Добірка наукової літератури з теми "Абсорбційні машини"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Абсорбційні машини".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Абсорбційні машини"

1

Радченко, А. М., Я. Зонмін, С. А. Кантор та Б. С. Портной. "Порівняння ефективності охолодження повітря на вході газотурбінного двигуна в умовах помірного і субтропічного клімату". Refrigeration Engineering and Technology 54, № 5 (2018): 31–35. http://dx.doi.org/10.15673/ret.v54i5.1246.

Повний текст джерела
Анотація:
Проаналізовано охолодження повітря на вході газотурбінного двигуна при змінних упродовж року кліматичних умовах експлуатації. Запропоновано для охолодження повітря застосування тепловикористовуючих холодильних машин, що використовують для отримання холоду теплоту відпрацьованих газів газотурбінного двигуна. Досліджено ефективність охолодження повітря на вході газотурбінного двигуна в абсорбційній бромистолітієвій холодильній машині до температури 15ºС та у двоступінчастій абсорбційно-ежекторній холодильній машині до 10ºС. Хладонова ежекторна холодильна машина вибрана як конструктивно найбільш проста і надійна в експлуатації. При цьому абсорбційна бромистолітієва холодильна машина використовується в якості першого високотемпературного ступеня попереднього охолодження зовнішнього повітря від його поточних температур до 15ºС, а хладонова ежекторна машина – як другий низькотемпературний ступінь його доохолодження до 10ºС. Ефективність охолодження повітря проаналізована для експлуатації в умовах характерного для України помірного клімату і субтропічного клімату (на прикладі КНР). Як показник використано зменшення витрати палива. Показано, що охолодження повітря на вході газотурбінного двигуна для субтропічного клімату забезпечує у 1,6…1,8 рази більшу економію палива порівняно з умовами помірного клімату. Однак більш глибоке охолодження повітря на вході газотурбінного двигуна до температури 10ºС в абсорбційно-ежекторній холодильній машині порівняно з температурою охолодження повітря 15ºС в абсорбційній бромистолітієвій холодильній машині забезпечує більше скорочення витрати палива для умов помірного клімату ніж для субтропічного клімату. Показано, що якщо для умов помірного клімату його контактне охолодження і забезпечує економію палива близьку до її величини при охолодженні до температури 15ºС в абсорбційній бромистолітієвій холодильній машині, то для субтропічного вологого клімату воно практично не дає ефекту.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Біленко, Н. О., та О. С. Тітлов. "Розробка абсорбційних холодильних агрегатів на низькопотенційних джерелах теплової енергії". Refrigeration Engineering and Technology 57, № 1 (2021): 13–25. http://dx.doi.org/10.15673/ret.v57i1.1976.

Повний текст джерела
Анотація:
Показано, що одним з відомих напрямків часткової компенсації дефіциту води можуть бути системи отримання води з атмосферного повітря, в яких холодильні машини або агрегати забезпечують температуру нижче температури точки роси. При виборі типів холодильних машин або агрегатів для цих систем перспективним може бути використання сонячної енергії, зокрема, сонячних колекторів, широко використовуваних в світі для опалення в холодний і перехідний період року, а також для господарських і санітарно-гігієнічних потреб. Тут великі перспективи мають абсорбційні водоаміачні системи, які на відміну від бромістолітієвих аналогів мають можливість працювати з повітряним охолодженням теплорозсіювальних елементів. У той же час використання абсорбційних водоаміачних холодильних систем в системах отримання води з атмосферного повітря утруднено через недостатній рівень температур джерела сонячної енергії. Об'єктом досліджень є модернізований абсорбційний холодильний агрегат (АХА), в якому проводиться додаткове очищення слабкого водоаміачного розчину (ВАР) шляхом випаровування частини аміаку в парогазову суміш. Розроблено методику розрахунку для визначення питомих теплових навантажень на елементи конструкції при заданих параметрах робочого тіла в характерних точках (вхід-вихід елементів) з подальшим визначенням енергетичної ефективності холодильного циклу АХА. Було показано, що склад інертного газу не впливає на ефективність циклу. Заміна водню гелієм призводить лише до зростання кількості циркулюючого газу в 2 рази, що ускладнює роботу контуру природної циркуляції між абсорбером і випарниками аміаку і розчину. Максимальну ефективність має АХА, що працює в діапазоні температур охолодження – від -18 до +12 °С. При цьому визначальний вплив на енергетичну ефективність надає температура кінця випаровування. Результати енергетичного аналізу АХА дозволили сформулювати ряд рекомендацій для розробників. Відзначено, що необхідні для розрахунку випарника розчину вихідні дані можна отримати в результаті моделювання процесів тепломасообміну в наближенні адіабатності процесів
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Тітлов, О. С., Є. О. Осадчук та О. П. Цой. "Розробка автономних систем охолодження з урахуванням відновлювальних і непридатних джерел теплової енергії". Refrigeration Engineering and Technology 55, № 2 (2019): 84–96. http://dx.doi.org/10.15673/ret.v55i2.1357.

