Academic literature on the topic 'Α -glucosidase'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Α -glucosidase.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Α -glucosidase"
Schmidt, Sabine, Sandra Rainieri, Simone Witte, Ulrich Matern, and Stefan Martens. "Identification of aSaccharomyces cerevisiaeGlucosidase That Hydrolyzes Flavonoid Glucosides." Applied and Environmental Microbiology 77, no. 5 (January 7, 2011): 1751–57. http://dx.doi.org/10.1128/aem.01125-10.
Full textFogarty, William M., Catherine T. Kelly, and Sunil K. Kadam. "Separation and characterization of an α-glucosidase and maltase from Bacillus amyloliquefaciens." Canadian Journal of Microbiology 31, no. 8 (August 1, 1985): 670–74. http://dx.doi.org/10.1139/m85-127.
Full textLi, Xun, Hua Xiang Gu, Hao Shi, and Fei Wang. "Overexpression and Phylogenetic Analysis of a Thermostable α-Glucosidase from Thermus thermophilus." Advanced Materials Research 1004-1005 (August 2014): 841–48. http://dx.doi.org/10.4028/www.scientific.net/amr.1004-1005.841.
Full textBaiya, Supaporn, Salila Pengthaisong, Sunan Kitjaruwankul, and James R. Ketudat Cairns. "Structural analysis of rice Os4BGlu18 monolignol β-glucosidase." PLOS ONE 16, no. 1 (January 20, 2021): e0241325. http://dx.doi.org/10.1371/journal.pone.0241325.
Full textThanakosai, Wannisa, and Preecha Phuwapraisirisan. "First Identification of α-Glucosidase Inhibitors from Okra (Abelmoschus Esculentus) Seeds." Natural Product Communications 8, no. 8 (August 2013): 1934578X1300800. http://dx.doi.org/10.1177/1934578x1300800813.
Full textFlores-Bocanegra, Laura, Rafael Torres-Colín, Martin González-Andrade, José S. Calderón, and Rachel Mata. "In Vivo and In Vitro α-Glucosidase Inhibitory Activity of Perfoliatin a from Melampodium Perfoliatum." Natural Product Communications 14, no. 1 (January 2019): 1934578X1901400. http://dx.doi.org/10.1177/1934578x1901400102.
Full textZhao, Lin, Yuqiong Pei, Guoxin Zhang, Jiayao Li, Yujie Zhu, Mingjun Xia, Ke Yan, et al. "Efficient Synthesis and In Vitro Hypoglycemic Activity of Rare Apigenin Glycosylation Derivatives." Molecules 28, no. 2 (January 5, 2023): 533. http://dx.doi.org/10.3390/molecules28020533.
Full textViigand, Katrin, Kristina Põšnograjeva, Triinu Visnapuu, and Tiina Alamäe. "Genome Mining of Non-Conventional Yeasts: Search and Analysis of MAL Clusters and Proteins." Genes 9, no. 7 (July 16, 2018): 354. http://dx.doi.org/10.3390/genes9070354.
Full textGiblin, Mary, Catherine T. Kelly, and William M. Fogarty. "Thermostable α-glucosidase produced by Bacillus caldovelox DSM411." Canadian Journal of Microbiology 33, no. 7 (July 1, 1987): 614–18. http://dx.doi.org/10.1139/m87-107.
Full textAlarico, Susana, Milton S. da Costa, and Nuno Empadinhas. "Molecular and Physiological Role of the Trehalose-Hydrolyzing α-Glucosidase from Thermus thermophilus HB27." Journal of Bacteriology 190, no. 7 (January 25, 2008): 2298–305. http://dx.doi.org/10.1128/jb.01794-07.
Full textDissertations / Theses on the topic "Α -glucosidase"
Louro, Patrícia Isabel Ramos. "Avaliação e caracterização da ação inibitória de iminociclitóis na atividade alfa-glucosidase de células de mamífero." Master's thesis, Universidade de Évora, 2014. http://hdl.handle.net/10174/10890.
