Статті в журналах з теми "Zn(S,O,OH)"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Zn(S,O,OH).

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Zn(S,O,OH)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Vallejo, William, Carlos Diaz-Uribe, and Cesar Quiñones. "Optical and Structural Characterization of Cd-Free Buffer Layers Fabricated by Chemical Bath Deposition." Coatings 11, no. 8 (July 27, 2021): 897. http://dx.doi.org/10.3390/coatings11080897.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Chemical bath deposition (CBD) is a suitable, inexpensive, and versatile synthesis technique to fabricate different semiconductors under soft conditions. In this study, we deposited Zn(O;OH)S thin films by the CBD method to analyze the effect of the number of thin film layers on structural and optical properties of buffer layers. Thin films were characterized by X-ray diffraction (XRD) and UV-Vis transmittance measurements. Furthermore, we simulated a species distribution diagram for Zn(O;OH)S film generation during the deposition process. The optical results showed that the number of layers determined the optical transmittance of buffer layers, and that the transmittance reduced from 90% (with one layer) to 50% (with four layers) at the visible range of the electromagnetic spectrum. The structural characterization indicated that the coatings were polycrystalline (α-ZnS and β-Zn(OH)2 to four layers). Our results suggest that Zn(O;OH)S thin films could be used as buffer layers to replace CdS thin films as an optical window in thin-film solar cells.
2

Zhang, Shaoqing, Yanyan Liu, Jiqi Zheng, Yang Mu, Hanmei Jiang, Haoran Yan, Yanping Wang, Yifu Zhang, and Changgong Meng. "Rice-like and rose-like zinc silicates anchored on amorphous carbon derived from natural reed leaves for high-performance supercapacitors." Dalton Transactions 50, no. 27 (2021): 9438–49. http://dx.doi.org/10.1039/d1dt01381e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
N, S, P-doped rice-like C-Zn4Si2O7(OH)2·H2O and rose-like C-Zn2SiO4 are derived from reed leaves and used for application in supercapacitors.
3

Vallejo, W., C. Quiñones, and G. Gordillo. "A comparative study of thin films of Zn(O;OH)S and In(O;OH)S deposited on CuInS2 by chemical bath deposition method." Journal of Physics and Chemistry of Solids 73, no. 4 (April 2012): 573–78. http://dx.doi.org/10.1016/j.jpcs.2011.12.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ernits, K., K. Muska, M. Danilson, J. Raudoja, T. Varema, O. Volobujeva, and M. Altosaar. "Anion Effect of Zinc Source on Chemically Deposited ZnS(O,OH) Films." Advances in Materials Science and Engineering 2009 (2009): 1–5. http://dx.doi.org/10.1155/2009/372708.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The study on the anion effect of different Zn sources—Zn(CH3COO)2, ZnCl2, ZnI2, Zn(NO3)2and ZnSO4—on the chemical deposition of ZnS(O,OH) films revealed that the growth rate and composition of the ZnS(O,OH) layer depend on the instability constant (pK) value of the corresponding Zn-complex Zn(L)nin the chemical bath solution. In the region ofpKZn(NH3)2+>pKZn(L)nthe ZnS(O,OH) film's growth rate and ZnS concentration in films increased with the increasing pK value of the used Zn salt complex up to the pK value of theZn[NH3]2+complex and decreased in the region wherepKZn(NH3)2+<pKZn(L)n. The band gap values (around 3.6 eV in most cases) of deposited ZnS(O,OH) films did not depend on the Zn precursor's instability constant, the ZnS(O,OH) film from zinc nitrate containing bath has higher band gap energy (Eg= 3.8 eV). The maximum efficiency of CISSe and CZTSSe monograin layer solar cells was gained with ZnS(O,OH) buffer layer deposited from CBD solution containing Zn(CH3COO)2as Zn source, which provided the highest growth rate and ZnS concentration in the ZnS(O,OH) film on glass substrates.
5

Bhattacharya, R. N., K. Ramanathan, L. Gedvilas, and B. Keyes. "Cu(In,Ga)Se2 thin-film solar cells with ZnS(O,OH), Zn–Cd–S(O,OH), and CdS buffer layers." Journal of Physics and Chemistry of Solids 66, no. 11 (November 2005): 1862–64. http://dx.doi.org/10.1016/j.jpcs.2005.09.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hildebrandt, Thibaud, Nicolas Loones, Nathanaelle Schneider, Muriel Bouttemy, Jackie Vigneron, Arnaud Etcheberry, Daniel Lincot, and Negar Naghavi. "Effects of additives on the improved growth rate and morphology of Chemical Bath Deposited Zn(S,O,OH) buffer layer for Cu(In,Ga)Se2- based solar cells." MRS Proceedings 1538 (2013): 39–44. http://dx.doi.org/10.1557/opl.2013.976.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACTZn(S,O,OH) Chemical Bath Deposited (CBD) remains one of the most studied Cd-free buffer layer for replacing the CBD-CdS buffer layer in a Cu(In,Ga)Se2-based (CIGSe) solar cells and has already demonstrated its potential to lead to high-efficiencies. However, in order to further increase the deposition rate of the Zn(S,O,OH) layer during the CBD, the inclusion of additives can be a reasonable strategy, as long as the efficiencies of solar cells are maintained. The aim of this work is to understand the effect of the introduction of additives such as hydrogen peroxide (H2O2), H2O2+ethanolamine (C2H7NO) and H2O2+tri-sodium citrate (Na3C6H5O7) during CBD on the deposition mechanism, the growth rate and the quality of the buffer layer. It has been shown that the combined use of H2O2 and citrate in the bath formulation allows the deposition of Zn(S,O,OH) via a mix of “ion-by-ion” and “cluster-by-cluster” mechanisms that have good properties as buffer layers leading to high efficiency solar cells.
7

Piilonen, P. C., I. V. Pekov, M. Back, T. Steede, and R. A. Gault. "Crystal-structure refinement of a Zn-rich kupletskite from Mont Saint-Hilaire, Quebec, with contributions to the geochemistry of zinc in peralkaline environments." Mineralogical Magazine 70, no. 5 (October 2006): 565–78. http://dx.doi.org/10.1180/0026461067050350.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe chemistry and crystal structure of a unique Zn-rich kupletskite: (K1.55Na0 .21Rb0.09Sr0.01)Σ1.86(Na0.82Ca0.18)Σ1.00(Mn4.72Zn1.66Na0.41Mg0.12)Σ7.00 (Ti1.85Nb0.11Hf0.03)Σ1.99(Si7.99Al0.12)Σ8.11O26 (OH)4(F0.77OH0.23)Σ1.00, from analkalin e pegmatite at Mont Saint-Hilaire, Quebec, Canada has been determined. Zn-rich kupletskite is triclinic, , a = 5.3765(4), b = 11.8893(11), c = 11.6997(10), α = 113.070(3), β = 94.775(2), γ = 103.089(3), R1 = 0.0570 for 3757 observed reflections with Fo > 4σ(Fo). From the single-crystal X-ray diffraction refinement, it is clear that Zn2+ shows a preference for the smaller, trans M(4) site (69%), yet is distributed amongst all three octahedral sites coordinated by 4 O2− and 2 OH− [M(2) 58% and M(3) 60%]. Of note is the lack of Zn in M(1), the larger and least-distorted of the four crystallographic sites, with an asymmetric anionic arrangement of 5 O2− and 1 OH−. The preference of Zn for octahedral sites coordinated by mixed ligands (O and OH) is characteristic of its behaviour in alkaline systems, in contrast to granitic systems where Zn tends to favour [4]-coordinated, OH− and H2O-free sites with only one ligand species (O, S, Cl, B, I). In alkaline systems, [4]Zn is only present in early sphalerite or in late-stage zeolite-like minerals. The bulk of Zn in alkaline systems is present as discrete [6]Zn phases such as members of the astrophyllite, labuntsovite, milarite and nordite groups, a result of the formation of network-forming complexes inthe low-temperature, low-fS2, high-alkalinity and highly oxidizing systems.
8

Vallejo, W., M. Hurtado, and G. Gordillo. "Kinetic study on Zn(O,OH)S thin films deposited by chemical bath deposition." Electrochimica Acta 55, no. 20 (August 2010): 5610–16. http://dx.doi.org/10.1016/j.electacta.2010.04.088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fan, Hong-Jie, Qian-Qian Xu, Tie-Zhen Ren, Xiang-Ying Xing, and Kirsten E. Christensen. "Zn/Mn–MOFs with `S-shaped' packing modes." Acta Crystallographica Section C Structural Chemistry 70, no. 5 (April 18, 2014): 502–7. http://dx.doi.org/10.1107/s2053229614005828.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Two novel polymers exhibiting metal–organic frameworks (MOFs) have been synthesized by the combination of a metal ion with a benzene-1,3,5-tricarboxylate ligand (BTC) and 1,10-phenanthroline (phen) under hydrothermal conditions. The first compound, poly[[(μ4-benzene-1,3,5-tricarboxylato-κ4 O:O′:O′′:O′′′)(μ-hydroxido-κ2 O:O)bis(1,10-phenanthroline-κ2 N,N′)dizinc(II)] 0.32-hydrate], {[Zn2(C9H3O6)(OH)(C12H8N2)2]·0.32H2O} n , denoted Zn–MOF, forms a two-dimensional network in which a binuclear Zn2 cluster serves as a 3-connecting node; the BTC trianion also acts as a 3-connecting centre. The overall topology is that of a 63 net. The phen ligands serve as appendages to the network and interdigitate with phen ligands belonging to adjacent parallel sheets. The second compound, poly[[(μ6-benzene-1,3,5-tricarboxylato-κ7 O 1,O 1′:O 1:O 3:O 3′:O 5:O 5′)(μ3-hydroxido-κ2 O:O:O)(1,10-phenanthroline-κ2 N,N′)dimanganese(II)] 1.26-hydrate], {[Mn2(C9H3O6)(OH)(C12H8N2)]·1.26H2O} n , denoted Mn–MOF, exists as a three-dimensional network in which an Mn4 cluster serves as a 6-connecting unit, while the BTC trianion again plays the role of a 3-connecting centre. The overall topology is that of the rutile net. Phen ligands act as appendages to the network and form the `S-shaped' packing mode.
10

Altahan, Mohammed A., Michael A. Beckett, Simon J. Coles та Peter N. Horton. "Transition-metal complexes with oxidoborates. Synthesis and XRD characterization of [(H3NCH2CH2NH2)Zn{κ3O,O′,O′′-B12O18(OH)6-κ1O′′′}Zn(en)(NH2CH2CH2NH3)]·8H2O (en=1,2-diaminoethane): a neutral bimetallic zwiterionic polyborate system containing the ‘isolated’ dodecaborate(6−) anion". Pure and Applied Chemistry 90, № 4 (28 березня 2018): 625–32. http://dx.doi.org/10.1515/pac-2017-0901.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe title compound, [(H3NCH2CH2NH2)Zn{κ3O,O′,O′′-B12O18(OH)6-κ1O′′′}Zn(en)(NH2CH2CH2NH3)]·8H2O (en=1,2-diaminoethane) (1), was prepared as a crystalline solid in moderate yield from the reaction of B(OH)3with [Zn(en)3][OH]2in aqueous solution (15:1) ratio. The structure contains a neutral bimetallic complex comprised of a unusual dodecaborate(6−) anion ligating two [H3NCH2CH2NH2Zn(en)n]3+centers in a monodentate (n=1) or tridentate (n=0) manner.
11

Tylus, Wlodzimierz, Juliusz Winiarski, and Bogdan Szczygieł. "Evaluation of the Growth Mechanism of Ti-Containing Conversion Coatings Using XPS." Solid State Phenomena 227 (January 2015): 159–62. http://dx.doi.org/10.4028/www.scientific.net/ssp.227.159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ti-containing coatings as chromate replacement were prepared on electrogalvanized steel. Zinc coatings were deposited from a weak acid chloride bath. Cr-free conversion coatings were deposited from bath composed of: TiCl3, H2SiF6, H2O2 and oxalic acid. XPS was used to evaluate chemical composition of the coatings as a function of deposition time. Deposited coating were of conversion type. Regardless of the achieved conversion coating thickness, Zn from the substrate was always present. In the coatings were identified: Zn2SiO4 / Zn4Si2O7(OH)2, ZnTiO3, ZnO, Zn (OH)2, Zn0, SiOx and Ti-O-Si in varying proportions. The chemical composition of the outer surface of the coating depended on deposition time, e.g. in a time interval 0-300 s 30 fold increase of the Si:Ti ratio and 20 fold of the Si:Zn ratio were observed. Estimated thickness of conversion coating was 3, 14, 35, and 100 nm for the time deposition of 1, 40, 80 and 300 s respectively. It is the proposed model for distinguishing Zn (0) phase from Zn (2+) quantitatively, based on the Zn L3M45M45 spectrum. The composition of the ZnTiSi conversion coating determined its mechanical properties and corrosion resistance. Standard tests carried out showed that the coatings obtained at the time of 20-40 s had the best corrosion performance and mechanical resistance
12

Chukanov, Nikita V., Dmitry A. Varlamov, Igor V. Pekov, Natalia V. Zubkova, Anatoly V. Kasatkin, and Sergey N. Britvin. "Coupled Substitutions in Natural MnO(OH) Polymorphs: Infrared Spectroscopic Investigation." Minerals 11, no. 9 (September 6, 2021): 969. http://dx.doi.org/10.3390/min11090969.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Solid solutions involving natural Mn3+O(OH) polymorphs, groutite, manganite, and feitknechtite are characterized and discussed based on original and literature data on the chemical composition, powder and single-crystal X-ray diffraction, and middle-range IR absorption spectra of these minerals. It is shown that manganite forms two kinds of solid-solution series, in which intermediate members have the general formulae (i) (Mn4+, Mn3+)O(OH,O), with pyrolusite as the Mn4+O2 end-member, and (ii) (Mn3+, M2+)O(OH, H2O), where M = Mn or Zn. In Zn-substituted manganite from Kapova Cave, South Urals, Russia, the Zn2+:Mn3+ ratio reaches 1:1 (the substitution of Mn3+ with Zn2+ is accompanied by the coupled substitution of OH− with H2O). Groutite forms solid-solution series with ramsdellite Mn4+O2. In addition, the incorporation of OH− anions in the 1 × 2 tunnels of ramsdellite is possible. Feitknechtite is considered to be isostructural with (or structurally related to) the compounds (M2+, Mn3+)(OH, O)2 (M = Mn, Zn) with a pyrochroite-related layered structure.
13

Serhan, J., Z. Djebbour, A. Darga, D. Mencaraglia, N. Naghavi, G. Renou, D. Lincot, and J. F. Guillemeoles. "Electrical characterization of CIGSe solar cells metastability with Zn(S,O,OH)–ZnMgO interface buffer layers." Solar Energy Materials and Solar Cells 94, no. 11 (November 2010): 1884–88. http://dx.doi.org/10.1016/j.solmat.2010.07.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Imer, M. R., M. González, N. Veiga, C. Kremer, L. Suescun, and L. Arizaga. "Synthesis, structural characterization and scalable preparation of new amino-zinc borates." Dalton Transactions 46, no. 45 (2017): 15736–45. http://dx.doi.org/10.1039/c7dt03186f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Zinc borates are important materials. We report the preparation of three novel ones: [Zn(NH3)3B4O5(OH)4]·H2O (ZB1), Zn3(H2B3O7)2·2NH3·4H2O (ZB2), and [Zn(NH3)4][B4O5(OH)4]·4H2O (ZB3).
15

Su, Zhanpai, Pingkai Jiang, Qiang Li, Ping Wei, and Yong Zhang. "Toughening of Polypropylene Highly Filled with Aluminum Hydroxide." Polymers and Polymer Composites 13, no. 2 (February 2005): 139–50. http://dx.doi.org/10.1177/096739110501300203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The flame retardant and mechanical properties of polypropylene (PP), highly filled with aluminum hydroxide (Al(OH)3) and toughened with ethylene propylene diene monomer (EPDM) and zinc neutralized sulfated EPDM ionomer (Zn-S-EPDM), were studied along with their morphology. The PP matrix when highly filled with Al(OH)3 particles can achieve an adequate level of flame retardancy, but there is a decrease in the mechanical properties because of inadequate adhesion between the Al(OH)3 particles and the PP matrix and the strong tendency of the filler to agglomerate. The rubber incorporated in the PP/Al(OH)3 composites has two roles: as compatibilizer and toughening agent. Although ordinary EPDM significantly improves the Izod impact strength of the composites, the tensile properties are much worse because of the weak interfacial adhesion between the modifier and the matrix. Using Zn-S-EPDM instead EPDM, the tensile properties are much improved with only a slight decrease in toughness, because of improvements in the interfacial adhesion between modifier and matrix. SEM micrographs show that the rubber phase is dispersed in the continuous PP matrix and that most Al(OH)3 particles are uniformly distributed in the rubbery phase. Larger, obviously rubbery, domains can be seen in the PP/EPDM/Al(OH)3 ternary composites. Much finer rubbery domains were found in the PP/Zn-S-EPDM/Al(OH)3 composites.
16

Giester, Gerald, and Branko Rieck. "Bechererite, (Zn,Cu)6Zn2(OH)13[(S,Si)(O,OH)4]2, a novel mineral species from the Tonopah-Belmont Mine, Arizona." American Mineralogist 81, no. 1-2 (February 1, 1996): 244–48. http://dx.doi.org/10.2138/am-1996-1-230.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Wang, Xiaobing, Jiangjiang Hu, Weidong Liu, Guoyong Wang, Jian An, and Jianshe Lian. "Ni–Zn binary system hydroxide, oxide and sulfide materials: synthesis and high supercapacitor performance." Journal of Materials Chemistry A 3, no. 46 (2015): 23333–44. http://dx.doi.org/10.1039/c5ta07169k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Opasanont, Borirak, Khoa T. Van, Austin G. Kuba, Kaushik Roy Choudhury, and Jason B. Baxter. "Adherent and Conformal Zn(S,O,OH) Thin Films by Rapid Chemical Bath Deposition with Hexamethylenetetramine Additive." ACS Applied Materials & Interfaces 7, no. 21 (May 18, 2015): 11516–25. http://dx.doi.org/10.1021/acsami.5b02482.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Zhang, Yi, Bo-Yan Li, Xiang-Yu Dang, Li Wu, Jing Jin, Feng-Yan Li, Jian-Ping Ao, and Yun Sun. "Dynamic scaling and optical properties of Zn(S, O, OH) thin film grown by chemical bath deposition." Chinese Physics B 20, no. 11 (November 2011): 116802. http://dx.doi.org/10.1088/1674-1056/20/11/116802.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Buffière, Marie, Nicolas Barreau, Ludovic Arzel, Pawel Zabierowski, and John Kessler. "Minimizing metastabilities in Cu(In,Ga)Se2/(CBD)Zn(S,O,OH)/i-ZnO-based solar cells." Progress in Photovoltaics: Research and Applications 23, no. 4 (January 14, 2014): 462–69. http://dx.doi.org/10.1002/pip.2451.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Holtby, Andrew S., and William T. A. Harrison. "2-Hydroxypropane-1,3-diammonium bis(phosphonato)zincate(II) hemihydrate." Acta Crystallographica Section E Structure Reports Online 63, no. 11 (October 24, 2007): m2779. http://dx.doi.org/10.1107/s1600536807051197.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the title compound, (C3H12N2O)[Zn(HPO3)2]·0.5H2O, the inorganic macroanionic chain is built up from ZnO4 tetrahedra and HPO3 pseudo-pyramids sharing vertices. The organic dication shows positional disorder of its central –OH group in a 0.614 (7):0.386 (7) ratio. The components interact by way of O—H...O and N—H...O hydrogen bonds. The Zn atom lies on a crystallographic twofold axis and one C atom, the disordered O atoms of the –OH groups and the water O atom lie on a crystallographic mirror plane.
22

Chouat, Nadjet, Mohammed Abdelkrim Hasnaoui, Mohamed Sassi, Abdelkader Bengueddach, Gigliola Lusvardi, and Andrea Cornia. "Crystal structure of a new homochiral one-dimensional zincophosphate containingL-methionine." Acta Crystallographica Section E Crystallographic Communications 71, no. 7 (June 24, 2015): 832–35. http://dx.doi.org/10.1107/s2056989015011561.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
catena-Poly[[(L-methionine-κO)zinc]-μ3-(hydrogen phosphato)-κ3O:O′:O′′], [Zn{PO3(OH)}(C5H11NO2S)]n, a new one-dimensional homochiral zincophosphate, was hydrothermally synthesized using L-methionine as a structure-directing agent. The compound consists of a network of ZnO4and (HO)PO3tetrahedra that form ladder-like chains of edge-fused Zn2P2O4rings propagating parallel to [100]. The chains are decorated on each side by zwitterionic L-methionine ligands, which interact with the inorganic frameworkviaZn—O coordination bonds. The structure displays interchain N—H...O and O—H...S hydrogen bonds.
23

Sokolova, Elena, and Frank C. Hawthorne. "From structure topology to chemical composition. XXIV. Revision of the crystal structure and chemical formula of vigrishinite, NaZnTi4(Si2O7)2O3(OH)(H2O)4, a seidozerite-supergroup mineral from the Lovozero alkaline massif, Kola peninsula, Russia." Mineralogical Magazine 82, no. 4 (February 28, 2018): 787–807. http://dx.doi.org/10.1180/minmag.2017.081.060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACTThe crystal structure of vigrishinite, ideally NaZnTi4(Si2O7)2O3(OH)(H2O)4, a murmanite-group mineral of the seidozerite supergroup from the type locality, Mt. Malyi Punkaruaiv, Lovozero alkaline massif, Kola Peninsula, Russia, was refined in space group C$\bar 1$, a = 10.530(2), b = 13.833(3), c = 11.659(2) Å, α = 94.34(3), β = 98.30(3), γ = 89.80(3)°, V = 1675.5(2.1) Å3 and R1 = 12.52%. Based on electron-microprobe analysis, the empirical formula calculated on 22 (O + F), with two constraints derived from structure refinement, OH + F = 1.96 pfu and H2O = 3.44 pfu, is: (Na0.67Zn0.21Ca0.05□1.07)Σ2 (Zn0.86□1.14)Σ2(Zn0.14□0.36)Σ0.5(Ti2.60Nb0.62Mn0.30${\rm Fe}_{{\rm 0}{\rm. 23}}^{{\rm 2 +}} $Mg0.10Zr0.06Zn0.05Al0.03Ta0.01)Σ4(Si4.02O14) [O2.60(OH)1.21F0.19]Σ4[(H2O)3.44(OH)0.56]Σ4{Zn0.24P0.03K0.03Ba0.02} with Z = 4. It seems unlikely that constituents in the {} belong to vigrishinite itself. The crystal structure of vigrishinite is an array of TS blocks (Titanium Silicate) connected via hydrogen bonds. The TS block consists of HOH sheets (H = heteropolyhedral and O = octahedral) parallel to (001). In the O sheet, the Ti-dominant MO(1,2) sites, Na-dominant MO(3) and □-dominant MO(4) sites give ideally Na□Ti2 pfu. In the H sheet, the Ti-dominant MH(1,2) sites, Zn-dominant AP(1) and vacant AP(2) sites give ideally Zn□Ti2 pfu. The MH and AP(1) polyhedra and Si2O7 groups constitute the H sheet. The ideal structural formula of vigrishinite of the form ${\rm A}_{\rm 2}^{P} {\rm M}_{\rm 2}^{\rm H} {\rm M}_{\rm 4}^{\rm O} $(Si2O7)2(${\rm X}_{\rm M}^{\rm O} $)2(${\rm X}_{\rm A}^{\rm O} $)2(${\rm X}_{{\rm M,A}}^{P} $)4 is Zn□Ti2Na□Ti2(Si2O7)2O2O(OH)(H2O)4. Vigrishinite is a Zn-bearing, Na-poor and OH-rich analogue of murmanite, ideally Na2Ti2Na2Ti2(Si2O7)2O2O2(H2O)4. Murmanite and vigrishinite are related by the following substitution: H(${\rm Na}_{\rm 2}^{\rm +} $)mur + O(Na+)mur + O(O2–)mur ↔ H(Zn2+)vig + H(□)vig + O(□)vig + O[(OH)–]vig. The doubling of the t1 and t2 translations of vigrishinite compared to those of murmanite is due to the order of Zn and □ in the H sheet and Na and □ in the O sheet of vigrishinite.
24

Liu, Xu, Chunrui Wang, Xiaoyun Liu, Lizhi Ouyang, Ziyin You, Yeqing Lu, and Xiaoshuang Chen. "Understanding the Factors That Control the Formation and Morphology ofZn5(OH)8(NO3)2·2H2Othrough Hydrothermal Route." Journal of Nanomaterials 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/938370.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The influence of the choice of ethanol-water volume ratio, concentration of zinc salt, and ZnO buffer layer on the formation and morphology ofZn5(OH)8(NO3)2·2H2Ogrown from the hydrothermal route was systematically discussed. Experimental results suggested thatZn5(OH)8(NO3)2·2H2Orectangle sheets andZn5(OH)8(NO3)2·2H2Oupright-standing plates were obtained by limiting ethanol-water volume ratio. The concentration of zinc salt was crucial for getting phase-pureZn5(OH)8(NO3)2·2H2O. The presence of ZnO buffer layer could lead to the that chemical composition of product grown on the substrate was totally different from the product grown in the solution. Possible formation mechanism ofZn5(OH)8(NO3)2·2H2Owas also studied. Raman spectrum ofZn5(OH)8(NO3)2·2H2Odisplays a complex behavior with four modes, which can be assigned to the vibrational modes of Zn–H–O, Zn–O, H2O-nitrate, and nitrate. Porously ZnO rectangle sheets were obtained by thermal treatment ofZn5(OH)8(NO3)2·2H2Orectangle sheets.
25

Tekeste, Teame, and Heinrich Vahrenkamp. "Reaktionen eines (N,N,O)Zn-OH-Komplexes mit Heterocumulen-Derivaten." Zeitschrift für anorganische und allgemeine Chemie 631, no. 13-14 (October 2005): 2563–67. http://dx.doi.org/10.1002/zaac.200500043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

KAWAI, AKIKO, KUNIO UCHIDA, and FUMIKAZU IKAZAKI. "EFFECTS OF SHAPE AND SIZE OF DISPERSOID ON ELECTRORHEOLOGY." International Journal of Modern Physics B 16, no. 17n18 (July 20, 2002): 2548–54. http://dx.doi.org/10.1142/s0217979202012645.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The effects of shape and size of dispersoids on electrorheology were investigated. In order to study the effect of shape on electrorheology, three kinds of hydroxy-zinc complexes were used for dispersoids. Hydroxy-zinc complexes were Zn 5 (OH) 8 Cl 2 · H 2 O (1), Zn 5 (OH) 8( NO 3)2 · 2H 2 O (2), and Zn 5 (OH) 8( CH 3 COO )2 · 2H 2 O (3). Shapes of (1) and (2) are plate. The shape of (3) is rod. The ER fluid containing (3) showed the lowest permittivity and the lowest ER effect. The ER phenomena containing dispersoids with different shapes were independent of their shapes and were explained by their dielectric properties. Zinc oxides prepared by the heat treatment of (1), (2), and (3) were used for studying the effect of size on electrorheology. The particle size influenced their dielectric property and influenced their electrorheology. The dielectric properties were responsible for the ER effect.
27

Li, Yingdi, Yifei Teng, Ziqing Zhang, Yi Feng, Peng Xue, Wenming Tong, and Xiaoyang Liu. "Microwave-assisted synthesis of novel nanostructured Zn3(OH)2V2O7·2H2O and Zn2V2O7 as electrode materials for supercapacitors." New Journal of Chemistry 41, no. 24 (2017): 15298–304. http://dx.doi.org/10.1039/c7nj03262e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Zn3(OH)2V2O7·2H2O nanowires and nanowire-shaped Zn2V2O7 synthesized through a microwave-assisted method and a successive annealing exhibited outstanding electrochemical performance.
28

Lee, Jae-Won, Sung-Jin Kim, and Min-Suk Oh. "Influence of Alloy Content on Microstructure and Corrosion Resistance of Zn-based Alloy Coated Steel Product." Korean Journal of Metals and Materials 58, no. 3 (March 5, 2020): 169–74. http://dx.doi.org/10.3365/kjmm.2020.58.3.169.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The effects of alloy composition on the coating structure and corrosion resistance of hot-dip Znbased alloy coated steel products were investigated. Zn-based alloy coating layers with different Al and Mg compositions were fabricated using a batch-type galvanizing simulator. Various intermetallic compounds including Zn, Zn/MgZn<sub>2</sub> binary eutectic, Zn/Al binary eutectoid and Zn/Al/MgZn<sub>2</sub> ternary eutectic phases were formed in the coating layer. The surface and cut-edge corrosion resistance of the Zn-based alloy coating were superior to those of the Zn coating. Zn-based alloy coating containing 15% Al and 3% Mg showed the best corrosion resistance, with red rust formed on the flat surface after 120 hours in the salt spray test. The corrosion products of the Zn-based alloy coating consisted of Simonkolleite (Zn<sub>5</sub>(OH)<sub>8</sub>Cl<sub>2</sub>·H<sub>2</sub>O), Hydrozincite (Zn<sub>5</sub>(CO<sub>3</sub>)<sub>2</sub>(OH) and zinc oxide (ZnO). Al-containing corrosion products, Zn<sub>2</sub>Al(OH)<sub>6</sub>Cl<sub>2</sub>·H<sub>2</sub>O and Al<sub>2</sub>O<sub>3</sub>, were formed when more than 5 wt% Al was added. Al-containing corrosion products improved the corrosion resistance of the flat surface of Zn-based alloy coating, but did not affect corrosion resistance in the cut-edge area.
29

Mandal, Bhabatosh, Monalisha Mondal, Bhavya Srivastava, Milan K. Barman, Chandan Ghosh, and Mousumi Chatterjee. "Chromatographic method for pre-concentration and separation of Zn(ii) with microalgae and density functional optimization of the extracted species." RSC Advances 5, no. 39 (2015): 31205–18. http://dx.doi.org/10.1039/c5ra01867f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Exploiting weak complexation (polysaccharides·[Zn(H2O)(OH)]+) at the algal surface, Zn(ii) in real samples is quantitatively retrieved using 0.005 M HNO3, a selective eluent.
30

Kushiya, Katsumi. "Development of Cu(InGa)Se2-based thin-film PV modules with a Zn(O,S,OH)x buffer layer." Solar Energy 77, no. 6 (December 2004): 717–24. http://dx.doi.org/10.1016/j.solener.2004.08.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Buffière, M., E. Gautron, T. Hildebrandt, S. Harel, C. Guillot-Deudon, L. Arzel, N. Naghavi, N. Barreau, and J. Kessler. "Composition and structural study of solution-processed Zn(S,O,OH) thin films grown using H2O2 based deposition route." Thin Solid Films 535 (May 2013): 171–74. http://dx.doi.org/10.1016/j.tsf.2012.10.029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Serhan, J., Z. Djebbour, W. Favre, A. Migan-Dubois, A. Darga, D. Mencaraglia, N. Naghavi, G. Renou, J. F. Guillemoles, and D. Lincot. "Investigation of the metastability behavior of CIGS based solar cells with ZnMgO–Zn(S,O,OH) window-buffer layers." Thin Solid Films 519, no. 21 (August 2011): 7606–10. http://dx.doi.org/10.1016/j.tsf.2010.12.148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Kushiya, Katsumi, and Osamu Yamase. "Stabilization of PN Heterojunction between Cu(InGa)Se2Thin-Film Absorber and ZnO Window with Zn(O, S, OH)xBuffer." Japanese Journal of Applied Physics 39, Part 1, No. 5A (May 15, 2000): 2577–82. http://dx.doi.org/10.1143/jjap.39.2577.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Vallejo, W., C. A. Arredondo, and G. Gordillo. "Synthesis and characterization of Zn(O,OH)S and AgInS2 layers to be used in thin film solar cells." Applied Surface Science 257, no. 2 (November 2010): 503–7. http://dx.doi.org/10.1016/j.apsusc.2010.07.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Kang, Bong Kyun, Hyeong Dae Lim, Sung Ryul Mang, Keun Man Song, Mong Kwon Jung, and Dae Ho Yoon. "Synthesis and characteristics of ZnGa2O4 hollow nanostructures via carbon@Ga(OH)CO3@Zn(OH)2 by a hydrothermal method." CrystEngComm 17, no. 11 (2015): 2267–72. http://dx.doi.org/10.1039/c4ce02325k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Highly uniform and perfectly crystallized ZnGa2O4 hollow NSs were successfully fabricated via carbon@Ga(OH)CO3@Zn(OH)2 core–shell–shell nanostructures by a two step hydrothermal method.
36

Hubert, C., N. Naghavi, O. Roussel, A. Etcheberry, D. Hariskos, R. Menner, M. Powalla, O. Kerrec, and D. Lincot. "The Zn(S,O,OH)/ZnMgO buffer in thin film Cu(In,Ga)(S,Se)2 -based solar cells part I: Fast chemical bath deposition of Zn(S,O,OH) buffer layers for industrial application on Co-evaporated Cu(In,Ga)Se2 and electrodeposited CuIn(S,Se)2 solar cells." Progress in Photovoltaics: Research and Applications 17, no. 7 (April 28, 2009): 470–78. http://dx.doi.org/10.1002/pip.898.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Takemoto, Masanori, Yasuaki Tokudome, Soichi Kikkawa, Kentaro Teramura, Tsunehiro Tanaka, Kenji Okada, Hidenobu Murata, Atsushi Nakahira, and Masahide Takahashi. "Imparting CO2 reduction selectivity to ZnGa2O4 photocatalysts by crystallization from hetero nano assembly of amorphous-like metal hydroxides." RSC Advances 10, no. 14 (2020): 8066–73. http://dx.doi.org/10.1039/d0ra00710b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The hetero-nanocomposite of Zn(OH)2 and Ga(OH)3 NPs is crystallized to ZnGa2O4 with CO2 affinity, showing highly-selective reaction toward CO2 photo-reduction.
38

Hultqvist, A., C. Platzer-Björkman, J. Pettersson, T. Törndahl, and M. Edoff. "CuGaSe2 solar cells using atomic layer deposited Zn(O,S) and (Zn,Mg)O buffer layers." Thin Solid Films 517, no. 7 (February 2009): 2305–8. http://dx.doi.org/10.1016/j.tsf.2008.10.109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Abdullah, Hairus, Riski Titian Ginting, Refi Ikhtiari, Noto Susanto Gultom, Hardy Shuwanto, and Dong-Hau Kuo. "One-step synthesis of configurational-entropy In-doped Zn(O,S)/Zn-doped In(OH)3-xSx composite for visible-light photocatalytic hydrogen evolution reaction." International Journal of Hydrogen Energy 46, no. 58 (August 2021): 29926–39. http://dx.doi.org/10.1016/j.ijhydene.2021.06.145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Ke, Yong, Xiao-Bo Min, Li-Yuan Chai, Bo-Sheng Zhou, and Ke Xue. "Sulfidation behavior of Zn and ZnS crystal growth kinetics for Zn(OH)2–S–NaOH hydrothermal system." Hydrometallurgy 161 (May 2016): 166–73. http://dx.doi.org/10.1016/j.hydromet.2016.01.023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Kumar, Dinesh, Silky Chadda, Jyoti Sharma, and Parveen Surain. "Syntheses, Spectral Characterization, and Antimicrobial Studies on the Coordination Compounds of Metal Ions with Schiff Base Containing Both Aliphatic and Aromatic Hydrazide Moieties." Bioinorganic Chemistry and Applications 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/981764.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An EtOH solution of 3-ketobutanehydrazide and salicylhydrazide on refluxing in equimolar ratio forms the corresponding Schiff base, LH3(1). The latter reacts with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Zr(OH)2(IV), MoO2(VI), and UO2(VI) ions in equimolar ratio and forms the corresponding coordination compounds, [M(LH)(MeOH)3] (2, M = Mn, Co, Ni), [Cu(LH)]2(3), [M′(LH)(MeOH)] (4, M′ = Zn, Cd), [Zr(OH)2(LH)(MeOH)2] (5), [MoO2(LH)(MeOH)] (6), and [UO2(LH)(MeOH)] (7). The coordination compounds have been characterized on the basis of elemental analyses, molar conductance, spectral (IR, reflectance,1H NMR, ESR) studies, and magnetic susceptibility measurements. They are nonelectrolytes in DMSO. The coordination compounds, except3, are monomers in diphenyl. They are active against gram-positive bacteria (S. aureus, B. subtilis), gram-negative bacteria (E. coli, P. aeruginosa), and yeast (S. cerevisiae, C. albicans).1acts as a dibasic tridentate ONO donor ligand in2–7coordinating through its both enolic O and azomethine N atoms. The coordination compounds2and3are paramagnetic, while rest of the compounds are diamagnetic. A square-planar structure to3, a tetrahedral structure to4, an octahedral structure to2,6, and7, and a pentagonal bipyramidal structure to5are proposed.
42

Ni, Sheng Liang, Yue Meng, and Pei Song Tang. "Synthesis and Crystal Structure of [Zn(C14H12N2)(HCO2)2]•2H2O." Advanced Materials Research 279 (July 2011): 174–78. http://dx.doi.org/10.4028/www.scientific.net/amr.279.174.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Reactions of a freshly prepared Zn(OH)2-2x(CO3)x×yH2O precipitate, formic acid with 2,9’-dimethyl-1,10’-phenanthroline in CH3OH/H2O afforded [Zn(C14H12N2)(HCO2)2]·2H2O. The title compound was structurally characterized by X-ray diffraction methods. It consists of complex molecules [Zn(C14H12N2)(HCO2)2] in which Zn atoms are hexa-coordinated by two N atoms of one phenanthroline ligand and four O atoms of two bidentate formate groups. In the crystal, molecules are connected by O–H···O hydrogen bonds forming layers parallel to (010), and the resulting layers are further linked 3D framework along [100] by π-π packing interactions.
43

EISELE, W., A. ENNAOUI, P. SCHUBERTBISCHOFF, M. GIERSIG, C. PETTENKOFER, J. KRAUSER, M. LUXSTEINER, S. ZWEIGART, and F. KARG. "XPS, TEM and NRA investigations of Zn(Se,OH)/Zn(OH) films on Cu(In,Ga)(S,Se) substrates for highly efficient solar cells." Solar Energy Materials and Solar Cells 75, no. 1-2 (January 2003): 17–26. http://dx.doi.org/10.1016/s0927-0248(02)00104-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Sassin, Megan B., Maya E. Helms, Joseph F. Parker, Christopher N. Chervin, Ryan H. DeBlock, Jesse S. Ko, Debra R. Rolison, and Jeffrey W. Long. "Elucidating zinc-ion battery mechanisms in freestanding carbon electrode architectures decorated with nanocrystalline ZnMn2O4." Materials Advances 2, no. 8 (2021): 2730–38. http://dx.doi.org/10.1039/d1ma00159k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
H+ insertion/Zn4(OH)6SO4 precipitation is the dominant charge-storage mechanism of crystalline ZnMn2O4@CNF in ZnSO4 (aq), despite specific Zn2+ lattice sites.
45

Opasanont, Borirak, Austin G. Kuba, Evan G. Louderback, Kaushik Roy Choudhury, and Jason B. Baxter. "Relating Deposition Conditions to Zn(S,O,OH) Thin Film Properties for Photovoltaic Buffer Layers Using a Continuous Flow Microreactor." Chemistry of Materials 26, no. 23 (November 24, 2014): 6674–83. http://dx.doi.org/10.1021/cm501642a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Kushiya, Katsumi, Muneyori Tachiyuki, Yoshinori Nagoya, Atsushi Fujimaki, Baosheng Sang, Daisuke Okumura, Masao Satoh, and Osamu Yamase. "Progress in large-area Cu(InGa)Se2-based thin-film modules with a Zn(O,S,OH)x buffer layer." Solar Energy Materials and Solar Cells 67, no. 1-4 (March 2001): 11–20. http://dx.doi.org/10.1016/s0927-0248(00)00258-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Qin, Tianfeng, Zhiyuan Xu, Zilei Wang, Shanglong Peng, and Deyan He. "2.5 V salt-in-water supercapacitors based on alkali type double salt/carbon composite anode." Journal of Materials Chemistry A 7, no. 45 (2019): 26011–19. http://dx.doi.org/10.1039/c9ta08490h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
By electrodepositing Zn/Zn4SO4(OH)6·4H2O on microporous carbon cloth modified with basic functional groups, we successfully achieved aqueous high-voltage carbon/carbon supercapacitors stably working at the voltage windows of 2.1 V, 2.3 V and 2.5 V.
48

Dhupar, Anu, Suresh Kumar, Vandana Sharma, and J. K. Sharma. "Mixed structure Zn(S,O) nanoparticles: synthesis and characterization." Materials Science-Poland 37, no. 2 (June 1, 2019): 230–37. http://dx.doi.org/10.2478/msp-2019-0024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractIn the present work, mixed structure Zn(S,O) nanoparticles have been synthesized using solution based chemical coprecipitation technique. Two different zinc sources (Zn(CH3COO)2·2H2O and ZnSO4·7H2O) and one sulfur source (CSNH2NH2) have been used as primary chemical precursors for the synthesis of the nanoparticles in the presence and absence of a capping agent (EDTA). The structural, morphological, compositional and optical properties of the nanoparticles have been analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transmission infra-red (FT-IR) and UV-Visible (UV-Vis) spectroscopy. XRD revealed the formation of mixed phases of c-ZnS, h-ZnS and h-ZnO in the synthesized nanoparticles. The surface morphology was analyzed from SEM micrographs which showed noticeable changes due to the effect of EDTA. EDX analysis confirmed the presence of zinc, sulfur and oxygen in Zn(S,O) nanoparticles. FT-IR spectra identified the presence of characteristic absorption peaks of ZnS and ZnO along with other functional group elements. The optical band gap values were found to vary from 4.16 eV to 4.40 eV for Zn(S,O) nanoparticles which are higher in comparison to the band gap values of bulk ZnS and ZnO. These higher band gap values may be attributed to the mixed structure of Zn(S,O) nanoparticles.
49

Wang, He, Shumeng Wu, Bingbing Fan, Xiaoqiang Liu, Yamin Nie, and Yanmei Zhou. "Heteroatoms-Doped Hierarchical Porous Carbon Materials Based on Biomass-Metal Ternary Complex for Supercapacitor." Journal of The Electrochemical Society 168, no. 11 (November 1, 2021): 110535. http://dx.doi.org/10.1149/1945-7111/ac377d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Engineering large active surface area, fast ion transfer, and wide work voltage are indispensable for using porous carbon as an electrode material for high energy density and high rate capability supercapacitors. Here, a method is proposed to fabricate N/O/P/S heteroatom co-doped hierarchical porous carbon materials via zinc carbonate hydroxide ([ZnCO3]2∙[Zn(OH)2]3) assisted activation of the biomass-based ternary complex. By adjusting the pH of the ternary complex and the mass ratio of [ZnCO3]2∙[Zn(OH)2]3, it is demonstrated that TCPC-7-0.5 with high specific surface area (1360 m2 g−1), appropriate micropore surface area (672 m2 g−1), and micropore volume (0.3 cm3 g−1) possesses excellent electrochemical performance. The unique pore structure accelerates the transport of electrolyte ions and provides more effective active sites for their adsorption. As a result, as an electrode material for supercapacitors, it maintains excellent frequency response at a larger scan rate of 1 V s−1. The working voltage range of the assembled symmetrical supercapacitor TCPC-7-0.5//TCPC-7-0.5 in 6 M KOH electrolyte can be effectively expanded to 1.2 V. Most importantly, it can simultaneously achieve an energy density of 7.01 W h kg−1 at a high-power density of 15 kW kg−1.
50

Liao, Fenglin, Xin-Ping Wu, Jianwei Zheng, Molly Meng-Jung Li, Anna Kroner, Ziyan Zeng, Xinlin Hong, Youzhu Yuan, Xue-Qing Gong, and Shik Chi Edman Tsang. "A promising low pressure methanol synthesis route from CO2 hydrogenation over Pd@Zn core–shell catalysts." Green Chemistry 19, no. 1 (2017): 270–80. http://dx.doi.org/10.1039/c6gc02366e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We report a new Pd@Zn core–shell catalyst that offers a significantly higher kinetic barrier to CO/H2O formation in CO2 hydrogenation but facilitates CH3OH production at below 2 MPa with CH3OH selectivity at 70% as compared to 10% over Cu catalysts.

До бібліографії