. "Wave groups in uni-directional surface-wave models." In Floating, Flowing, Flying, 215–26. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1564-5_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Glazman, Roman E. "Scale-Dependent Ocean Wave Turbulence." In Stochastic Models in Geosystems, 97–114. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4613-8500-4_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ockendon, Hilary, and John R. Ockendon. "Models for Linear Wave Propagation." In Texts in Applied Mathematics, 23–57. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-3381-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Wave models"

1

Yeh, Harry, Philip Liu, and Costas Synolakis. "Long-Wave Runup Models." In Second International Workshop on Long-Wave Runup Models. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814530330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hanyga, Andrzej. "Fractional diffusion and wave equations." In Mathematical Models and Methods for Smart Materials. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776273_0017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nagy, Lajos, Zoltan Sandor, Zoltan Szabo, and Tamas Csaba. "Urban Wave Propagation Models." In 26th European Microwave Conference, 1996. IEEE, 1996. http://dx.doi.org/10.1109/euma.1996.337581.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pákozdi, Csaba, Silas Spence, Sebastien Fouques, Maxime Thys, Hagbart S. Alsos, Erin E. Bachynski, Hans Bihs, and Arun Kamath. "Nonlinear Wave Load Models for Extra Large Monopiles." In ASME 2018 1st International Offshore Wind Technical Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/iowtc2018-1083.

Повний текст джерела
Анотація:
As the offshore wind industry moves toward deeper water, with larger turbines and correspondingly larger monopile foundations, nonlinear loads from steep waves may become more important for the ULS design. Nonlinear numerical wave tanks (NWTs) for generating wave kinematics, to be used as input to i.e. Morison’s equation, have been applied by several research groups, but further validation of the obtained wave kinematics is needed. Furthermore, the load models for larger diameters also need to be evaluated. The present work first compares the wave elevation results from existing two-dimensiona
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Craig, Walter, Philippe Guyenne, and Henrik Kalisch. "Hamiltonian Formulation and Long Wave Models for Internal Waves." In ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29314.

Повний текст джерела
Анотація:
We derive a Hamiltonian formulation of the problem of a dynamic free interface (with rigid lid upper boundary conditions), and of a free interface coupled with a free surface, this latter situation occurring more commonly in experiment and in nature. Based on the linearized equations, we highlight the discrepancies between the cases of rigid lid and free surface upper boundary conditions, which in some circumstances can be significant. We also derive systems of nonlinear dispersive long wave equations in the large amplitude regime, and compute solitary wave solutions of these equations.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dallinga, R. P., and G. J. Feikema. "Wave Models In Ship Design." In Seakeeping and Weather. RINA, 1995. http://dx.doi.org/10.3940/rina.seak.1995.17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Seiffert, Betsy R., and Guillaume Ducrozet. "A Comparative Study of Wave Breaking Models in a High-Order Spectral Model." In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-61664.

Повний текст джерела
Анотація:
We examine the implementation of two different wave breaking models into the nonlinear potential flow solver HOS-NWT. HOS-NWT is a computationally efficient, open source code that solves for surface elevation in a numerical wave tank using the High-Order Spectral (HOS) method [1]. The first model is a combination of a kinematic wave breaking onset criteria proposed by Barthelemey, et al. [2] and validated by Saket, et al. [3], and an energy dissipation mechanism proposed by Tian, et al. [4, 5]. The wave breaking onset parameter is based on the ratio of local energy flux velocity to the local c
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Caˆndido, Jose´, Henrique Oliveira Pires, and M. Teresa Pontes. "Verification of 2D Wave Spectra Produced by Wave Models." In ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/omae2004-51368.

Повний текст джерела
Анотація:
In this paper a methodology for assessing the accuracy of full directional wave spectra produced by wind-wave models is presented and tested. This methodology includes graphical and parametric comparisons of model directional spectra against data obtained from directional buoys. Results of the verification of 3rd generation wind-wave models using directional buoy data show that in general the accuracy of model directional results is good. In addition it was found that this methodology is well suited to identify the occurrence of different wave systems in the same sea state, namely swells withi
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Brandini, Carlo, and Stéphan T. Grilli. "Three-Dimensional Wave Focusing in Fully Nonlinear Wave Models." In Fourth International Symposium on Ocean Wave Measurement and Analysis. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40604(273)112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vledder, Gerbrant Ph van, Thomas H. C. Herbers, Robert J. Jensen, Don T. Resio, and Barbara Tracy. "Modelling of Non-Linear Quadruplet Wave-Wave Interactions in Operational Wave Models." In 27th International Conference on Coastal Engineering (ICCE). Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40549(276)62.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Wave models"

1

Camassa, R., W. Choi, D. D. Holm, C. D. Levermore, and Y. Lvov. Dispersive internal long wave models. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/674984.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Venakides, S., M. A. Haider, and V. Papanicolaou. Wave Propagation in Photonic Crystal Models. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada392989.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Stevens, J. L., D. A. Adams, M. G. Eneva, and G. B. Baker. Improved Surface Wave Dispersion Models and Amplitude Measurements. Fort Belvoir, VA: Defense Technical Information Center, October 2003. http://dx.doi.org/10.21236/ada422916.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Walker, David T. SAR Assimilation for Near-Shore Spectral Wave Models. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada620256.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rogers, W. E., James M. Kaihatu, and Y. L. Hsu. Review and Verification of Numerical Wave Models for Near Coastal Areas - Part 2: Verification of Near Coastal Numerical Wave Models. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada339125.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vledder, Gerbrant Ph Van. Improved Parameterizations of Nonlinear Four Wave Interactions for Application In Operational Wave Prediction Models. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada613278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ketcham, Stephen A., Minh Q. Phan, Richard S. Darling, and Mihan H. McKenna. Realization of State-Space Models for Wave Propagation Simulations. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada563924.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bratos, Steven M. Comparison Between Third- and Second-Generation Ocean Wave Models. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada353603.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yang, Zhaoqing, Wei-Cheng Wu, and Taiping Wang. Model Test Bed for Evaluating Unstructured-Grid Wave Models for Resource Assessment and Characterization. Office of Scientific and Technical Information (OSTI), October 2017. http://dx.doi.org/10.2172/1630729.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Stevens, Jeffry L., David A. Adams, G. E. Baker, Mariana G. Eneva, and Heming Xu. Improved Surface Wave Dispersion Models, Amplitude Measurements and Azimuth Estimates. Fort Belvoir, VA: Defense Technical Information Center, March 2005. http://dx.doi.org/10.21236/ada438946.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!