Повний текст джерела
Анотація:
Виконано аналіз можливостей використання нічного радіаційного випромінювання (НРВ) для додаткового відводу тепла від елементів системи рідинного охолодження. Показано енергетичні перспективи використання технології НРВ для автономних первинних систем охолодження переважно в селянських господарствах, розташованих у віддалених місцевостях від джерел електричної енергії. Для підвищення енергетичної ефективності автономних систем охолодження запропоновано використовувати абсорбційні водоаміачні холодильні машини (АВХМ) і парокомпресійні холодильні машини (ПКХМ), які дозволять в світлий час доби створювати запаси холоду в системі холодоакумуляціі. Для роботи АВХМ пропонується використовувати теплову енергію сонячного випромінювання. Розроблено алгоритм пошуку мінімальної температури гріючого джерела АВХМ в залежності від температур об'єкта охолодження і охолоджуючого середовища. Показано, що при реалізації традиційних циклів АВХМ мають місце режими з максимальною енергетичною ефективністю, а для їх досягнення необхідна відповідна комбінація складу робочого тіла (водоаміачного розчину) і температур гріючого джерела. Показано також, що при роботі від сонячних колекторів з водою в якості теплоносія, до складу схеми АВХМ необхідно включати бустер-компресор перед конденсатором аміаку. Виконано термодинамічний аналіз циклів ПКХМ, що працюють на дозволених в даний час робочих тілах. Відзначено високі енергетичні характеристики ПКХМ при роботі в умовах низьких температур атмосферного повітря. Так, при зниженні температури атмосферного повітря від 40 ° С до 10 ° С в середньому має місце зростання холодильного коефіцієнта циклів ПКХМ в 4-6 разів, а для аміаку – в 17,3 рази. Розроблено оригінальні схеми систем первинного охолодження молока на базі ПКХМ і АВХМ з використанням технології НРО, що дозволяють працювати в автономному режимі з використанням мінімальної кількості електричної енергії.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Радченко, А. М., Я. Зонмін, С. А. Кантор та Б. С. Портной. "Аналіз паливної ефективності глибокого охолодження повітря на вході газотурбінної установки в різних кліматичних умовах". Refrigeration Engineering and Technology 54, № 6 (2018): 23–27. http://dx.doi.org/10.15673/ret.v54i6.1258.

