Contents
Academic literature on the topic 'Μη γραμμικές διαφορικές εξισώσεις'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Μη γραμμικές διαφορικές εξισώσεις.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Μη γραμμικές διαφορικές εξισώσεις"
Γραικού, Αικατερίνη. "Μελέτη της μη αγγειακής καρκινικής ανάπτυξης μέσω ενός πεπλατυσμένου σφαιροειδούς προτύπου." Ανοικτή Εκπαίδευση: το περιοδικό για την Ανοικτή και εξ Αποστάσεως Εκπαίδευση και την Εκπαιδευτική Τεχνολογία 8, no. 1 (January 1, 2012): 136. http://dx.doi.org/10.12681/jode.9795.
Full textDissertations / Theses on the topic "Μη γραμμικές διαφορικές εξισώσεις"
Χιτζάζης, Ιάσονας. "Το πρόβλημα αρχικών-συνοριακών τιμών για εξελικτικές μη γραμμικές μερικές διαφορικές εξισώσεις." Thesis, 2009. http://nemertes.lis.upatras.gr/jspui/handle/10889/2628.
Full textIn the present PhD thesis we study the initial-boundary value problem for the nonlinear evolution partial diefferential equation of Korteweg-De Vries (KDV) posed on a finite interval of the spatial variable. The method we employ is known as unified transform method. The application of the method on the IBVP under consideration consists of the so-called simultaneous spectral analysis of the Lax pair associated to the KDV equation. The first aim achieved in this contribution, is the expression of the solution of the IBVP as an integral representation in terms of the solution an appropriate Riemann-Hilbert (RH) problem in the complex plane of the spectral parameter, for a sufficiently large class of initial and boundary conditions. In particular, we provide two different integral representations for each one of two different RH problems. A second aim achieved is the invention of a procedure for the reduction of the singular RH problem to a regular one. A third aim achieved is the caracterization of the so-called generalized Dirichlet-to_Neumann map, that is, the expression of the unknown boundary functions in terms of the prescribed initial and boundary conditions. The Phd thesis is divided in 7 chapters. The first chapter is of an introductory character, while the remaining six chapters consist of the original contribution of the thesis. Analytically, the content of each chapter has as follows. The first chapter presents, among other things, the RH problem, the inverse scattering method for KDV, the dressing method for KDV and the method of simultaneous spectral analysis of the Lax pair. Chapter 2 presents the first step of the application of the method upon the IBVP, under the assumption thet KDV is solvable in the corresponding space-time region. The simultaneous spectral analysis of the Lax pair leads to the formulation of a singular homogenous RH factorization problem, which is defined in terms of six spectral functions. The last ones are expressed in terms of the initial and boundary values of the solution and of its transverse boundary derivatives up to order two. In chapter 3 we define the six spectral functions that correspond to the initial and boundary conditions and show that the inversion of these mappings can be described through appropriate RH problems. Also an appropriate “global relation” is satisfied, which characterizes the admissible initial and boundary functions. In chapter 4 we show that the asymptotic behavior of the solution of the RH problem leads actually to a solution of the IBVP. In chapter 5 we study the unique solvability of the RH problem. In chapter 6 we present an alternative RH formulation, replacing the poles by discontinuity curves. In chapter 7 we present the global relation to construct the generalized Dirichlet-to-Neumann map, that is, the expression of the unknown boundary functions (appearing in the RH formulation) in terms of the prescribed initial and boundary conditions.
Δήμας, Στυλιανός. "Μερικές διαφορικές εξισώσεις, αλγεβρική υπολογιστική και μη γραμμικά συστήματα." Thesis, 2008. http://nemertes.lis.upatras.gr/jspui/handle/10889/1697.
Full textThe symmetry analysis is a modern and effective method of mathematical field of differential equations. On its advantages, the algorithmic way for determining the symmetries and constructing solutions. Like any other method it also has its disadvantages; the size and the complexity of the intermediate calculations needed for giving the symmetries is increased exponentially with respect to the equation under investigation. This fact renders the calculations unmanageable by hand and error prone. The need for reliable and fast symbolic tools is apparent. For this reason, we developed a symbolic package called Sym based on the Mathematica program. The package employing artificial intelligent elements and specialized symbolic methods is an effective and versatile mathematical tool ideal for research and education alike. The present thesis consists of two parts; on the first we present the basic notions of the mathematical theory and the reasons that symbolic tools can be utilized. On the second part, we present the symbolic package Sym itself along with two new result employing it. As for the package itself, we give the basic characteristics, its functionality and the benefits using it against the existing programs. Its usefulness is presented through two results. On the first, we study a problem from General Relativity, finding solutions describing gravity waves. The symmetries of the Einstein’s field equations for the radiating Bondi metric are determined from Sym. Using them we reduce the non-linear system. Using specific ansatzes we arrive to specific solutions already found using other methods. Finally, we present our future directions for finding new solutions with the correct physical behavior. On the second, we describe a new procedure for classifying differential equations using the notions of complete symmetry groups and Lie remarkability. Using this procedure we achieved by starting with a set of differential equation to construct a new family that includes the initial set. Future directions include finding a way to link the solutions of the newly constructed family with the solutions of the equations that we use for constructing it.