Full textBothon, Fifa. "Phytochimie et propriétés biologiques d'extraits de plantes antidiabétiques utilisées au Bénin." Thesis, Clermont-Ferrand 1, 2012. http://www.theses.fr/2012CLF1PP05.
Full textThe present work had reported on the phytochemical and biological studies of non-volatile extracts of four plants used in Benin for diabetes treatment. The first part reviewed the bibliography of investigated plants in our study. In this part, the systematic, the importance in the pharmacopoeia and the previous works done on these plants were presented. The second part has presented the extraction method and chemical studies of the extracts and results obtained. The spectrophotometry has permitted to identify some important families of compounds in the extracts: the total polyphenols, flavonoids and tannins whereas the GC / MS and LC/MS were used to highlight the presence of volatile and non-volatile compounds. The third part described the biological tests in vitro and ex vitro carried out on the extracts. The extracts showed in general activities: α-glucosidase inhibition, antioxidant (DPPH, FRAP, ORAC), antimicrobial, and one of them (Bridelia ferruginea) were cytotoxic on cancer cells (PA1, MCF7, PC3, DU-145), with a variable efficiency from one plant to another. The fourth part had discussed in general about the results obtained from phytochemical studies and biological tests. Among the four plants samples selected for our study, only the semi-alcoholic extract of Ceiba pentandra roots had a low-dosed compounds families and presented of this biological activities (cited below) low comparatively to Bridelia ferruginea, Pseudocedrela kotschyi and Polygonum senegalensis extracts. Both of the chemical and biological results highlight the potential of certain species for future exploitation of their non-volatile extract for therapeutic purposes
Shai, LJ, JN Eloff, N. Boaduo, AM Mogale, SR Magano, MP Mokgotho, and P. Masoko. "Yeast alpha glucosidase inhibitory and antioxidant activities of six medicinal plants collected in Phalaborwa, South Africa." Elsevier, 2010. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001248.
Full textGiudicelli, Jean. "L'alpha-glucosidase neutre : structure et fonction de la protéine." Paris 11, 1988. http://www.theses.fr/1988PA112140.
Full textNeutral a-0-glucosidase which is purified after solubilization by Triton X-100 can easely be integrated in artificial vesicles. The fact that this enzyme bound to native and artificial membrane vesicles, exhibited the same antibodies-binding which is equivalent to that of the proteolytic form, demonstrated the free accessibility of the antigenic sites to specific antibody. Neutral a-0-glucosidase activity, associated with both membrane system, presented the same single activation energy and a Q10 as that observed for the proteolytic form of the enzyme, over the temperature range studied. This result which could be correlated with the external location of the bulk of the hydrophilic part of the enzyme was confirmed by proteolytic treatments using proteinases of various shapes. Findings allow us to conclude that the topology of the enzyme integrated in artificial membrane vesicles is the same as that of the native membrane bound enzyme. Horse kidney Neutral a-0-glucosidase integrated in native membranes or in proteoliposomes exhibited its hydrophilic part separated, out of the membrane surfaces, by a 2-5 nm junctional polypeptide segment
Chen, Xian Qiang. "Study on the chemical constituents of ganoderma resinaceum and their α-glucosidase inhibitory activities." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3952488.
Full textNguyen, The Dương, Thanh Hoang Le, and Thi Tuyen Do. "Optimization of culture medium for the cultivation of Actinoplanes sp. mutant strains and purification of acarbose." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-227839.
Full textNhằm mục đích nâng cao khả năng sinh tổng hợp hoạt chất acarbose từ chủng đột biến Actinoplanes sp. KCTC 9161-L14, môi trường lên men của chủng dùng để sản xuất acarbose đã được tối ưu hóa. Một phần mềm thiết kế đã được thiết lập để khảo sát ảnh hưởng của glucose, maltose và bột ngô đến khả năng sản xuất acarbose (thông qua hoạt tính ức chế a-glucosidase). Kết quả đã cho thấy, hai yếu tố glucose và maltose có ý nghĩa quan trọng và ảnh hưởng trực tiếp đến khả năng sinh tổng hợp acarbose. Một phương trình đã được hình thành từ kết quả tối ưu. Bên cạnh đó, chúng tôi đã chứng minh được cột sắc ký sử dụng than hoạt tính có thể tinh sạch acarbose từ dịch lên men. Hàm lượng acarbose trong dung dịch tinh sạch đạt 191,5 g/l và một quy trình tinh sạch acarbose được đề xuất
Ryan, Caroline Mary. "Anti-Diabetic and Anti-Obesity Activities of Cocoa (Theobroma cacao) via Physiological Enzyme Inhibition." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/75003.