Повний текст джерела
Анотація:
Проаналізовано паливну ефективність глибокого охолодження повітря на вході газотурбінної установки (ГТУ) при для кліматичних умов півдня України (регіон м. Одеса) та субтропічного клімату КНР (на прикладі м. Чженьцзян, провінція Цзянсу). Досліджено ефективність двоступеневого охолодження повітря на вході газотурбінної установки: попереднього охолодження зовнішнього повітря холодною водою з температурою 7ºС від абсорбційної бромистолітієвої холодильної машини (АБХМ) до температури 15ºС у першому високотемпературному ступені повітроохолоджувача та наступного більш глибокого його доохолодження до температури 10ºС у другому низькотемпературному ступені киплячим хладоном від ежекторної холодильної машини (ЕХМ), як конструктивно найбільш прості і надійні в експлуатації. При цьому як абсорбційна бромистолітієва холодильна машина, так і хладонова ежекторна машина використовують для отримання холоду теплоту відпрацьованих газів газотурбінної установки. В якості критерія застосовано питому витрату палива. Ефективність глибокого охолодження повітря на вході газотурбінної установки аналізували як за поточними величинами зменшення питомої витрати палива упродовж року при змінних кліматичних умовах експлуатації, так і за накопиченням щомісячно та за рік. Показано, що більш глибоке охолодження повітря на вході ГТУ до температури 10 ºС в ЕХМ забезпечує зменшення витрати палива у півтора-два рази завдяки взаємно пов’язаному подвійному ефекту: збільшенню самої величини зниження температури повітря Dt10 до 10 ºС за рахунок обумовленого нею ж зростання тривалості охолоджувального сезону на 20…30 % порівняно з традиційним охолодженням повітря до температури 15 ºС в АБХМ. Результати аналізу паливної ефективності застосування двоступеневого охолодження повітря в украй напружених тепловологісних умовах, зокрема субтропічного клімату, дають підстави для розширення географії застосування глибокого охолодження повітря й на регіони, в яких найбільш поширене традиційне охолодження повітря в АБХМ, а застосування контактних методів зниження температури повітря упорскуванням води не дає бажаного ефекту через високу вологість повітря.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Портной, Богдан Сергійович, Андрій Миколайович Радченко, Роман Миколайович Радченко та Сергій Анатолійович Кантор. "ВИКОРИСТАННЯ РЕЗЕРВУ ХОЛОДОПРОДУКТИВНОСТІ АБСОРБЦІЙНОЇ ХОЛОДИЛЬНОЇ МАШИНИ ПРИ ОХОЛОДЖЕННІ ПОВІТРЯ НА ВХОДІ ГТУ". Aerospace technic and technology, № 3 (27 червня 2018): 39–44. http://dx.doi.org/10.32620/aktt.2018.3.05.

Повний текст джерела
Анотація:
The processes of air cooling at the gas turbine unit inlet by absorption lithium-bromide chiller have been analyzed. The computer programs of firms-producers of heat exchangers were used for the gas turbine unit inlet air cooling processes simulation. The absorption lithium-bromide chiller refrigeration capacity reserve (the design heat load excess over the current heat loads) generated at the reduced current heat loads on the air coolers at the gas turbine unit inlet in accordance with the lowered ambient air parameters has been considered. The absorption lithium-bromide chiller refrigeration capacity reserve is expedient to use at increased heat load on the air cooler. To solve this problem the refrigeration capacity required for cooling air at the gas turbine unit inlet has been compared with the excessive absorption lithium-bromide chiller refrigeration capacity exceeding current heat loads during July 2017.The scheme of gas turbine unit inlet air cooling system with using the absorption lithium-bromide chiller refrigeration capacity reserve has been proposed. The proposed air cooling system provides gas turbine unit inlet air precooling in the air cooler booster stage by using the absorption lithium-bromide chiller excessive refrigeration capacity. The absorption chiller excessive refrigeration capacity generated during decreased heat loads on the gas turbine unit inlet air cooler is accumulated in the thermal storage. The results of simulation show the expediency of the gas turbine unit inlet air cooling by using the absorption lithium-bromide chiller refrigeration capacity reserve, which is generated at reduced thermal loads, for the air precooling in the air cooler booster stage. This solution provides the absorption lithium-bromide chiller installed (designed) refrigeration capacity and cost reduction by almost 30%. The solution to increase the efficiency of gas turbine unit inlet air cooling through using the absorption chiller excessive refrigeration potential accumulated in the thermal storage has been proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Радченко, Андрій Миколайович, Сергій Анатолійович Кантор, Богдан Сергійович Портной та Юрій Георгійович Щербак. "ОХОЛОДЖЕННЯ ПОВІТРЯ НА ВХОДІ ГТУ З ВИКОРИСТАННЯМ РЕЗЕРВУ ХОЛОДОПРОДУКТИВНОСТІ АБСОРБЦІЙНО-ЕЖЕКТОРНОЇ ХОЛОДИЛЬНОЇ МАШИНИ В БУСТЕРНОМУ ПОВІТРООХОЛОДЖУВАЧІ". Aerospace technic and technology, № 2 (26 квітня 2018): 14–19. http://dx.doi.org/10.32620/aktt.2018.2.02.

