Добірка наукової літератури з теми "Wiener polynomial"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Wiener polynomial".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Wiener polynomial"

1

AbuGhneim, Omar A., Hasan Al-Ezeh, and Mahmoud Al-Ezeh. "The Wiener Polynomial of thekthPower Graph." International Journal of Mathematics and Mathematical Sciences 2007 (2007): 1–6. http://dx.doi.org/10.1155/2007/24873.

Повний текст джерела
Анотація:
We presented a formula for the Wiener polynomial of thekthpower graph. We use this formula to find the Wiener polynomials of thekthpower graphs of paths, cycles, ladder graphs, and hypercubes. Also, we compute the Wiener indices of these graphs.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

GOREV, Vyacheslav, Alexander GUSEV, Valerii KORNIIENKO, Yana SHEDLOVSKA, and Ivan LAKTIONOV. "POLYNOMIAL SOLUTIONS FOR THE KOLMOGOROV–WIENER PREDICTION OF MODELED SMOOTHED HEAVY-TAIL PROCESS." Information Technology: Computer Science, Software Engineering and Cyber Security, no. 1 (June 12, 2024): 28–34. http://dx.doi.org/10.32782/it/2024-1-4.

Повний текст джерела
Анотація:
Nowadays telecommunication traffic in systems with data packet transfer is considered as a heavy-tail random process. In a couple of rather simple models traffic is considered to be stationary one. In our recent papers we generated modeled heavy-tail data, which is based on the smoothing of the fractional Gaussian noise. In particular, the applicability if the continuous Kolmogorov–Wiener filter to the prediction of such data was investigated, the corresponding Wiener–Hopf integral equation was solved on the basis of the truncated Walsh function expansion. However, a question occurs – may anot
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jabir, Azeez Lafta, AbdulJalil M. Khalaf, and Emad A. Jaffar AL-Mulla. "Hosoya Polynomials Of Some Semiconducotors." Journal of Kufa for Mathematics and Computer 2, no. 2 (2014): 49–55. http://dx.doi.org/10.31642/jokmc/2018/020208.

Повний текст джерела
Анотація:
The Hosoya polynomial of a graph G is a graphical invariant polynomial that its first derivative at x = 1 is equal to the Wiener index and second derivative at x =1 is equal to the hyperWiener index. In this paper we compute the Hosoya polynomial of some semiconducotors [Caesium Chloride, Perovskite structure, Zinc blende structure, Rock-salt(Nacl)structure, Wurtzite structure, Chalcopyrite structure], Wiener index and hyper-Wiener index for then.The Hosoya polynomial of a graph G is a graphical invariant polynomial that its first derivative at x = 1 is equal to the Wiener index and second
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gorev, Vyacheslav, Alexander Gusev, and Valerii Korniienko. "INVESTIGATION OF THE KOLMOGOROV-WIENER FILTER FOR CONTINUOUS FRACTAL PROCESSES ON THE BASIS OF THE CHEBYSHEV POLYNOMIALS OF THE FIRST KIND." Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 10, no. 1 (2020): 58–61. http://dx.doi.org/10.35784/iapgos.912.

Повний текст джерела
Анотація:
This paper is devoted to the investigation of the Kolmogorov-Wiener filter weight function for continuous fractal processes with a power-law structure function. The corresponding weight function is sought as an approximate solution to the Wiener-Hopf integral equation. The truncated polynomial expansion method is used. The solution is obtained on the basis of the Chebyshev polynomials of the first kind. The results are compared with the results of the authors’ previous investigations devoted to the same problem where other polynomial sets were used. It is shown that different polynomial sets p
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cheng, Zhong-Lin, Ashaq Ali, Haseeb Ahmad, Asim Naseem, and Maqbool Ahmad Chaudhary. "Hosoya and Harary Polynomials of Hourglass and Rhombic Benzenoid Systems." Journal of Chemistry 2020 (April 9, 2020): 1–14. http://dx.doi.org/10.1155/2020/5398109.

