Academic literature on the topic 'Ε-Regularity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ε-Regularity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ε-Regularity"

1

FOX, JACOB, LÁSZLÓ MIKLÓS LOVÁSZ, and YUFEI ZHAO. "On Regularity Lemmas and their Algorithmic Applications." Combinatorics, Probability and Computing 26, no. 4 (2017): 481–505. http://dx.doi.org/10.1017/s0963548317000049.

Full text
Abstract:
Szemerédi's regularity lemma and its variants are some of the most powerful tools in combinatorics. In this paper, we establish several results around the regularity lemma. First, we prove that whether or not we include the condition that the desired vertex partition in the regularity lemma is equitable has a minimal effect on the number of parts of the partition. Second, we use an algorithmic version of the (weak) Frieze–Kannan regularity lemma to give a substantially faster deterministic approximation algorithm for counting subgraphs in a graph. Previously, only an exponential dependence for
APA, Harvard, Vancouver, ISO, and other styles
2

CONLON, DAVID, JACOB FOX, and BENNY SUDAKOV. "Hereditary quasirandomness without regularity." Mathematical Proceedings of the Cambridge Philosophical Society 164, no. 3 (2017): 385–99. http://dx.doi.org/10.1017/s0305004116001055.

Full text
Abstract:
AbstractA result of Simonovits and Sós states that for any fixed graph H and any ε > 0 there exists δ > 0 such that if G is an n-vertex graph with the property that every S ⊆ V(G) contains pe(H) |S|v(H) ± δ nv(H) labelled copies of H, then G is quasirandom in the sense that every S ⊆ V(G) contains $\frac{1}{2}$p|S|2± ε n2 edges. The original proof of this result makes heavy use of the regularity lemma, resulting in a bound on δ−1 which is a tower of twos of height polynomial in ε−1. We give an alternative proof of this theorem which avoids the regularity lemma and shows that δ may be tak
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Shibing, та Alessio Figalli. "Boundary ε-regularity in optimal transportation". Advances in Mathematics 273 (березень 2015): 540–67. http://dx.doi.org/10.1016/j.aim.2014.12.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gerke, Stefanie, Yoshiharu Kohayakawa, Vojtěch Rödl та Angelika Steger. "Small subsets inherit sparse ε-regularity". Journal of Combinatorial Theory, Series B 97, № 1 (2007): 34–56. http://dx.doi.org/10.1016/j.jctb.2006.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Yanjun, and Qiaozhen Ma. "Asymptotic Behavior for a Class of Nonclassical Parabolic Equations." ISRN Applied Mathematics 2013 (September 1, 2013): 1–14. http://dx.doi.org/10.1155/2013/204270.

Full text
Abstract:
This paper is devoted to the qualitative analysis of a class of nonclassical parabolic equations ut-εΔut-ωΔu+f(u)=g(x) with critical nonlinearity, where ε∈[0,1] and ω>0 are two parameters. Firstly, we establish some uniform decay estimates for the solutions of the problem for g(x)∈H-1(Ω), which are independent of the parameter ε. Secondly, some uniformly (with respect to ε∈[0,1]) asymptotic regularity about the solutions has been established for g(x)∈L2(Ω), which shows that the solutions are exponentially approaching a more regular, fixed subset uniformly (with respect to ε∈[0,1]). Finally,
APA, Harvard, Vancouver, ISO, and other styles
6

Hasselblatt, Boris. "Regularity of the Anosov splitting and of horospheric foliations." Ergodic Theory and Dynamical Systems 14, no. 4 (1994): 645–66. http://dx.doi.org/10.1017/s0143385700008105.

Full text
Abstract:
Abstract‘Bunching’ conditions on an Anosov system guarantee the regularity of the Anosov splitting up toC2−ε. Open dense sets of symplectic Anosov systems and geodesic flows do not have Anosov splitting exceeding the asserted regularity. This is the first local construction of low-regularity examples.
APA, Harvard, Vancouver, ISO, and other styles
7

HOSSEINI, KAAVE, SHACHAR LOVETT, GUY MOSHKOVITZ, and ASAF SHAPIRA. "An improved lower bound for arithmetic regularity." Mathematical Proceedings of the Cambridge Philosophical Society 161, no. 2 (2016): 193–97. http://dx.doi.org/10.1017/s030500411600013x.

Full text
Abstract:
AbstractThe arithmetic regularity lemma due to Green [GAFA 2005] is an analogue of the famous Szemerédi regularity lemma in graph theory. It shows that for any abelian group G and any bounded function f : G → [0, 1], there exists a subgroup H ⩽ G of bounded index such that, when restricted to most cosets of H, the function f is pseudorandom in the sense that all its nontrivial Fourier coefficients are small. Quantitatively, if one wishes to obtain that for 1 − ε fraction of the cosets, the nontrivial Fourier coefficients are bounded by ε, then Green shows that |G/H| is bounded by a tower of tw
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Jianyi, Zhitao Zhang, Guijuan Chang, and Jing Zhao. "Periodic Solutions to Klein–Gordon Systems with Linear Couplings." Advanced Nonlinear Studies 21, no. 3 (2021): 633–60. http://dx.doi.org/10.1515/ans-2021-2138.

Full text
Abstract:
Abstract In this paper, we study the nonlinear Klein–Gordon systems arising from relativistic physics and quantum field theories { u t ⁢ t - u x ⁢ x + b ⁢ u + ε ⁢ v + f ⁢ ( t , x , u ) = 0 , v t ⁢ t - v x ⁢ x + b ⁢ v + ε ⁢ u + g ⁢ ( t , x , v ) = 0 , \left\{\begin{aligned} \displaystyle{}u_{tt}-u_{xx}+bu+\varepsilon v+f(t,x,u)&\displaystyle=0,\\ \displaystyle v_{tt}-v_{xx}+bv+\varepsilon u+g(t,x,v)&\displaystyle=0,\end{aligned}\right. where u , v u,v satisfy the Dirichlet boundary conditions on spatial interval [ 0 , π ] [0,\pi] , b > 0 b>0 and f , g f,g are 2 ⁢ π 2\pi -periodic
APA, Harvard, Vancouver, ISO, and other styles
9

Miura, Tatsuya, та Felix Otto. "Sharp boundary ε-regularity of optimal transport maps". Advances in Mathematics 381 (квітень 2021): 107603. http://dx.doi.org/10.1016/j.aim.2021.107603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Han, Xiaoli, та Jun Sun. "An ε-regularity theorem for the mean curvature flow". Journal of Geometry and Physics 62, № 12 (2012): 2329–36. http://dx.doi.org/10.1016/j.geomphys.2012.07.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!