Τόγκας, Αναστάσιος. "Συμμετρίες και ολοκληρωσιμότητα μη-γραμμικών μερικών διαφορικών εξισώσεων κι εφαρμογές στη γενική σχετικότητα." Thesis, 2001. http://nemertes.lis.upatras.gr/jspui/handle/10889/1941.
Full textΜαρινάκης, Ευάγγελος. "Ολοκληρωσιμότητα και επιλυσιμότητα μη γραμμικών συστημάτων με αλγεβρικές ιδιομορφίες." Thesis, 2001. http://nemertes.lis.upatras.gr/jspui/handle/10889/1940.
Full textΚάψιας, Λάζαρος. "Αλγόριθμοι και αρχιτεκτονικές VLSI για αριθμητική επίλυση μη γραμμικών διαφορικών εξισώσεων προβλημάτων διάχυσης." 2005. http://nemertes.lis.upatras.gr/jspui/handle/10889/120.
Full textThe main subject of this work is the solution of partial non-linear differential equations from ASIC circuits.In order solution to be efficient new algorithms have to be created according to ASIC architecture special characterisitics.
Κανδύλας, Χρήστος. "Επίλυση του προβλήματος πεπερασμένης ελαστικότητας με τη μέθοδο της αναλογικής εξισώσεως. Εφαρμογές σε διδιάστατα προβλήματα (δίσκοι, επίπεδες μεμβράνες)." Thesis, 1999. http://nemertes.lis.upatras.gr/jspui/handle/10889/3101.
Full textΧιτζάζης, Ιάσονας. "Το πρόβλημα Riemann-Hilbert και η εφαρμογή του στη μελέτη προβλημάτων αρχικών-συνοριακών τιμών γραμμικών και μη γραμμικών μερικών διαφορικών εξισώσεων." Thesis, 2009. http://nemertes.lis.upatras.gr/jspui/handle/10889/1628.
Full textAs it is shown in its title, the purpose of this M.Sc.thesis is twofold. First, we discuss a classical mathematical problem, called the Riemann-Hilbert problem. This problem is presented and solved in a series of cases. Afterwards, we present the applications of this problem to the study of initial value problems and initial-boundary value problems for linear and nonlinear partial differential equations. The thesis is organized in four (4) chapters. More accurately, the structure of the four chapters is as follows. The first chapter constitutes of the Introduction to the thesis. It contains the presentation of the problem, a short historical retrospection of the problem, as well as a list of applications of the problem. The second chapter, entitled “Cauchy Type Integrals”, is dedicated to the presentation of the necessary background, so as to make the following presentation self-contained. The topics negotiated are: Cauchy type integrals, Hölder type functions, Cauchy principal value integrals, the Plemelj-Sokhotski theorem, the Cauchy integral operator, Cauchy type integrals on the real line. The third chapter, “The Riemann-Hilbert Problem”, presents the problem, as well s its solution, in a series of cases. The problem’s simplest formulation seeks for a sectionally holomorphic, complex valued function of a single complex variable, which undergoes a given (predetermined) jump along a given curve of the complex plane. We focus our attention exclusively on scalar Riemann-Hilbert problems. We work exclusively with discontinuity curves that have the property to divide the complex plane into two sections, and, in particular, with closed curves, as well as with the real line. In particular, we analyse the following problems: (i). The Riemann-Hilbert (RH) problem for closed curves: (1). Additive RH problem. (2). Factorization RH problem. (3). General non-homogeneous RH problem. (ii). RH problem on the real line. (1). Additive RH problem. (2). Factorization RH problem. (3). General non-homogeneous RH problem. The fourth chapter is entitled “Initial-Boundary Value Problems for Linear and Nonlinear Partial Differential Equations”. Here we negotiate with patial differential equations (PDE), linear as well as nolinear, which have the distinguishing property of possessing a so-called Lax pair formulation. By this we mean that, any of these PDEs is equivalent to the compatibility (integrability) condition of a proper pair of linear differential equations, the so-called Lax pair, that also contains a free complex parameter, termed to the spectral parameter. Such PDEs are also characterized as integrable by the inverse scattering method. The last method, also called the inverse spectral method, is a method for solving the initial value problem, or Cauchy problem, for evolutionary PDEs of this kind. The new method of simultaneous spectral analysis of the Lax pair, also called the unified transform method, generalizes the previous one in a manner that renders it applicable also to initial-boundary value problems for such PDEs. In this, fourth, chapter we study the following problems: (i). The initial value problem for the (linear) heat (or diffusion) equation. Here is presented the inverse scattering method in its simplest form. (ii). An adequately general spectral problem, which may constitute the spatial part of the Lax pair for many integrable nonlinear PDEs. We afterwards focus our attention to a specific case of this problem, the so-called Zakharov-Shabat spectral problem. As an application, we study the initial value problem for the so-called Nonlinear Schrodinger (NLS) equation. (iii). The initial-boundary value problem for the heat (or diffusion) equation posed on a semi-infinite interval of the spatial variable. Here we present the unified transform method in its simplest form, i.e., applied on a linear problem. The thesis terminates with the presentation of the bibliography, in accordance with the references that appear in the text.