Повний текст джерела
Анотація:
In the fields of chemical graph theory, topological index is a type of a molecular descriptor that is calculated based on the graph of a chemical compound. In 1947, Harry Wiener introduced “path number” which is now known as Wiener index and is the oldest topological index related to molecular branching. Hosoya polynomial plays a vital role in determining Wiener index. In this report, we compute the Hosoya polynomials for hourglass and rhombic benzenoid systems and recover Wiener and hyper-Wiener indices from them.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

GOREV, Vyacheslav, Alexander GUSEV, and Valerii KORNIIENKO. "ON THE ACCURACY OF SOME APPROXIMATIONS FOR THE KOLMOGOROV–WIENER FILTER WEIGHT FUNCTION FOR POWER–LAW STRUCTURE FUNCTION PROCESSES." Information Technology: Computer Science, Software Engineering and Cyber Security, no. 1 (September 8, 2022): 9–13. http://dx.doi.org/10.32782/it/2022-1-2.

Повний текст джерела
Анотація:
The paper is devoted to the investigation of the accuracy of some polynomial approximations for the Kolmogorov– Wiener filter weight function. The corresponding filter is applied to the prediction of stationary random processes with a power-law structure function. In our previous investigations the Kolmogorov–Wiener filter weight function was obtained on the basis of the truncated polynomial expansion method based on the Chebyshev polynomials of the first kind. It was obtained that some approximations lead to good results; however, some approximations (i.e. the approximations of 9–15 polynomia
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sheikh, Umber, Sidra Rashid, Cenap Ozel, and Richard Pincak. "On Hosoya Polynomial and Subsequent Indices of C4C8(R) and C4C8(S) Nanosheets." Symmetry 14, no. 7 (2022): 1349. http://dx.doi.org/10.3390/sym14071349.

Повний текст джерела
Анотація:
Chemical structures are mathematically modeled using chemical graphs. The graph invariants including algebraic polynomials and topological indices are related to the topological structure of molecules. Hosoya polynomial is a distance based algebraic polynomial and is a closed form of several distance based topological indices. This article is devoted to compute the Hosoya polynomial of two different atomic configurations (C4C8(R) and C4C8(S)) of C4C8 Carbon Nanosheets. Carbon nanosheets are the most stable, flexible structure of uniform thickness and admit a vast range of applications. The Hos
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chen, Lian, Abid Mehboob, Haseeb Ahmad, Waqas Nazeer, Muhammad Hussain, and M. Reza Farahani. "Hosoya and Harary Polynomials of TOX(n),RTOX(n),TSL(n) and RTSL(n)." Discrete Dynamics in Nature and Society 2019 (July 16, 2019): 1–18. http://dx.doi.org/10.1155/2019/8696982.

Повний текст джерела
Анотація:
In the fields of chemical graph theory, topological index is a type of a molecular descriptor that is calculated based on the graph of a chemical compound. In 1947, Wiener introduced “path number” which is now known as Wiener index and is the oldest topological index related to molecular branching. Hosoya polynomial plays a vital role in determining Wiener index. In this report, we computed the Hosoya and the Harary polynomials for TOX(n),RTOX(n),TSL(n), and RTSL(n) networks. Moreover, we computed serval distance based topological indices, for example, Wiener index, Harary index, and multiplic
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Azari, Mahdieh, and Ali Iranmanesh. "Joins, coronas and their vertex-edge Wiener polynomials." Tamkang Journal of Mathematics 47, no. 2 (2016): 163–78. http://dx.doi.org/10.5556/j.tkjm.47.2016.1824.

Повний текст джерела
Анотація:
The vertex-edge Wiener index of a simple connected graph $G$ is defined as the sum of distances between vertices and edges of $G$. The vertex-edge Wiener polynomial of $G$ is a generating function whose first derivative is a $q-$analog of the vertex-edge Wiener index. Two possible distances $D_1(u, e|G)$ and $D_2(u, e|G)$ between a vertex $u$ and an edge $e$ of $G$ can be considered and corresponding to them, the first and second vertex-edge Wiener indices of $G$, and the first and second vertex-edge Wiener polynomials of $G$ are introduced. In this paper, we study the behavior of these indice
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liu, Yonghong, Abdul Rauf, AdnanAslam, Saira Ishaq та Abudulai Issa. "Computing Wiener and Hyper-Wiener Indices of Zero-Divisor Graph of ℤ ℊ 3 × ℤ I 1 I 2". Journal of Function Spaces 2022 (19 вересня 2022): 1–11. http://dx.doi.org/10.1155/2022/2046173.

Повний текст джерела
Анотація:
Let S = ℤ ℊ 3 × ℤ I 1 I 2 be a commutative ring where ℊ , I 1 and I 2 are positive prime integers with I 1 ≠ I 2 . The zero-divisor graph assigned to S is an undirected graph, denoted as Y S with vertex set V( Y (S)) consisting of all Zero-divisor of the ring S and for any c, d ∈ V( Y (S)), c d ∈ E Y S if and only if cd =0. A topological index/descriptor is described as a topological-invariant quantity that transforms a molecular graph into a mathematical real number. In this paper, we have computed distance-based polynomials of Y R i-e Hosoya polynomial, Harary polynomial, and the topological
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Wiener polynomial"

1

Sreenivasa, Murthy A. "Nonstationary Techniques For Signal Enhancement With Applications To Speech, ECG, And Nonuniformly-Sampled Signals." Thesis, 2012. http://etd.iisc.ac.in/handle/2005/2452.

Повний текст джерела
Анотація:
For time-varying signals such as speech and audio, short-time analysis becomes necessary to compute specific signal attributes and to keep track of their evolution. The standard technique is the short-time Fourier transform (STFT), using which one decomposes a signal in terms of windowed Fourier bases. An advancement over STFT is the wavelet analysis in which a function is represented in terms of shifted and dilated versions of a localized function called the wavelet. A specific modeling approach particularly in the context of speech is based on short-time linear prediction or short-time Wiene
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sreenivasa, Murthy A. "Nonstationary Techniques For Signal Enhancement With Applications To Speech, ECG, And Nonuniformly-Sampled Signals." Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2452.

Повний текст джерела
Анотація:
For time-varying signals such as speech and audio, short-time analysis becomes necessary to compute specific signal attributes and to keep track of their evolution. The standard technique is the short-time Fourier transform (STFT), using which one decomposes a signal in terms of windowed Fourier bases. An advancement over STFT is the wavelet analysis in which a function is represented in terms of shifted and dilated versions of a localized function called the wavelet. A specific modeling approach particularly in the context of speech is based on short-time linear prediction or short-time Wiene
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Wiener polynomial"

1

Rawlins, A. D. A note on polynomial diagonalization and Wiener-Hopf factorization of 2x2 matrices. Brunel University, Department of Mathematics and Statistics, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Maciej Ławryńczuk. Nonlinear Predictive Control Using Wiener Models: Computationally Efficient Approaches for Polynomial and Neural Structures. Springer International Publishing AG, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ławryńczuk, Maciej. Nonlinear Predictive Control Using Wiener Models: Computationally Efficient Approaches for Polynomial and Neural Structures. Springer International Publishing AG, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Peccati, Giovanni, and Murad S. Taqqu. Wiener Chaos : Moments, Cumulants and Diagrams: A survey with Computer Implementation. Springer, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wiener Chaos : Moments, Cumulants and Diagrams: A Survey with Computer Implementation. Springer Milan, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Wiener polynomial"

1

Janczak, Andrzej. "4 Polynomial Wiener models." In Identification of Nonlinear Systems Using Neural Networks and Polynomial Models. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-31596-4_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Janczak, Andrzej. "2 Neural network Wiener models." In Identification of Nonlinear Systems Using Neural Networks and Polynomial Models. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-31596-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gorev, V., A. Gusev, V. Korniienko, and M. Aleksieiev. "Kolmogorov–Wiener Filter Weight Function for Stationary Traffic Forecasting: Polynomial and Trigonometric Solutions." In Current Trends in Communication and Information Technologies. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76343-5_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pillonetto, Gianluigi, Tianshi Chen, Alessandro Chiuso, Giuseppe De Nicolao, and Lennart Ljung. "Regularization for Nonlinear System Identification." In Regularized System Identification. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95860-2_8.

Повний текст джерела
Анотація:
AbstractIn this chapter we review some basic ideas for nonlinear system identification. This is a complex area with a vast and rich literature. One reason for the richness is that very many parameterizations of the unknown system have been suggested, each with various proposed estimation methods. We will first describe with some details nonparametric techniques based on Reproducing Kernel Hilbert Space theory and Gaussian regression. The focus will be on the use of regularized least squares, first equipped with the Gaussian or polynomial kernel. Then, we will describe a new kernel able to acco
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Izonin, Ivan, Michal Greguš ml., Roman Tkachenko, Mykola Logoyda, Oleksandra Mishchuk, and Yurii Kynash. "SGD-Based Wiener Polynomial Approximation for Missing Data Recovery in Air Pollution Monitoring Dataset." In Advances in Computational Intelligence. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20521-8_64.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rodman, Leiba. "Wiener-Hopf Factorization." In An Introduction to Operator Polynomials. Birkhäuser Basel, 1989. http://dx.doi.org/10.1007/978-3-0348-9152-3_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Major, Péter. "Wick Polynomials." In Multiple Wiener-Itô Integrals. Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02642-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Russo, Francesco, and Pierre Vallois. "Hermite Polynomials and Wiener Chaos Expansion." In Stochastic Calculus via Regularizations. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09446-0_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Peccati, Giovanni, and Murad S. Taqqu. "Some facts about Charlier polynomials." In Wiener Chaos: Moments, Cumulants and Diagrams. Springer Milan, 2011. http://dx.doi.org/10.1007/978-88-470-1679-8_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ellis, Robert L., Israel Gohberg, and David C. Lay. "Distribution of Zeros of Matrix-Valued Continuous Analogues of Orthogonal Polynomials." In Continuous and Discrete Fourier Transforms, Extension Problems and Wiener-Hopf Equations. Birkhäuser Basel, 1992. http://dx.doi.org/10.1007/978-3-0348-8596-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Wiener polynomial"

1

Marzougui, Soumaya, Asma Atitallah, Saida Bedoui, and Kamel Abderrahim. "Fractional-order Polynomial Wiener System Identification." In 2019 International Conference on Signal, Control and Communication (SCC). IEEE, 2019. http://dx.doi.org/10.1109/scc47175.2019.9116155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Jiwei, Chen Wu, Enming Shi, Wenzhuo Zhi, Bi Zhang, and Xingang Zhao. "Adaptive Control of Wiener Systems with Polynomial Description." In 2023 China Automation Congress (CAC). IEEE, 2023. http://dx.doi.org/10.1109/cac59555.2023.10451653.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bottegai, Giulio, Ricardo Castro-Garcia, and Johan A. K. Suykens. "On the identification of Wiener systems with polynomial nonlinearity." In 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE, 2017. http://dx.doi.org/10.1109/cdc.2017.8264635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Janczak, Andrzej. "Instrumental variables approach to identification of polynomial wiener systems." In 2003 European Control Conference (ECC). IEEE, 2003. http://dx.doi.org/10.23919/ecc.2003.7085285.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Janczak, Andrzej. "Least Squares and Instrumental Variables Identification of Polynomial Wiener Systems." In 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR). IEEE, 2018. http://dx.doi.org/10.1109/mmar.2018.8486049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Smirnov, Andrei V. "Application of Wiener polynomial decomposition to power amplifier linearization problem." In 2017 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SINKHROINFO). IEEE, 2017. http://dx.doi.org/10.1109/sinkhroinfo.2017.7997557.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Qu, Dong, Zhibing Liu, and Chuanju Xu. "The Wiener-Askey Polynomial Chaos for Diffusion Problems with Uncertainty." In 2010 International Conference on Computational and Information Sciences (ICCIS). IEEE, 2010. http://dx.doi.org/10.1109/iccis.2010.209.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lamia, Sersour, Tounsia Djamah, Karima Hammar, and Maamar Bettayeb. "Wiener system identification using polynomial non linear state space model." In 2015 3rd International Conference on Control, Engineering & Information Technology (CEIT). IEEE, 2015. http://dx.doi.org/10.1109/ceit.2015.7233069.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lacy, S. L., and D. S. Bernstein. "Identification of FIR Wiener systems with unknown, noninvertible, polynomial nonlinearities." In Proceedings of 2002 American Control Conference. IEEE, 2002. http://dx.doi.org/10.1109/acc.2002.1023129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tiels, Koen, and Johan Schoukens. "From coupled to decoupled polynomial representations in parallel Wiener-Hammerstein models." In 2013 IEEE 52nd Annual Conference on Decision and Control (CDC). IEEE, 2013. http://dx.doi.org/10.1109/cdc.2013.6760664.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Wiener polynomial"

1

Xiu, Dongbin, and George E. Karniadakis. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations. Defense Technical Information Center, 2003. http://dx.doi.org/10.21236/ada460654.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!