Full textMaster of Science in Life Sciences
Hogan, Shelly Patricia. "Grape Extracts for Type 2 Diabetes Treatment Through Specific Inhibition of α-Glucosidase and Antioxidant Protection." Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/26725.
Full textPh. D.
Albert, Heidemarie. "Studies on the α-glucosidase enzyme of Bacillus stearothermophilus, ATCC 7953, a biological indicator test organism." Thesis, University of Bath, 1995. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295444.
Full textPacheco, Simone Muniz. "Frutos da família Myrtaceae: Caracterização físicoquímica e potencial inibitório da atividade das enzimas digestivas." Universidade Federal de Pelotas, 2015. http://repositorio.ufpel.edu.br:8080/handle/prefix/3055.
Full textApproved for entry into archive by Aline Batista (alinehb.ufpel@gmail.com) on 2016-09-26T18:34:47Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação_Simone_Pacheco_Frutos da família Myrtaceae_Caracterização físico-química e potencial .pdf: 1364587 bytes, checksum: 6df19769efc9216d28d9614070c8e6af (MD5)
Made available in DSpace on 2016-09-26T18:34:47Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação_Simone_Pacheco_Frutos da família Myrtaceae_Caracterização físico-química e potencial .pdf: 1364587 bytes, checksum: 6df19769efc9216d28d9614070c8e6af (MD5) Previous issue date: 2015-03-27
Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq
As espécies vegetais Campomanesia xanthocarpa (guabiroba), Eugenia uniflora (pitanga), Eugenia pyriformis (uvaia), Psidium cattleianum (araçá) e Syzygium cumini (jambolão) estão presentes na Floresta Atlântica e são utilizadas pela população, para tratar diversas patologias, especialmente o diabetes melito tipo 2. Entretanto, a eficácia destes tratamentos e o mecanismo envolvido ainda não foram totalmente elucidados. Neste contexto, o presente estudo teve como objetivo principal avaliar o potencial dos compostos naturais destes frutos em inibir as enzimas α-amilase e α- glicosidase que estão envolvidas no metabolismo de carboidratos. Estes frutos também foram avaliados físico-quimicamente, realizando-se dentre outras análises a quantificação dos compostos fenólicos totais e a determinação da atividade antioxidante (métodos ABTS e DPPH). Os extratos metanólicos de P. cattleianum (acesso 44), S. cumini e E. pyriformis (acessos 11 e 15) inibiram de forma significativa a atividade da α-amilase. Os extratos metanólicos de P. cattleianum (acessos 44 e 87) também inibiram a atividade da α-glicosidase, utilizando-se os substratos maltose e sacarose. Em virtude da atividade antioxidante, da elevada quantidade de compostos fenólicos e da capacidade de inibição das enzimas digestivas do metabolismo de carboidratos, os frutos de P. cattleianum (acessos 44 e 87), S. cumini e E. pyriformis (acessos 11 e 15) podem apresentar potencial uso no manejo da hiperglicemia pós-prandial.
Campomanesia xanthocarpa (guabiroba), Eugenia uniflora (pitanga), Eugenia pyriformis (uvaia), Psidium cattleianum (araçá) and Syzygium cumini (jambolão) grow in the Brazilian Atlantic Forest and their fruits are commonly used as medicine to treat diseases related to carbohydrate metabolism, such as diabetes. The effectiveness of these treatments has not been demonstrated neither the biochemical mechanism involved. Therefore this study was devised to evaluate the potential of natural compounds of these fruits to inhibit key enzymes α-amylase and α- glucosidase involved in the carbohydrate metabolism. The fruits were also subjected to physicochemical characterization, quantification of phenolics compounds and antioxidant activity (ABTS and DPPH methods). The methanolic extracts of P. cattleianum (access 44), S. cumini, E. pyriformis (accesses 11 and 15) distinctively inhibited α-amylase activity. The methanolic extracts of P. cattleianum. (accesses 44 and 87) also inhibited α-glycosidase activity, with either maltose or sucrose as substrate. By having antioxidant activities, a fairly content of phenolic compounds, and capacity to inhibit carbohydrate digestive enzymes, P. cattleianum (access 44 and 87), S. cumini and E. pyriformis (accesses 11 and 15) could be good candidates to be used in the management of postprandial hyperglycemia.
Book chapters on the topic "Α -glucosidase"
Leroux-Stewart, Josée, Rémi Rabasa-Lhoret, and Jean-Louis Chiasson. "α-Glucosidase inhibitors." In International Textbook of Diabetes Mellitus, 673–85. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118387658.ch45.
Full textScharnagl, Hubert, Winfried März, Markus Böhm, Thomas A. Luger, Federico Fracassi, Alessia Diana, Thomas Frieling, et al. "Acid α-Glucosidase Deficiency." In Encyclopedia of Molecular Mechanisms of Disease, 11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_8622.
Full textLeung, Alexander K. C., William Lane M. Robson, Carsten Büning, Johann Ockenga, Janine Büttner, Hartmut Schmidt, Antonio V. Delgado-Escueta, et al. "Lysosomal α-Glucosidase Deficiency." In Encyclopedia of Molecular Mechanisms of Disease, 1240. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_8623.
Full textNairn, Alison V., and Kelley W. Moremen. "Glucosidase, Alpha Neutral AB; Glucosidase II Subunit Beta (GANAB, PRKCSH, α-Glucosidase II)." In Handbook of Glycosyltransferases and Related Genes, 1283–95. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54240-7_140.
Full textSchreckinger, Maria, Mary Ann Lila, Gad Yousef, and Elvira de Mejia. "Inhibition of α-Glucosidase and α-Amylase byVaccinium floribundumandAristotelia chilensisProanthocyanidins." In ACS Symposium Series, 71–82. Washington, DC: American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1109.ch006.
Full textCreutzfeldt, W. "Panel Discussion: Future Aspects of α-Glucosidase Inhibition." In Acarbose for the Treatment of Diabetes Mellitus, 183–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73583-7_62.
Full textSu, Yanfang, Bing Gao, Tao Qin, Zhijing Gao, Wei Wang, and Jie Zhang. "Plant Secondary Metabolites with α-Glucosidase Inhibitory Activity." In Structure and Health Effects of Natural Products on Diabetes Mellitus, 179–95. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8791-7_10.
Full textBhatnagar, Aditi, and Abha Mishra. "α-Glucosidase Inhibitors for Diabetes/Blood Sugar Regulation." In Natural Products as Enzyme Inhibitors, 269–83. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0932-0_12.
Full textTruscheit, E., I. Hillebrand, B. Junge, L. Müller, W. Puls, and D. Schmidt. "Microbial α-Glucosidase Inhibitors: Chemistry, Biochemistry, and Therapeutic Potential." In Progress in Clinical Biochemistry and Medicine, 17–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73461-8_2.
Full textSchomburg, Dietmar, and Ida Schomburg. "hesperidin 6-O-α-l-rhamnosyl-β-d-glucosidase 3.2.1.168." In Class 2–3.2 Transferases, Hydrolases, 631–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36240-8_122.
Full textConference papers on the topic "Α -glucosidase"
"Determination of Antioxidant Property, Total Phenolics Content, and α-Glucosidase Inhibitory Activity of Different Solvent Extracts of Defatted and Non-Defatted Peanut Skins." In 4th International Conference on Biological & Health Sciences (CIC-BIOHS’2022). Cihan University, 2022. http://dx.doi.org/10.24086/biohs2022/paper.781.
Full textLi, T., KT Kongstad, and D. Staerk. "High-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of α-glucosidase inhibitors in Machilus litseifolia (Lauraceae)." In GA 2017 – Book of Abstracts. Georg Thieme Verlag KG, 2017. http://dx.doi.org/10.1055/s-0037-1608251.
Full textWu, Meifu, and Hongli Zhou. "INHIBITORY EFFECT AND ENZYMOLYSIS KINETICS OF LENTINAN ON Α-GLUCOSIDASE." In International Conference on New Materials and Intelligent Manufacturing (ICNMIM). Volkson Press, 2018. http://dx.doi.org/10.26480/icnmim.01.2018.312.314.
Full textMin, BS, M. T. Ha, J. A. Kim, and J. S. Choi. "PTP1B and α-glucosidase inhibitory activities of Hedera rhombea compounds." In GA – 70th Annual Meeting 2022. Georg Thieme Verlag KG, 2022. http://dx.doi.org/10.1055/s-0042-1759268.
Full textAmbarwati, Neneng, Berna Elya, Putu Mahayasih, Muhamad Awang, Hanita Omar, Islamudin Ahmad, and Dwi Atmanto. "In-vitro α-Glucosidase Inhibitory Activity of Litsea petiolata Hk. f." In Proceedings of the 1st International Conference on Health Science, ICHS 2020, 26-27 October 2020, Jakarta, Indonesia. EAI, 2021. http://dx.doi.org/10.4108/eai.26-10-2020.2311312.
Full text"Progress of α-Glucosidase Inhibitor in Mulberry Leavesand Its Hypoglycemic Effect." In 2022 International Conference on Biotechnology, Life Science and Medical Engineering. Clausius Scientific Press, 2022. http://dx.doi.org/10.23977/blsme.2022026.
Full textIshartati, Erny, Dyah Roeswitawati, Sukardi, Saefur Rohman, and Sudiadi. "α-Glucosidase and α -Amylase Inhibitory Activities of Jambolan (Syzygium cumini (L.) SKEELS) Fruit and Seed." In 3rd KOBI Congress, International and National Conferences (KOBICINC 2020). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/absr.k.210621.043.
Full textSrećković, N., N. Mihailović, and V. Mihailović. "Lysimachia vulgaris L. aerial part and root methanol extracts as potential α-amylase and α-glucosidase inhibitors." In GA – 70th Annual Meeting 2022. Georg Thieme Verlag KG, 2022. http://dx.doi.org/10.1055/s-0042-1759175.
Full textIndrianingsih, Anastasia Wheni, and Amalia Indah Prihantini. "In vitro antioxidant and α-glucosidase inhibitory assay of Zingiber cassumunar roxb." In 2ND INTERNATIONAL CONFERENCE ON CHEMISTRY, CHEMICAL PROCESS AND ENGINEERING (IC3PE). Author(s), 2018. http://dx.doi.org/10.1063/1.5064965.
Full textSaprudin, D., I. Batubara, and N. P. Putri. "Endosperm of Indramayu mango (Mangifera indica) as α-glucosidase inhibitor and antioxidant." In THE 8TH INTERNATIONAL CONFERENCE OF THE INDONESIAN CHEMICAL SOCIETY (ICICS) 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001080.
Full textReports on the topic "Α -glucosidase"
Farazi, Mena, Michael Houghton, Margaret Murray, and Gary Williamson. Systematic review of the inhibitory effect of extracts from edible parts of nuts on α-glucosidase activity. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2022. http://dx.doi.org/10.37766/inplasy2022.8.0061.
Full textTurner, Joshua, Lizabeth Thomas, and Sarah Kennedy. Structural Analysis of a New Saccharomyces cerevisiae α-glucosidase Homology Model and Identification of Potential Inhibitor Enzyme Docking Sites. Journal of Young Investigators, October 2020. http://dx.doi.org/10.22186/jyi.38.4.27-33.
Full text