Νομικός, Δημήτριος. "Διαφορική θεωρία Galois και μη-ολοκληρωσιμότητα του ανισοτροπικού προβλήματος Stormer και του ισοσκελούς προβλήματος τριών σωμάτων." Thesis, 2010. http://nemertes.lis.upatras.gr/jspui/handle/10889/3876.
Full textIn the present dissertation we studied the integrability of the anisotropic Stormer problem (ASP) and the isosceles three-body problem (IP), applying the Morales-Ramis-Simo theory. The results of our study were published by the journal Physica D: Nonlinear Phenomena. A Hamiltonian system SH, of N degrees of freedom, is integrable (in the Liouville sense) if it admits an involutive set of N functionally independent first integrals. J.J. Morales-Ruiz, J.P. Ramis and C. Simó proved that if an SH is integrable, then the identity component G0k of the differential Galois group of the variational equations VE¬k of order k that correspond to an integral curve of the SH, is abelian. The ASP can be considered as a Hamiltonian system of two degrees of freedom that contains the parameters pφ and ν2>0, which describes the motion of a charged particle under the influence of the magnetic field of a dipole. Α. Almeida, T. Stuchi had proved that the ASP is non-integrable for pφ≠0 and ν2>0, while for pφ=0 they had proved the non-integrability of the cases that correspond to ν2≠5/12, 2/3. Our study proved that the ASP with pφ=0 (ASP0) is, also, non-integrable for ν2=5/12, 2/3. Initially, using the Yoshida method, we analysed the G01 of the VE¬1, that correspond to two integrals curves of the ASP0, concluding that they are non-abelian for ν2≠2/3. Then, we defined the VE3 along a third integral curve of the ASP0 and indicated that the corresponding G03 is non-abelian for ν2=2/3. According to the Morales-Ramis-Simó theory, the aforementioned considerations prove the non-integrability of the ASP for pφ=0 and ν2>0. The IP is a special case of the three-body problem and it can be treated as a Hamiltonian system of two degrees of freedom that embodies the parameters pφ and m, m3>0. Previous analysis of the IP suggested the non-integrability of the system, but it was performed with the use of numerical methods. Finding an integral curve for each of the cases pφ=0, pφ≠0, we defined the corresponding VE1 and proved the non-integrability of the IP. For pφ=0 we used the Yoshida method to examine G01 , while for pφ≠0 we applied the Kovacic algorithm and some results of D. Boucher, J.A. Weil to investigate the corresponding G01 . In both of the aforementioned cases the G01 were non-abelian, yielding IP non-integrable, according to the Morales-Ramis-Simó theory.
Ρουστέμογλου, Ήλια. "Μη γραμμικές εξισώσεις εξέλιξης : η μέθοδος ένδυσης." Thesis, 2009. http://nemertes.lis.upatras.gr/jspui/handle/10889/1930.
Full textAs one can understand from the title, our main subject is a method for solving nonlinear partial differential equations and in particular a family of such equations, called evolution equations. Many of them admit a special kind of solutions, known as solitons. One of our basic interests is the integrability of a nonlinear evolution equation, although a specific definition for that does not exist in the bibliography. However, a partial differential equation is considered to be integrable when it can be linearized directly or indirectly. By indirect linearization we mean the existence of a Lax pair for the initial equation and this connection is explained in terms of operator theory. In the frame of integrability, a large number of methods dealing with the study and analysis of nonlinear evolution equations has been developed. We briefly mention some of them and present some examples, while we focus on the analytic description of a method which was introduced by Zakharov and Shabat, in 1974. This method was developed right after the Inverse Scattering Method and it is known as dressing method or ZS scheme. In order to present it, a dressed and undressed operator are introduced, by the use of operators only whithout refering to the scattering data. Based on those operators the generalized Lax equation is produced. Then we present a number of examples of evolution equations which can be solved via the dressing method and finally we constract soliton solutions for the nonlinear Schrödinger equation by solving the Gelfand-Levitan-Marchenko integral equation. Appart from the description of dressing method in its initial form, a quick review of recent papers and results is considered. The method evolved through time and was connected with some problems of complex analysis and specifically the Riemann-Hilbert (RH) and dbar problems. Those two problems arise in many mathematical and physical applications. From a wide range of recent published articles, we analytically present one which was written by Bogdanov and Zakharov (2002) and deals with Boussinesq equation. The continuous spectrum and soliton solutions are investigated, using a special form of dressind method called dbar-dressing. Soliton solutions for the Boussinesq equations demonstrate a quite extraordinary behaviour destroying the stereotype of usual solitons which are considered to be stable objects.
Βλάχου, Αναστασία. "Ολοκληρώσιμες μη γραμματικές μερικές διαφορικές εξισώσεις και διαφορική γεωμετρία." Thesis, 2014. http://hdl.handle.net/10889/8074.
Full textThe aim of this diploma thesis is to find a connection between modern soliton theory and classical differential geometry. More particularly, we begin with an introductory section, where we present the basic concepts regarding soliton equations and the geometry of smooth curves ans surfaces. This is followed by the main body of the thesis, which focuses on three partial differential equations, namely, the sine-Gordon equation, the modified Korteweg de Vries equation (mKdV) and the nonlinear Scrödinger equation (NLS), and their connection to the theory of curves and surfaces. The first introductory chapter is a historical overview of the notion of solitons. We then seek travelling wave solutions for the KdV and NLS equations. Closing, we quote the conditions under which a nonlinear equation is integrable. We choose to analyze in detail two of these conditions while we settle for a brief description of the other two. The second chapter is an extensive report on fundamental concepts of differential geometry, namely, those associated with the theory of curves and surfaces in Euclidean three-dimensional space, and we present some representative examples. Chapter 1 of the main part, opens with the derivation of a classical nonlinear system which we owe to Bianchi and embodies the Gauss-Mainardi-Codazzi equations. We then specialise to pseudospherical surfaces and produce the sine-Gordon equation. Section 1.2 includes the derivation of the auto-Bäcklund transformation for the sine-Gordon equation along with the geometric procedure for the construction of pseudospherical surfaces. In section 1.3, we use the above transformation to conclude to Bianchi’s Permutability Theorem. We continue to section 1.4, where we present certain pseudospherical surfaces. These surfaces correspond to solitonic solutions of the sine- Gordon equation, i.e. in subsection 1.4.1 we construct the pseudosphere which corresponds to the stationary single soliton solution. Also, in subsection 1.4.2 we examine the helicoid that is created by the tractrix, namely, the Dini surface. In section 1.4.3, by use of Bianchi’s Permutability Theorem, we end up in the two-soliton solution for the sine-Gordon equation and continue in the next subsection, where we present periodic two-soliton solutions, known as breathers. In Chapter 2, we show how certain motions of curves and surfaces can lead to solitonic equations. More precisely, in section 2.1, we arrive at the sine-Gordon equation, through the motion of an inextensible curve of constant curvature or torsion. Then, section 2.2 displays how the sine-Gordon equation arises as the compatibility condition for the linear 2 2 AKNS system. In section 2.3 we study the movement of pseudospherical surfaces. In particular, we connect, in subsection 2.3.1, the motion of a pseudospherical surface to a continuum version of an unharmonic lattice model, which encorporates the mKdV equation. Moreover, in subsection 2.3.2, we show that a purely normal motion of a pseudospherical surface produces the classical Weingarten system. We conclude section 2.3 by constructing the Bäcklund transformation both for the lattice model and the Weingarten system. The chapter ends with section 2.4, where through the motion of an inextensible curve of zero torsion, we produce the mKdV equation. Furthermore, we investigate the motion of Dini surfaces and, finally, construct surfaces corresponding to the triply orthogonal Weingarten system. The third and final chapter focuses on the NLS equation. In section 3.1 we produce the NLS equation through a purely geometric manner. We then construct surfaces, that correspond to the single-soliton solution of this equation, and also present certain general geometric properties of them. We conclude the final chapter with the auto-Bäcklund transformation for the NLS equation and the presentation of spatially periodic solutions, known as smoke-ring.