Повний текст джерела
Анотація:
The processes of gas turbine unit two-stage intake air cooling by absorption lithium-bromide chiller as a high temperature cooling stage to the temperature of about 15 °C and by refrigerant ejector chiller as a low temperature cooling stage to the temperature of about 10 °C through utilizing the turbine exhaust gas waste heat for hour-by-hour changing ambient air temperatures and changeable heat loads on the air coolers as consequence during 10 days of July 2017 (10–12.07.2017) for climatic conditions of the south of Ukraine are analyzed. The computer programs of the firms-producers of heat exchangers were used for gas turbine unit inlet air cooling processes simulation.It is shown that at decreased heat loads on the air coolers an excessive refrigeration capacity of combined absorption-ejector chiller exceeding current heat loads is generated which can be used for covering increased heat loads on the air coolers and to reduce the refrigeration capacity of the absorption-ejector chiller. To solve this task the refrigeration capacity required for gas turbine unit inlet air cooling is compared with an excessive refrigeration capacity of the absorption-ejector chiller exceeding current heat loads summarized during 10 days.The system of gas turbine unit inlet air cooling with a booster stage of precooling air and a base two-stage cooling air to the temperature of about 10 °C by absorption-ejector chiller has been proposed. An excessive refrigeration capacity of the absorption-ejector chiller generated during decreased heat loads on the gas turbine unit inlet air coolers that is collected in the thermal accumulator is used for gas turbine unit inlet air precooling in a booster stage of air coolers during increased heat loads on the air coolers. The results of gas turbine unit inlet air cooling processes simulation proved the reduction of refrigeration capacity of the absorption-ejector chiller by about 50 % due to the use of a booster stage for precooling air at the expanse of an excessive absorption-ejector chiller refrigeration capacity served in the thermal accumulator. The conclusion has been made about the efficient use of a booster stage of gas turbine unit inlet air cooler for precooling air by using an excessive refrigeration potential of absorption-ejector chiller saved in the thermal accumulator
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Радченко, Андрій Миколайович, Роман Миколайович Радченко, Сергій Анатолійович Кантор, Богдан Сергійович Портной та Веніамін Сергійович Ткаченко. "ОХОЛОДЖЕННЯ ПОВІТРЯ НА ВХОДІ ГТУ З ВИКОРИСТАННЯМ РЕЗЕРВУ ХОЛОДОПРОДУКТИВНОСТІ АБСОРБЦІЙНОЇ ХОЛОДИЛЬНОЇ МАШИНИ В БУСТЕРНОМУ ПОВІТРООХОЛОДЖУВАЧІ". Aerospace technic and technology, № 1 (25 лютого 2018): 64–69. http://dx.doi.org/10.32620/aktt.2018.1.07.

Повний текст джерела
Анотація:
The processes of gas turbine unit inlet air cooling by absorption lithium-bromide chiller utilizing the turbine exhaust gas waste heat as athermotransformer has been analyzed for hour-by-hour changing ambient air temperatures and changeable heat loads on the air cooler as consequence. The computer programs of the firms-producers of heat exchangers were used for gas turbine unit inlet air cooling processes simulation. It is shown that at decreased heat loads on the air cooler an excessive refrigeration capacity of the absorption lithium-bromidechiller exceeding current heat loads is generated which can be used for covering increased heat loads on the air cooler and to reduce the refrigeration capacity of the absorption lithium-bromidechiller applied. To solve this task the refrigeration capacity required for gas turbine unit inlet air cooling is compared with an excessive refrigeration capacity of the absorption lithium-bromidechiller exceeding current heat loads summarized during 10 days of July 2015. The system of gas turbine unit inlet air cooling with a buster stage of precooling air and a base stage of cooling air to the temperature of about 15 °C by absorption lithium-bromide chiller has been proposed. An excessive refrigeration capacity of the absorption chiller generated during decreased heat loads on the gas turbine unit inlet air cooler that is collected in the thermal accumulator is used for gas turbine unit inlet air precooling in a buster stage of air cooler during increased heat loads on the air cooler. The results of gas turbine unit inlet air cooling processes simulation proved the reduction of refrigeration capacity of the absorption lithium-bromide chiller applied by 30-40 % due to the use of a buster stage of precooling air at the expanse of an excessive absorptionchiller refrigeration capacity served in the thermal accumulator. So the conclusion has been made about the efficient use of a buster stage of gas turbine unit inlet air cooler for precooling air by using an excessive refrigeration potential of absorption lithium-bromidechiller coolant saved in the thermal accumulator
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Тітлов, О. С., І. Л. Бошкова, В. М. Дорошенко, В. М. Світлицький, Т. А. Сагала та О. А. Морозов. "Аналіз енергетичних перспектив охолодження природного газу в магістральних газопроводах за допомогою абсорбційних холодильних машин". Refrigeration Engineering and Technology 57, № 3 (2021): 147–57. http://dx.doi.org/10.15673/ret.v57i3.2165.

Повний текст джерела
Анотація:
Для транспортування природного газу магістральними трубопроводами на компресорних станціях (КС) встановлені газоперекачувальні агрегати (ГПА), енергоносієм для яких, в більшості випадків, є природний газ, що транспортується. На привід ГПА витрачається (спалюється) 0,5...1,5 % від обсягу газу, що транспортується. Для поточної економічної ситуації на ринку газу України добове зниження експлуатаційних витрат у типових магістральних газопроводах при зниженні температури газу перед стисненням у ГПА на 20 К становить від 1800 до 3360 $. Одним з перспективних напрямків зниження експлуатаційних втрат у магістральних газопроводах є попереднє охолодження компримованого газу за допомогою тепловикористальних абсорбційних холодильних машин (АХМ), які утилізують скидне тепло відпрацьованих продуктів згоряння газоперекачувальних агрегатів. Відповідно до розробленого алгоритму було виконано розрахунок нагнітача для різних температур природного газу перед компримуванням. Показано, що використання типового магістрального газопроводу штучного охолодження потоку газу перед всмоктуванням дасть економію витрати паливного газу 79 кг/год. Виконано термодинамічний розрахунок циклів АХМ різного типу. Показано, що незважаючи на більш високий тепловий коефіцієнт у бромістолітієвих АХМ (0,808), слід вибрати водоаміачні АХМ з тепловим коефіцієнтом 0,477, тому що тільки водоаміачні АХМ можуть забезпечити прийнятний рівень температур охолодження (258 К) природного газу перед компримуванням, на відміну від бромістолітієвих АХМ з температурою охолодження не вище 280 К. Виконано конструкторський (тепловий) розрахунок теплообмінника-охолоджувача (ТОО) природного газу перед стисненням у нагнітачі. Проведено розрахунок конструкції теплообмінника з коаксіальним розташуванням ребер з боку газового потоку. Матеріал ребер – алюміній
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Радченко, Андрій Миколайович, Дмитро Вікторович Коновалов, Іван Володимирович Калініченко, Чен Нінь та Хан Баочен. "ОХОЛОДЖЕННЯ НАДДУВНОГО ПОВІТРЯ ГОЛОВНОГО СУДНОВОГО ДВИГУНА АБСОРБЦІЙНОЮ БРОМИСТОЛІТІЄВОЮ ХОЛОДИЛЬНОЮ МАШИНОЮ В ЕКВАТОРІАЛЬНИХ ШИРОТАХ". Aerospace technic and technology, № 2 (27 квітня 2020): 30–35. http://dx.doi.org/10.32620/aktt.2020.2.05.

Повний текст джерела
Анотація:
The efficiency of cooling the scavenge air of the main low-speed engine of the transport vessel during operation in the equatorial tropical latitudes is analyzed. The peculiarity of the tropical climate is the high relative humidity of the air at the same time its high temperatures and temperatures of seawater. The cooling of the scavenge air with an absorption lithium bromide chiller by transforming the scavenge air heat into the cold was investigated. With this, the potentially possible minimum temperature of the cooled air was determined considering the temperature of the cold water (coolant) from the absorption lithium bromide chiller and the temperature differences in the heat exchangers of the intermediate water circuit of cooling. Absorption lithium bromide chillers are characterized by high efficiency of transformation of waste heat into cold - high coefficients of performance. Circuit-design solution of three-stage cooling system of scavenging air of ship's main engine - in high-temperature (cogeneration) stage using the extracted heat of scavenging air to get cold with absorption chiller and traditional stage for cooling scavenge air by seawater and low-temperature cooling stage by absorption chiller. The effect of deeper cooling of the scavenge air was determined in comparison with the cooling of the scavenge air with seawater, taking into account the changing climatic conditions during the route of the vessel. It is shown that due to the high efficiency of heat transformation in absorption chillers (high coefficients of performance 0.7…0.8), there is a significant amount of excess heat of scavenging air over the heat required to cool it to 22 °C, which reaches almost half of the available scavenge air heat on the Shanghai-Singapore-Shanghai route. This reveals the possibility of additional cooling the inlet of the turbocharger of the engine with the achieving almost double fuel economy due to the cooling of all cycle air of the low-speed engine, including the air at the inlet.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Радченко, Роман Миколайович, Дмитро Вікторович Коновалов, Максим Андрійович Пирисунько, Чжан Цян та Луо Зевей. "ОХОЛОДЖЕННЯ ПОВІТРЯ НА ВХОДІ ГОЛОВНОГО СУДНОВОГО ДВИГУНА АБСОРБЦІЙНОЮ БРОМИСТОЛІТІЄВОЮ ХОЛОДИЛЬНОЮ МАШИНОЮ В ТРОПІЧНИХ УМОВАХ". Aerospace technic and technology, № 2 (27 квітня 2020): 18–23. http://dx.doi.org/10.32620/aktt.2020.2.03.

Повний текст джерела
Анотація:
The efficiency of air cooling at the inlet of the main low speed engine of a transport vessel during operation in tropical climatic conditions on the Shanghai-Karachi-Shanghai route was analyzed. The peculiarity of the tropical climate is the high relative humidity of the air at the same time its high temperatures, and hence the increased thermal load on the cooling system, which requires efficient transformation of the waste heat into the cold in the case of the use of waste heat recovery refrigeration machines. The cooling of the air at the inlet of the low speed engine by absorption lithium bromide chillers, which are characterized by high efficiency of transformation of waste heat into cold – by high coefficients of performance, is investigated. A schematic-construction solution of the air cooling system at the inlet of the ship's main engine using the heat of exhaust gases by an absorption chiller is proposed and analyzed. With this the cooling potential of the inlet air cooling from the current ambient air temperature to 15 ° C and the corresponding heat consumption for the operation of the adsorption chiller, on the one hand, was compared with the available exhaust gas heat potential, on the other hand. The effect of using the exhaust gas heat to cool the air at the inlet of the engine has been analyzed taking into account the changing climatic conditions during the voyage. Enhancement of fuel efficiency of the ship's engine by reducing the inlet air temperature were evaluated by current values of the reduction in specific and total fuel consumption. It is shown that due to the high efficiency of heat conversion in absorption chillers (high coefficients of performance 0.7…0.8), a significant amount of excessive exhaust gas heat over the heat required to cool the ambient air at the inlet of the engine to 15 ° C, which reaches almost half of the available exhaust gas heat during the Shanghai-Karachi-Shanghai route. This reveals the possibility of additional cooling a scavenge air too with almost double fuel economy due to the cooling of all cycle air of the low speed engine, including the air at the inlet.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Абсорбційні машини"

1

Лєоньков, Г. А. "Типи холодильних машин". Thesis, Сумський державний університет, 2018. http://essuir.sumdu.edu.ua/handle/123456789/67057.

Повний текст джерела
Анотація:
Холодильні машини є комплексом пристроїв, основною функцією якого є зменшення та стабілізація зниженої температури, яка є нижчою за температуру навколишнього середовища в діапазоні від 10°С до -153°С. Холодильні машини є дуже поширеними як у промисловості, так і в побуті.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Огороднік, Вадим Ігорович, та Vadym Ohorodnik. "Дослідження енергоефективності компресійного обладнання при виробництві штучного холоду". Master's thesis, Тернопільський національний технічний університет імені Івана Пулюя, 2021. http://elartu.tntu.edu.ua/handle/lib/36290.

Повний текст джерела
Анотація:
Встановлено, що навіть незначне підвищення ефективності споживання та виробництва штучного холоду може призвести до суттєвого скорочення обсягів споживання електричної енергії що є актуальною і важливою науково-прикладною проблемою. Вирішення даної задачі призведе до зменшення витрат палива, енергії і матеріальних ресурсів та поліпшення якості енергоносіїв, що відпускаються споживачам. Доведено, що споживання електричної енергії є важливим параметром роботи холодильного обладнання і визначає його ефективність. На базі холодильного фрізера було розроблено експериментальну установку (у вигляді лабораторного стенду), яка призначена для дослідження енергоефективності використання електричної енергії при виробництві штучного холоду. Запропоновано зміст циклу експериментів, які можуть бути проведені на базі експериментальної установки. Результати цих експериментів та подальша їх обробка дозволить вибирати найкращі з огляду енергетичної ефективності режими роботи холодильних систем при яких споживається електричної енергії буде мінімальною.<br>Метою нашої роботи стало створення, на базі холодильного фрізера експериментальної установки (у вигляді лабораторного стенду), на базі якої були проведені експериментальні дослідження впливу оточуючого середовища та режимів роботи холодильного обладнання на споживання електричної енергії. Результати проведених досліджень показали, що споживання електричної енергії в першу чергу залежить від типу агрегату, а вже потім від внутрішніх параметрів роботи та впливу оточуючого середовища.<br>The aim of our work was to create a refrigerated freezer experimental installation (in the form of a laboratory stand), on the basis of which experimental studies of the impact of the environment and modes of operation of refrigeration equipment on electricity consumption were conducted. The results of research have shown that electricity consumption depends primarily on the type of unit, and only then on the internal parameters of the work and the impact of the environment.<br>ВСТУП 6 1 АНАЛІТИЧНИЙ РОЗДІЛ 8 1.1 Аналіз основних чинників зниження ефективності роботи типових холодильних систем 8 1.2 Аналіз охолоджувального навантаження 12 1.3 Аналіз енергоефективності роботи холодильних систем 21 1.4 Висновки до розділу 1 22 2 РОЗРАХУНКОВО-ДОСЛІДНИЦЬКИЙ РОЗДІЛ 24 2.1 Цикл експериментальних досліджень 24 2.2 Обробка дослідних даних 33 2.3 Тепловий розрахунок холодильної машини з одноступінчастим компресором 35 2.4 Розрахунок загальних енерговитрат компресійної установки 39 2.5 Розрахунок енерговитрат, котрі виникають через неефективне використання потужності компресорів 39 3 ПРОЕКТНО-КОНСТРУКТОРСЬКИЙ РОЗДІЛ 43 3.1 Опис експериментальної установки для дослідження енергоефективності використання електричної енергії при виробництві штучного холоду 43 3.2 Електрична частина дослідної установки 43 3.3 Схема для вимірювання температури досліджуваних об’єктів 49 3.4 Принципова схема експериментальної установки 51 3.5 Вироблення рекомендацій щодо підвищення енергоефективності холодильного обладнання при виробництві штучного холоду за результатами досліджень на базі експериментальної установки 52 3.6. Висновки до розділу 3 53 4 ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ. 54 4.1 Правила техніки безпеки при експлуатації обладнання, що проектується 54 4.2 Правила безпеки при експлуатації компресорних та холодильних установок 56 4.3 Безпека експлуатації компресорних установок 58 ЗАГАЛЬНІ ВИСНОВКИ 61 ПЕРЕЛІК ПОСИЛАНЬ 62
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії