Добірка наукової літератури з теми "XopX"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "XopX".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "XopX":

1

Salomon, Dor, Daniel Dar, Shivakumar Sreeramulu, and Guido Sessa. "Expression of Xanthomonas campestris pv. vesicatoria Type III Effectors in Yeast Affects Cell Growth and Viability." Molecular Plant-Microbe Interactions® 24, no. 3 (March 2011): 305–14. http://dx.doi.org/10.1094/mpmi-09-10-0196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The gram-negative bacterium Xanthomonas campestris pv. vesicatoria is the causal agent of spot disease in tomato and pepper. X. campestris pv. vesicatoria pathogenicity depends on a type III secretion system delivering effector proteins into the host cells. We hypothesized that some X. campestris pv. vesicatoria effectors target conserved eukaryotic cellular processes and examined phenotypes induced by their expression in yeast. Out of 21 effectors tested, 14 inhibited yeast growth in normal or stress conditions. Viability assay revealed that XopB and XopF2 attenuated cell proliferation, while AvrRxo1, XopX, and XopE1 were cytotoxic. Inspection of morphological features and DNA content of yeast cells indicated that cytotoxicity caused by XopX and AvrRxo1 was associated with cell-cycle arrest at G0/1. Interestingly, XopB, XopE1, XopF2, XopX, and AvrRxo1 that inhibited growth in yeast also caused phenotypes, such as chlorosis and cell death, when expressed in either host or nonhost plants. Finally, the ability of several effectors to cause phenotypes in yeast and plants was dependent on their putative catalytic residues or localization motifs. This study supports the use of yeast as a heterologous system for functional analysis of X. campestris pv. vesicatoria type III effectors, and sets the stage for identification of their eukaryotic molecular targets and modes of action.
2

Li, Shuai, Yanping Wang, Shanzhi Wang, Anfei Fang, Jiyang Wang, Lijuan Liu, Kang Zhang, Yuling Mao, and Wenxian Sun. "The Type III Effector AvrBs2 in Xanthomonas oryzae pv. oryzicola Suppresses Rice Immunity and Promotes Disease Development." Molecular Plant-Microbe Interactions® 28, no. 8 (August 2015): 869–80. http://dx.doi.org/10.1094/mpmi-10-14-0314-r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak, is one of the most important bacterial pathogens in rice. However, little is known about the functions of individual type III effectors in virulence and pathogenicity of X. oryzae pv. oryzicola. Here, we examined the effect of the mutations of 23 putative nontranscription activator-like effector genes on X. oryzae pv. oryzicola virulence. The avrBs2 knock-out mutant was significantly attenuated in virulence to rice. In contrast, the xopAA deletion caused enhanced virulence to a certain rice cultivar. It was also demonstrated that six putative effectors, including XopN, XopX, XopA, XopY, XopF1, and AvrBs2, caused the hypersensitive response on nonhost Nicotiana benthamiana leaves. Virulence function of AvrBs2 was further confirmed by transgenic technology. Pathogen-associated molecular pattern–triggered immune responses including the generation of reactive oxygen species and expression of pathogenesis-related genes were strongly suppressed in the AvrBs2-expressing transgenic rice lines. Although not inhibiting flg22-induced activation of mitogen-activated protein kinases, heterologous expression of AvrBs2 greatly promotes disease progression in rice caused by two important bacterial pathogens X. oryzae pvs. oryzae and oryzicola. Collectively, these results indicate that AvrBs2 is an essential virulence factor that contributes to X. oryzae pv. oryzicola virulence through inhibiting defense responses and promoting bacterial multiplication in monocot rice.
3

Stork, William, Jung-Gun Kim, and Mary Beth Mudgett. "Functional Analysis of Plant Defense Suppression and Activation by the Xanthomonas Core Type III Effector XopX." Molecular Plant-Microbe Interactions® 28, no. 2 (February 2015): 180–94. http://dx.doi.org/10.1094/mpmi-09-14-0263-r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Many phytopathogenic type III secretion effector proteins (T3Es) have been shown to target and suppress plant immune signaling but perturbation of the plant immune system by T3Es can also elicit a plant response. XopX is a “core” Xanthomonas T3E that contributes to growth and symptom development during Xanthomonas euvesicatoria infection of tomato but its functional role is undefined. We tested the effect of XopX on several aspects of plant immune signaling. XopX promoted ethylene production and plant cell death (PCD) during X. euvesicatoria infection of susceptible tomato and in transient expression assays in Nicotiana benthamiana, which is consistent with its requirement for the development of X. euvesicatoria-induced disease symptoms. Additionally, although XopX suppressed flagellin-induced reactive oxygen species, it promoted the accumulation of pattern-triggered immunity (PTI) gene transcripts. Surprisingly, XopX coexpression with other PCD elicitors resulted in delayed PCD, suggesting antagonism between XopX-dependent PCD and other PCD pathways. However, we found no evidence that XopX contributed to the suppression of effector-triggered immunity during X. euvesicatoria–tomato interactions, suggesting that XopX's primary virulence role is to modulate PTI. These results highlight the dual role of a core Xanthomonas T3E in simultaneously suppressing and activating plant defense responses.
4

Sinha, Dipanwita, Mahesh Kumar Gupta, Hitendra Kumar Patel, Ashish Ranjan, and Ramesh V. Sonti. "Cell Wall Degrading Enzyme Induced Rice Innate Immune Responses Are Suppressed by the Type 3 Secretion System Effectors XopN, XopQ, XopX and XopZ of Xanthomonas oryzae pv. oryzae." PLoS ONE 8, no. 9 (September 26, 2013): e75867. http://dx.doi.org/10.1371/journal.pone.0075867.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Deb, Sohini, Palash Ghosh, Hitendra K. Patel, and Ramesh V. Sonti. "Interaction of the Xanthomonas effectors XopQ and XopX results in induction of rice immune responses." Plant Journal 104, no. 2 (August 19, 2020): 332–50. http://dx.doi.org/10.1111/tpj.14924.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Noël, Laurent, Frank Thieme, Jana Gäbler, Daniela Büttner, and Ulla Bonas. "XopC and XopJ, Two Novel Type III Effector Proteinsfrom Xanthomonas campestris pv.vesicatoria." Journal of Bacteriology 185, no. 24 (December 15, 2003): 7092–102. http://dx.doi.org/10.1128/jb.185.24.7092-7102.2003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACT Pathogenicity of the gram-negative plant pathogen Xanthomonas campestris pv. vesicatoria depends on a type III secretion (TTS) system which translocates bacterial effector proteins into the plant cell. Previous transcriptome analysis identified a genome-wide regulon of putative virulence genes that are coexpressed with the TTS system. In this study, we characterized two of these genes, xopC and xopJ. Both genes encode Xanthomonas outer proteins (Xops) that were shown to be secreted by the TTS system. In addition, type III-dependent translocation of both proteins into the plant cell was demonstrated using the AvrBs3 effector domain as a reporter. XopJ belongs to the AvrRxv/YopJ family of effector proteins from plant and animal pathogenic bacteria. By contrast, XopC does not share significant homology to proteins in the database. Sequence analysis revealed that the xopC locus contains several features that are reminiscent of pathogenicity islands. Interestingly, the xopC region is flanked by 62-bp inverted repeats that are also associated with members of the Xanthomonas avrBs3 effector family. Besides xopC, a second gene of the locus, designated hpaJ, was shown to be coexpressed with the TTS system. hpaJ encodes a protein with similarity to transglycosylases and to the Pseudomonas syringae pv. maculicola protein HopPmaG. HpaJ secretion and translocation by the X. campestris pv. vesicatoria TTS system was not detectable, which is consistent with its predicted Sec signal and a putative function as transglycosylase in the bacterial periplasm.
7

Dubrow, Zoe, Sukumaran Sunitha, Jung-Gun Kim, Chris D. Aakre, Anil Madhusoodana Girija, Guy Sobol, Doron Teper, et al. "Tomato 14-3-3 Proteins Are Required for Xv3 Disease Resistance and Interact with a Subset of Xanthomonas euvesicatoria Effectors." Molecular Plant-Microbe Interactions® 31, no. 12 (December 2018): 1301–11. http://dx.doi.org/10.1094/mpmi-02-18-0048-r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The 14-3-3 phospho-binding proteins with scaffolding activity play central roles in the regulation of enzymes and signaling complexes in eukaryotes. In plants, 14-3-3 isoforms are required for disease resistance and key targets of pathogen effectors. Here, we examined the requirement of the tomato (Solanum lycopersicum) 14-3-3 isoform (TFT) protein family for Xv3 disease resistance in response to the bacterial pathogen Xanthomonas euvesicatoria. In addition, we determined whether TFT proteins interact with the repertoire of X. euvesicatoria type III secretion effector proteins, including AvrXv3, the elicitor of Xv3 resistance. We show that multiple TFT contribute to Xv3 resistance. We also show that one or more TFT proteins physically interact with multiple effectors (AvrXv3, XopE1, XopE2, XopN, XopO, XopQ, and XopAU). Genetic analyses indicate that none of the identified effectors interfere with AvrXv3-elicited resistance into Xv3 tomato leaves; however, XopE1, XopE2, and XopO are required to suppress symptom development in susceptible tomato leaves. Phospho-peptide mapping revealed that XopE2 is phosphorylated at multiple residues in planta and residues T66, T131, and S334 are required for maximal binding to TFT10. Together, our data support the hypothesis that multiple TFT proteins are involved in immune signaling during X. euvesicatoria infection.
8

Noël, Laurent, Frank Thieme, Dirk Nennstiel, and Ulla Bonas. "Two Novel Type III-Secreted Proteins of Xanthomonas campestris pv. vesicatoria Are Encoded within the hrp Pathogenicity Island." Journal of Bacteriology 184, no. 5 (March 1, 2002): 1340–48. http://dx.doi.org/10.1128/jb.184.5.1340-1348.2002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACT The Hrp type III protein secretion system (TTSS) is essential for pathogenicity of gram-negative plant pathogen Xanthomonas campestris pv. vesicatoria. cDNA-amplified fragment length polymorphism and reverse transcription-PCR analyses identified new genes, regulated by key hrp regulator HrpG, in the regions flanking the hrp gene cluster. Sequence analysis revealed genes encoding HpaG, a predicted leucine-rich repeat-containing protein, the lysozyme-like HpaH protein, and XopA and XopD, which are similar in sequence to Hpa1 from Xanthomonas oryzae pv. oryzae and PsvA from Pseudomonas syringae, respectively. XopA and XopD (Xanthomonas outer proteins) are secreted by the Xanthomonas Hrp TTSS and thus represent putative effector proteins. Mutations in xopA, but not in xopD, resulted in reduced bacterial growth in planta and delayed plant reactions in susceptible and resistant host plants. Since the xopD promoter contains a putative hrp box, which is characteristic of hrpL-regulated genes in P. syringae and Erwinia spp., the gene was probably acquired by horizontal gene transfer. Interestingly, the regions flanking the hrp gene cluster also contain insertion sequences and genes for a putative transposase and a tRNAArg. These features suggest that the hrp gene cluster of X. campestris pv. vesicatoria is part of a pathogenicity island.
9

Metz, Matthew, Douglas Dahlbeck, Christina Q. Morales, Bassem Al Sady, Eszter T. Clark, and Brian J. Staskawicz. "The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana." Plant Journal 41, no. 6 (January 26, 2005): 801–14. http://dx.doi.org/10.1111/j.1365-313x.2005.02338.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Scheibner, Felix, Nadine Hartmann, Jens Hausner, Christian Lorenz, Anne-Katrin Hoffmeister, and Daniela Büttner. "The Type III Secretion Chaperone HpaB Controls the Translocation of Effector and Noneffector Proteins From Xanthomonas campestris pv. vesicatoria." Molecular Plant-Microbe Interactions® 31, no. 1 (January 2018): 61–74. http://dx.doi.org/10.1094/mpmi-06-17-0138-r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Pathogenicity of the gram-negative bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system, which translocates effector proteins into plant cells. Effector proteins contain N-terminal T3S and translocation signals and interact with the T3S chaperone HpaB, which presumably escorts effectors to the secretion apparatus. The molecular mechanisms underlying the recognition of effectors by the T3S system are not yet understood. In the present study, we analyzed T3S and translocation signals in the type III effectors XopE2 and XopJ from X. campestris pv. vesicatoria. Both effectors contain minimal translocation signals, which are only recognized in the absence of HpaB. Additional N-terminal signals promote translocation of XopE2 and XopJ in the wild-type strain. The results of translocation and interaction studies revealed that the interaction of XopE2 and XopJ with HpaB and a predicted cytoplasmic substrate docking site of the T3S system is not sufficient for translocation. In agreement with this finding, we show that the presence of an artificial HpaB-binding site does not promote translocation of the noneffector XopA in the wild-type strain. Our data, therefore, suggest that the T3S chaperone HpaB not only acts as an escort protein but also controls the recognition of translocation signals.

Дисертації з теми "XopX":

1

Wang, Zhibo. "Functional Characterization of Four Xanthomonas euvesicatoria Type III Effectors." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/104984.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Pepper and tomato, as two common, popular, and important vegetables grown worldwide, provide human beings with high quality fruit of flavor and aroma, and a high concentration of vitamins and antioxidants. Pepper and tomato production is frequently affected by various pathogens, including nematodes, fungi, and bacteria. Among those phytopathogens, Xanthomonas euvesicatoria (Xe) causes a severe bacterial spot (BS) disease on pepper and tomato. The BS disease could cause a loss of approximately 10% of the total crop yield in the world. Breeding tomato and pepper cultivars with improved BS disease resistance is one of the most important breeding goals. A better understanding of the virulence mechanism of Xe could help breeders design new strategies for resistance breeding. In this dissertation, we characterized the virulence and avirulence functions of four Xe Type Three Secretion Effectors (T3Es): Xe-XopQ, Xe-XopX, Xe-XopN, and Xe-avrRxo1. Xe-XopQ is a Xe T3E that functions as a determinant of host specificity. Here, we further explored the virulent and avirulent functions of Xe-XopQ. We identified another T3E Xe-XopX that could interact with XopQ and subsequently elicit the hypersensitive response in N. benthamiana in the Agrobacterium-mediated transient assay and Xe-mediated disease assay. The interaction is confirmed by bimolecular fluorescence complementation, co-immunoprecipitation and split luciferase assay. Intriguingly, we also revealed that XopX also interacts with multiple Xe T3Es including AvrBS2, XopN, XopB, and XopD in the co-IP assay. The virulent and avirulent functions of XopQ and AvrBS2 are compromised in the absence of Xe-XopX. Since XopX is conserved in diverse Xanthomonas spp., we speculate that Xe-XopX may have a general role required for the pathogenesis of Xe. Xe-XopN has been reported to be a T3E with virulence function via targeting host defense-related proteins, including atypical receptor-like kinase named TARK1 and a 14-3-3 protein to suppress the PAMPs (pathogen-associated molecular patterns) triggered immunity upon Xe colonization of tomato. In this study, we revealed additional virulence mechanisms of Xe-XopN, where Xe-XopN, is required for triggering the water-soaking symptom on Nicotiana benthamiana and pepper plants infected with Xe. In addition, we identified that XopN interacts with a transcription factor, NbVOZ, and represses the expression of NPR1, a key component of the basal defense. Therefore, XopN has a role in maintaining a water-affluent environment for better replication of Xe, and it can also interact with NbVOZ1/2 to regulate plant immunity. AvrRxo1, a T3E of Xanthomonas oryzae pv. oryzicola (Xoc), was previously identified to function as a NAD kinase. Here, we characterized a Xe T3E, Xe avrRxo1, that is a functional homologue of AvrRxo1, which is required for the full virulence of Xe to colonize the pepper and N. benthamiana plants. Overexpression of AvrRxo1 in bacterial or plant cells is toxic. Our group previously demonstrated AvrRxo1-ORF2 functions as an antitoxin that binds to AvrRxo1 to suppress its toxicity. In this study, we identified Xe4429 as the homologue of AvrRxo1-ORF2, which could interact with Xe-avrRxo1 to suppress its toxicity. We also revealed that Xe4429 could bind to the promoter of Xe-avrRxo1 and suppress its transcription. Therefore, we found Xe4429 encodes protein functions as an antitoxin and a transcription repressor in Xe bacterial cells.
Doctor of Philosophy
Peppers and tomatoes are two of the most important vegetables grown worldwide, providing humans with high quality of flavor and aroma, vitamins, and antioxidants. The pepper and tomato production is frequently threatened by various pathogens, including nematodes, fungi, and bacteria. Among those phytopathogens, Xanthomonas euvesicatoria (Xe) causes a severe bacterial spot (BS) disease on peppers and tomatoes. The BS disease can be easily identified due to the appearance of the dark, irregular, water-soaked areas on the leaf, which can cause approximately 10% loss of the total yield of peppers and tomatoes. Breeding tomato and pepper cultivars with improved BS disease resistance is one of the most critical breeding goals. A better understanding of the virulence mechanism of Xe could help breeders to design new strategies for resistance breeding. In my seminar, I will discuss the virulence and avirulence functions of Xe type three secretion (T3S) effectors: Xe XopN, Xe XopQ, and Xe XopX. In my study, I identified Xe XopN is a key factor that regulates the development of the water-soaking symptom on pepper plants infected with Xe. In addition, we revealed Xe XopN interacts with a transcription factor NbVOZ to regulate the expression of NbNPR1 and PR1 genes expression, which may also contribute to the development of water-soaking phenotype. In addition, I identified that Xe XopN could interact with a transcription factor, NbVOZ, and represses the expression of NbNPR1, a key component of the basal defense, and the pathogenesis-related gene PR1. Therefore, Xe XopN has a role in regulating a water-affluent environment to promote bacterial proliferation in the infected plant tissue. Xe XopQ is a Xe T3S effector that functions as a determinant of host specificity. In my study, I identified another T3S effector Xe XopX that could interact with Xe XopQ to trigger the defense response in Nicotiana benthamiana. I also confirmed Xe XopQ physically interacts with Xe XopX inside of plant cells by using bimolecular fluorescence complementation, co-immunoprecipitation and split luciferase assay. Intriguingly, Xe XopX could also interact with multiple Xe T3Es including AvrBS2 in a co-IP assay. The virulence and avirulent functions of Xe XopQ and AvrBS2 are compromised in the absence of Xe XopX.
2

Schulze, Sebastian [Verfasser], U. [Akademischer Betreuer] Bonas, D. [Akademischer Betreuer] Scheel, and M. [Akademischer Betreuer] Göttfert. "Molekulare und funktionelle Charakterisierung der Typ III-Effektoren XopB, XopL und XopS aus Xanthomonas campestris pv. vesicatoria : [kumulative Dissertation] / Sebastian Schulze. Betreuer: U. Bonas ; D. Scheel ; M. Göttfert." Halle, Saale : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2013. http://d-nb.info/1043196846/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Adlung, Norman [Verfasser], U. [Akademischer Betreuer] Bonas, S. [Akademischer Betreuer] Rosahl, and G. [Akademischer Betreuer] Döhlemann. "Charakterisierung der Avirulenzaktivität von XopQ und Identifizierung möglicher Interaktoren von XopL aus Xanthomonas campestris pv. vesicatoria / Norman Adlung ; U. Bonas, S. Rosahl, G. Döhlemann." Halle, 2016. http://d-nb.info/1116951061/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bartetzko, Verena [Verfasser], and Frederik [Akademischer Betreuer] Börnke. "Funktionelle Charakterisierung des Typ III-Effektors XopJ aus Xanthomonas campestris pv. vesicatoria / Verena Bartetzko. Betreuer: Frederik Börnke." Erlangen : Universitätsbibliothek der Universität Erlangen-Nürnberg, 2012. http://d-nb.info/1026805937/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Priller, Johannes [Verfasser], and Uwe [Akademischer Betreuer] Sonnewald. "Funktionelle Charakterisierung des Typ-III-Effektors XopB aus Xanthomonas campestris pv. vesicatoria / Johannes Priller. Gutachter: Uwe Sonnewald." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2015. http://d-nb.info/1081820934/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hoppe, Tina [Verfasser], Ulla [Gutachter] Bonas, Sabine [Gutachter] Rosahl, and Gunther [Gutachter] Döhlemann. "Identifizierung pflanzlicher Interaktoren des Typ III-Effektors XopG aus Xanthomonas campestris pv. vesicatoria / Tina Hoppe ; Gutachter: Ulla Bonas, Sabine Rosahl, Gunther Döhlemann." Halle (Saale) : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2019. http://d-nb.info/1210730022/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hoppe, Tina [Verfasser], Ulla [Gutachter] Bonas, Sabine Gutachter] Rosahl, and Gunther [Gutachter] [Döhlemann. "Identifizierung pflanzlicher Interaktoren des Typ III-Effektors XopG aus Xanthomonas campestris pv. vesicatoria / Tina Hoppe ; Gutachter: Ulla Bonas, Sabine Rosahl, Gunther Döhlemann." Halle (Saale) : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2019. http://nbn-resolving.de/urn:nbn:de:gbv:3:4-1981185920-318604.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schonsky, Antje Verfasser], Ulla [Akademischer Betreuer] Bonas, Dierk [Akademischer Betreuer] Scheel, and Uwe [Akademischer Betreuer] [Sonnewald. "Molekulare Charakterisierung neuer Typ III Effektorproteine sowie des Effektors XopB aus Xanthomonas campestris pv. vesicatoria / Antje Schonsky. Betreuer: Ulla Bonas ; Dierk Scheel ; Uwe Sonnewald." Halle, Saale : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2013. http://d-nb.info/1034881221/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Herzfeld, Eva-Maria [Verfasser], Ulla [Akademischer Betreuer] Bonas, Ingo [Akademischer Betreuer] Heilmann, and Rüdiger [Akademischer Betreuer] Hell. "Identifizierung und Charakterisierung von dem pflanzlichen Interaktionspartner OAS-TL des Typ-III-Effektors XopC / Eva-Maria Herzfeld. Betreuer: Ulla Bonas ; Ingo Heilmann ; Rüdiger Hell." Halle, Saale : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2013. http://d-nb.info/1035182203/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Szczesny, Robert [Verfasser], Ulla [Akademischer Betreuer] Bonas, Dierk [Akademischer Betreuer] Scheel, and Michael [Akademischer Betreuer] Göttfert. "Molekulare und funktionelle Charakterisierung der Typ-III-Effektoren AvrBs1, AvrBsT und XopJ aus Xanthomonas campestris pv. vesicatoria / Robert Szczesny. Betreuer: Ulla Bonas ; Dierk Scheel ; Michael Göttfert." Halle, Saale : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2009. http://d-nb.info/1024873579/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "XopX":

1

Badiella, Jordi. Xop Suei. Barcelona: Columna, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nadal, Miquel Roig. Xop-Bot. Lleida: Pagès Editors, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tugny, Rosângela Pereira de. Koxuk xop: Imagem. Rio de Janeiro, RJ: Beco do Azougue, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xox. Andrews McMeel Publishing, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Reimer, Lyle. Lyle XOX: Head of Design. Rizzoli, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ltd, ICON Group. XOX CORP.: Labor Productivity Benchmarks and International Gap Analysis (Labor Productivity Series). 2nd ed. Icon Group International, Inc., 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ltd, ICON Group. XOX CORP.: International Competitive Benchmarks and Financial Gap Analysis (Financial Performance Series). 2nd ed. Icon Group International, Inc., 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "XopX":

1

Gutowski, J., K. Sebald, and T. Voss. "ZnSe1–xOx: exciton energies, exciton binding energies." In New Data and Updates for III-V, II-VI and I-VII Compounds, 442. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-92140-0_326.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Athreya, K. S., and R. N. Shelton. "Evidence for Spin Fluctuations in the Mixed Valent Superconductors Ce(Ru1-xOsx)3B2." In Theoretical and Experimental Aspects of Valence Fluctuations and Heavy Fermions, 475–79. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-0947-5_71.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kim, Jung-Gun, and Mary Beth Mudgett. "XopD Peptidase." In Handbook of Proteolytic Enzymes, 2382–85. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-382219-2.00531-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "XopX":

1

Sanchez del Rio, Manuel, and Roger J. Dejus. "XOP: recent developments." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Albert T. Macrander, Andreas K. Freund, Tetsuya Ishikawa, and Dennis M. Mills. SPIE, 1998. http://dx.doi.org/10.1117/12.332522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tanaka, Tooru, Kin Man Yu, Peter Stone, Jeffrey W. Beeman, Oscar Dubon, Lothar A. Reichertz, Vincent M. Kao, Mitsuhiro Nishio, and Wladek Walukiewicz. "Development of ZnTe1−xOx intermediate band solar cells." In 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5614215.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gorenflo, Christian, Lukasz Golab, and Srinivasan Keshav. "XOX Fabric: A hybrid approach to blockchain transaction execution." In 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 2020. http://dx.doi.org/10.1109/icbc48266.2020.9169478.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sanchez del Rio, Manuel, and Roger J. Dejus. "Status of XOP: an x-ray optics software toolkit." In Optical Science and Technology, the SPIE 49th Annual Meeting, edited by Manuel Sanchez del Rio. SPIE, 2004. http://dx.doi.org/10.1117/12.560903.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

de Rezende, Itamar, and Frank Siqueira. "XOP: Sharing XML Data Objects through Peer-to-Peer Networks." In 2008 22nd International Conference on Advanced Information Networking and Applications. IEEE, 2008. http://dx.doi.org/10.1109/aina.2008.37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sánchez del Río, Manuel, and Roger J. Dejus. "XOP v2.4: recent developments of the x-ray optics software toolkit." In SPIE Optical Engineering + Applications, edited by Manuel Sanchez del Rio and Oleg Chubar. SPIE, 2011. http://dx.doi.org/10.1117/12.893911.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Meyer, Bernd C. "A toolkit for the X-ray optics simulation software package XOP/ShadowVui." In SPIE Optical Engineering + Applications, edited by Manuel Sanchez del Rio and Oleg Chubar. SPIE, 2011. http://dx.doi.org/10.1117/12.893745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

del Río, Manuel Sánchez. "XOP 2.1 — A New Version of the X-ray Optics Software Toolkit." In SYNCHROTRON RADIATION INSTRUMENTATION: Eighth International Conference on Synchrotron Radiation Instrumentation. AIP, 2004. http://dx.doi.org/10.1063/1.1757913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tanaka, T., S. Tsutsumi, Y. Okano, K. Saito, Q. Guo, M. Nishio, K. M. Yu, and W. Walukiewicz. "Cl-doping in highly mismatched ZnTe1−xOx alloys for intermediate band solar cells." In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7750169.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sanchez del Rio, Manuel, and Roger J. Dejus. "XOP: a multiplatform graphical user interface for synchrotron radiation spectral and optics calculations." In Optical Science, Engineering and Instrumentation '97, edited by Peter Z. Takacs and Thomas W. Tonnessen. SPIE, 1997. http://dx.doi.org/10.1117/12.295554.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії