Journal articles on the topic 'Автоматизована система керування'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Автоматизована система керування.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Карадобрій, Т. А., Олександр Бойко, Олена Анатоліївна Дакі, and Олена Миколаївна Тимощук. "АНАЛІТИЧНИЙ ОГЛЯД АДАПТИВНИХ СИСТЕМ КЕРУВАННЯ СУДНОМ ТА ШЛЯХИ ЇХ ПОБУДОВИ." Vodnij transport, no. 3(31) (December 10, 2020): 120–25. http://dx.doi.org/10.33298/2226-8553.2020.3.31.13.

Full text
Abstract:
В статті відображаються основні результати аналізу джерел інформації що стосується побудови адаптивних систем щодо управління судном. На ряду з аналітичним оглядом технічних рішень систем керування судном висвітлюються позитивні та негативні властивості при побудові адаптивних систем автоматизації судном. Також в праці розкриваються особливістю побудови адаптації авторульових систем судна та можливості покращення якості судноводіння в складних умовах. Пропонується розглядати судноводіння як єдиний процес керування судном з врахуванням всіх підсистем що впливають на управління в цілому за рахунок підвищення достовірності інформації від різних енерготехнічних систем та навігаційних пристроїв що надають додаткові дані в систему керування судном. Ключові слова: адаптивні системи, судноводіння, керування судном, автоматизована система керування
APA, Harvard, Vancouver, ISO, and other styles
2

Кучерук, Галіна, Віталій Ткаченко, and Г. В. Шапіро. "РОЗРОБКА АДАПТИВНОЇ СИСТЕМИ КЕРУВАННЯ РУХОМ СУДНА." Vodnij transport, no. 3(31) (December 10, 2020): 116–19. http://dx.doi.org/10.33298/2226-8553.2020.3.31.12.

Full text
Abstract:
В статті запропоновано підхід руху судна на основні оцінювання результатів текучих параметрів руху та аналізу інформації про стан містоположення за допомогою адаптивних систем керування. На ряду з описом технічного рішення системи керування судном висвітлюються позитивні та негативні властивості при побудові адаптивної системи. Також в праці висвітлюється умови роботи адаптивної системи керування судном. Метою даної статті є розглянути можливість побудови адаптивних систем керування судном в складних умовах для забезпечення безпеки судноводіння В статті обґрунтовано схема адаптивної системи керування судном для безпосередньої експлуатації в умовах тривалого морського плавання та інтенсивної роботи. Особливістю запропонованої схеми є ведення моделі руху судна та блоків оцінювання і адаптації до зовнішніх впливів для визначення та ведення поправки. Ключові слова: автоматизована система керування, адаптивна система, керування судном, безпека судноводіння
APA, Harvard, Vancouver, ISO, and other styles
3

Пупена, О. М., and А. В. Шишак. "СУЧАСНІ СТАНДАРТИ З РОЗРОБЛЕННЯ ТРИВОЖНОЇ СИГНАЛІЗАЦІЇ В АВТОМАТИЗОВАНИХ СИСТЕМАХ КЕРУВАННЯ ТЕХНОЛОГІЧНИМИ ПРОЦЕСАМИ." Automation of technological and business processes 11, no. 3 (November 11, 2019): 46–58. http://dx.doi.org/10.15673/atbp.v11i3.1501.

Full text
Abstract:
Автоматизована система керування технологічним процесом передбачає наявність функцій тривожної сигналізації, які виконують надзвичайно важливу роль. Від ефективності роботи підсистеми тривожної сигналізації залежить передусім безпека людей, виробництва та функціонування автоматизованої системи керування технологічним процесом в цілому. В Україні розробленню, впровадженню та експлуатації систем тривожної сигналізації приділяється недостатньо уваги. Тому це невеличке дослідження присвячено передусім трактуванню сучасного стандарту ISA-18.2 «Management of Alarm Systems for the Process Industries», який є визнаною хорошою інженерною практикою. Стаття розділена на дві публікації. У цій частині розкриваються основні сутності, на яких базуються механізми організації систем тривожної сигналізації. Наступна стаття буде присвячена роз'ясненню робочих процесів життєвого циклу системи, які стандарт передбачає для розроблення, впровадження та експлуатації систем тривожної сигналізації.
APA, Harvard, Vancouver, ISO, and other styles
4

Мардзявко, В. "Аналіз організації керування обладнанням для забезпечення транспортування зернової продукції на елеваторах." Науковий журнал «Інженерія природокористування», no. 4(18) (February 10, 2021): 35–41. http://dx.doi.org/10.37700/enm.2020.4(18).35-41.

Full text
Abstract:
У статті представлено аналіз методів які забезпечують організацію і керування технологічним процесом транспортування зернової продукції на елеваторі для визначення можливостей подальшої автоматизації. Актуальність даної теми обґрунтовується виходячи з неповної продуктивності технологічного процесу транспортування на елеваторах, через те, що автоматизована система керування елеватора реалізує автоматизовані задачі за допомогою стандартних методів транспортування, а саме за транспортно-технологічними маршрутами. Організація і функціональна структура, як підприємств, так і автоматизованої системи, залишається без змін, тому і якість керування істотно не змінюється. Хоча дані методи і мають перевагу над іншими, проте вони не в повну міру забезпечують енергозбереження під час технологічних процесів транспортування, умов, які б відповідали забезпеченню якості зернової продукції, зменшення втрат зерна під час транспортування та високої продуктивності підприємства. Однак завданням автоматизованого виробництва є забезпечення умов для підвищення якості технологічного процесу, тому виникає актуальне питання розробки нових або удосконалення існуючих заходів і створення нових продуктивних систем на їх основі. Тому виходячи з даної проблеми, був виконаний аналіз основних системи керування обладнанням на елеваторах, та визначений найбільш ефективний метод формування маршруту транспортування зернової продукції. Також виявлені недоліки та основні напрямки подальшого удосконалення даного методу. Увагу акцентовано на важливості правильного та оптимального прокладання маршруту, завдяки чому визначено критерії які не враховувалися в традиційних методах забезпечення технологічного процесу транспортування.
APA, Harvard, Vancouver, ISO, and other styles
5

Бойко, А. Д., І. В. Трофименко, and О. В. Бажак. "СИНТЕЗ МОДЕЛІ ТА АЛГОРИТМІВ ПРОЦЕСУ КЕРУВАННЯ РУХОМ СУДНА." Vodnij transport, no. 1(32) (January 27, 2021): 29–35. http://dx.doi.org/10.33298/2226-8553.2021.1.32.04.

Full text
Abstract:
В статті розроблена модель систем керування судном. Особливістю даної моделі є взаємозв’язок суднових навігаційних пристроїв з енергетичними системами судна. Використання даної моделі дозволяє вивчити та дослідити якісні показники судна та виявити залежності впливу їх характеристик на якість керування судна. Також у статті наведено алгоритмічні рішення системи керування судном та висвітлюються позитивні та негативні властивості їх використання. Для дослідження руху судна як правило застосовуються динамічні моделі з оптимізацією керуючих впливів. При цьому, у якості моделі динаміці просторового стану можна використовувати модель Пуанкор, а для часткового вирішення систем рівнянь даних моделей можна використовувати статистичні методи. Це пов'язано з тим що, аналітичні рішення знаходяться тільки в небагатьох випадках. Таким чином, виникає необхідність розроблення нових моделей руху судна по заданому маршруту та його керування в складній динамічній обстановці. Тому метою даної статті є розробка моделі системи керування судном з можливістю висвітлення логічних зв’язків для підвищення ефективності судноводіння під час його експлуатації в складних умовах для забезпечення безпеки управління судна. Ключові слова: автоматизована система керування, навігаційні пристрої, судноводіння, керування судном, енергетичні системи.
APA, Harvard, Vancouver, ISO, and other styles
6

Vsevolod, Burachek, Serhiy Kryachok, Malik Tetiana, Lyudmila Mamontova, and Volodymyr Niemykh. "АВТОМАТИЗОВАНА СИСТЕМА ГЕОДЕЗИЧНОГО МОНІТОРИНГУ ЗЛІТНО-ПОСАДКОВОЇ СМУГИ." TECHNICAL SCIENCES AND TECHNOLOGIES, no. 4 (14) (2018): 248–57. http://dx.doi.org/10.25140/2411-5363-2018-4(14)-248-257.

Full text
Abstract:
Актуальність теми дослідження. Україна є відомою країною з транспортного літакобудування та має розгалужену систему аеропортів. Для подальшого розвитку та модернізації інфраструктури авіаційного транспорту в нашій державі прийнято Державну цільову програму розвитку аеропортів на період до 2023 року. Постановка проблеми. Для проведення догляду та реконструкції штучних покриттів у аеропортах: злітнопосадкових смуг, руліжних доріжок, перонів необхідно мати інформацію про рельєф їх поверхонь. З цією метою періодично виконується нівелювання поверхонь штучних покриттів. Аналіз останніх досліджень і публікацій. Були розглянуті останні публікації у відкритому доступі, які присвячені технологіям нівелювання поверхонь. Виділення недосліджених частин загальної проблеми. Аналіз наведених способів нівелювання поверхонь свідчить про те, що переміщення геодезичного приладдя виконується переважно ручним способом, як і запис та опрацювання результатів. Мета статті. Головною метою цієї роботи є розробка нового пристрою для нівелювання поверхонь аеропорту з підвищеним рівнем мобільності та автоматизації виконання робіт. Виклад основного матеріалу. Авторами даної статті розроблено автоматизовану систему геодезичного моніторингу злітно-посадкової смуги. До її складу входять: мобільні нівелювальники; мобільні нівелірні рейки, які розташовуються на злітно-посадковій смузі; керуючі пристрої, що розміщені на центральній станції керування технічними системами аеропорту, яка розташована на диспетчерській вежі. Наведено функціональні елементи конструкцій мобільного нівелювальника, мобільної нівелірної рейки та центральної станції керування. Показано принцип функціонування автоматизованої системи геодезичного моніторингу злітно-посадкової смуги. Висновки відповідно до статті. Розроблена система геодезичного моніторингу злітно-посадкової смуги дає змогу отримати значення висот точок в автоматичному режимі на заданій поверхні з регульованим кроком сканування. Така система ефективна для нівелювання великих за площею та протяжністю штучних покриттів аеропорту. Система дозволяє швидко визначити відмітки в режимі дистанційного ГІС/GPS керованого комплексу мобільних нівелірних роботів.
APA, Harvard, Vancouver, ISO, and other styles
7

Єремієв, М. Б., С. І. Цуканов, and Д. М. Крицький. "Автоматизована система керування обертами гвинта змінного кроку." Наука і техніка Повітряних Сил Збройних Сил України, no. 2(35) (April 25, 2019): 62–70. http://dx.doi.org/10.30748/nitps.2019.35.08.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Шишак, А. В., and О. М. Пупена. "Життєвий цикл організації системи тривожної сигналізації." Automation of technological and business processes 13, no. 1 (April 19, 2021): 4–11. http://dx.doi.org/10.15673/atbp.v13i1.1994.

Full text
Abstract:
Автоматизована система керування технологічним процесом передбачає наявність функцій тривожної сигналізації, які виконують надзвичайно важливу роль. Від ефективності роботи підсистеми тривожної сигналізації залежить передусім безпека людей, виробництва та функціонування автоматизованої системи керування технологічним процесом в цілому. В Україні розробленню, впровадженню та експлуатації систем тривожної сигналізації приділяється недостатньо уваги. Тому це дослідження присвячено передусім трактуванню сучасного стандарту ISA-18.2 «Management of Alarm Systems for the Process Industries», який є визнаною хорошою інженерною практикою та покликаний забезпечити безпеку, якість та продуктивність технологічних процесів. Даній тематиці присвячено дві публікації. У першій вже опублікованій статті розкриваються основні сутності та положення, на яких базуються механізми організації системи тривожної сигналізації. Ця стаття присвячена роз'ясненню та аналізу робочих процесів життєвого циклу організації, які стандарт передбачає для розроблення, впровадження та експлуатації системи тривожної сигналізації. Організація функціонування системи тривожної сигналізації – це неперервна діяльність, усі робочі процеси якої розділені на десять стадій життєвого циклу, що вказують на функціональний аспект робіт, обов’язкових або рекомендованих до виконання. До них належать означення, документування, проектування, експлуатація, моніторинг та обслуговування систем тривожної сигналізації. Представлення системи через призму життєвого циклу організації її роботи дозволяє систематизувати уявлення розробників/користувачів про процеси, які відбуваються навколо системи за рахунок стадійного структурування вимог та рекомендацій.
APA, Harvard, Vancouver, ISO, and other styles
9

Мовчан, Т., and О. Шикула. "РОЗРОБКА АВТОМАТИЗОВАНОЇ ІНФОРМАЦІЙНОЇ СИСТЕМИ ОБЛІКУ ПРОДУКЦІЇ AVON." Vodnij transport, no. 2(30) (February 27, 2020): 120–27. http://dx.doi.org/10.33298/2226-8553/2020.2.30.14.

Full text
Abstract:
Компанія AVON - косметична фірма, яка поширює свою продукцію виключно через консультантів (мережевий маркетинг). Компанія AVON розповсюджує свою продукцію за методом прямого продажу. Прямий продаж – це реалізація товарів та послуг кінцевому споживачу за межами звичайних місць роздрібної торгівлі шляхом індивідуальної презентації товарів чи послуг. Серед компаній, які працюють за методом прямого продажу в Україні, AVON посідає перше місце за рівнем першого згадування назви компанії опитуваними та у числі лідерів серед компаній прямого продажу, продукція яких популярна серед споживачів усіх вікових груп у віці до 45 років. Конкурентами її є такі фірми, як – Mary Kay, Oriflame, Faberlic, Amway. Хороша інформаційна система обліку, вбираючи в себе всю корисну інформацію, є найкращою помічницею персоналу і засобом успішної діяльності в умовах конкуренції. Тому актуальним є створення привабливої та інформативної інформаційної системи обліку продукції Avon. Для Avon потрібно розробити автоматизовану інформаційну систему обліку продукції: структуру меню інформаційної системи обліку продукції Avon, логічну структуру бази даних, фізичну модель даних, екранні форми по відображенню необхідної інформації. Створена логічна модель даних, або логічна схема – модель даних конкретної предметної області, виражена незалежно від конкретного продукту керування базами даних або технології зберігання (фізична модель даних), але в термінах структур даних, таких як реляційні таблиці та колонки, об'єктно-орієнтовані класи чи теги XML. Фізичне проектування бази даних залучає глибоке використання конкретної технології керування базами даних. Як СУБД використовувалась Microsoft Access – система управління базами даних, програма, що входить до складу пакету офісних програм Microsoft Office. Створено екранні форми інформаційної системи. Для запуску інформаційної системи обліку продукції Avon необхідно зайти до кореневого каталогу системи та запустити виконавчий файл. В результаті отримаємо головну форму інформаційної системи. Далі робота інформаційної системи здійснюється за допомогою форм, які відкриваються при натисканні на відповідний елемент. Таким чином, розроблена автоматизована інформаційна система обліку продукції Avon, в якій реалізовано оновлення бази даних та реалізовано вхідну інформацію, що є найбільш детальною і становить основу для наступної логічної та арифметичної обробки даних. Впровадження створеної інформаційної системи обліку продукції AVON дозволить отримати повну, достовірну та своєчасну інформацію стосовно обліку наявності косметичної продукції на офісі Ключові слова: автоматизована інформаційна система обліку продукції Avon, мережевий маркетинг, логічна структура бази даних, фізичне проектування бази даних, Microsoft Access, екранні форми інформаційної системи
APA, Harvard, Vancouver, ISO, and other styles
10

Гайдукевич, Світлана Василівна, Надія Павлівна Семенова, and Ярослав Андрійович Леськів. "АВТОМАТИЗОВАНА СИСТЕМА КЕРУВАННЯ ЕЛЕКТРООБЛАДНАННЯМ У СПОРУДАХ ЗАКРИТОГО ҐРУНТУ." Вісник Черкаського державного технологічного університету, no. 1 (April 15, 2021): 20–31. http://dx.doi.org/10.24025/2306-4412.1.2021.216915.

Full text
Abstract:
Розроблено і виготовлено на базі мікроконтролера ATmega328 автоматичну систему керування, яка призначена для підвищення ефективності функціонування теплиці за рахунок моніторингу мікрокліматичних параметрів та обробки даних, що дає змогу контролювати та своєчасно усувати відхилення параметрів, спричинені різноманітними збурюючими діями, від встановлених значень з метою створення сприятливих умов для проростання та життєдіяльності рослин. В результаті досліджень встановлено, що запропонована розробка дає можливість підвищити надійність роботи електрообладнання під час експлуатації, вдосконалити наявні механізми в результаті досягнення бажаного алгоритму, тобто наблизити процеси до стану оптимального балансу та зекономити витрату теплової енергії на 10 %, тим самим зменшити енергоспоживання та підвищити продуктивність.
APA, Harvard, Vancouver, ISO, and other styles
11

Писанко, А. Г., В. І. Богом’я, and Л. Л. Пліта. "АНАЛІЗ СИСТЕМ КЕРУВАННЯ СУДНОМ ТА ОСОБЛИВОСТЕЙ ЇХ ЕКСПЛУАТАЦІЇ." Vodnij transport, no. 1(32) (January 27, 2021): 36–41. http://dx.doi.org/10.33298/2226-8553.2021.1.32.05.

Full text
Abstract:
В статті проведені дослідження що пов'язані з визначенням основних напрямків розвитку суднових автоматизованих систем керування судном. На основі аналізу літератури здійснено розподілення суднових систем на рівні керування в залежності від їх функціональних властивостей. Також здійснюється огляд стану питання і проаналізовані основні напрямки розвитку силових енергетичних установок та систем автоматизованого керування судном. При цьому система керування судном розглядається як об’єднана інформаційна платформа керування судном. Це пов'язано з тим, що на сьогоднішній день сучасний розвиток суднових систем керування розробляється відповідно до технології Е-навігації та використовує спеціалізовані інформаційні системи. Це дає можливість підвищити ефективність експлуатації судна за допомогою своєчасним керуванням силових вузлів і пристроїв, а також зміни умов функціонування. Ключові слова: автоматизовані системи керування, навігаційно-інформаційний комплекс, суднові енергетичні установки
APA, Harvard, Vancouver, ISO, and other styles
12

Ievlev, M. G., and G. G. Grabovsky. "Automated control system for fire cutting units on a plate mill." Mathematical machines and systems 1 (2021): 86–95. http://dx.doi.org/10.34121/1028-9763-2021-1-86-95.

Full text
Abstract:
One of the most important indicators of a plate rolling mill efficiency is a metal consumption (cost coef-ficients) per ton of product. Reduction of metal consumption coefficients is ensured by the accuracy of the set geometric dimensions realization during the rolling, increasing the accuracy of geometric dimen-sions of the plates that are cut from the rolls on fire cutting units, as well as by operating in the minus field of tolerances on the geometric dimensions of the plates. Improving the accuracy of the geometric dimensions of the plates, cut from the rolls on the fire cutting units, is achieved through the automatic control of these units. The article describes the technical solutions, implemented in the automated con-trol system of fire cutting units (the ACS FCU) of the heat treatment department and fire cutting of a plate mill 3600. The purposes of the ACS FCU creation include an increase in accuracy and stabilization of the geometrical sizes of the work pieces cut out of plates through the automatic control; reduction of metal consumption coefficients due to the operation in the minus field of tolerances on the geometric dimensions of the work pieces; replacement of obsolete equipment with the modern one in order to in-crease the reliability of the mill equipment operation; increasing the ACS FCU service life through the use of modern equipment with high reliability characteristics; reduction of unplanned equipment down-time that may arise as a result of the ACS FCU technical means failures. The automated control system of fire cutting units has been set up, tested and put into operation; a metrological certification of the system has been carried out as well. The results of the ACS FCU testing and its subsequent operation have confirmed the system efficiency and the performance of all its intended functions. This system can be also implemented in the processes of treatment of other rolling mills, equipped with the units for the fire cutting of metal.
APA, Harvard, Vancouver, ISO, and other styles
13

Бричук, Б. В. "Автоматизація пастеризації яблучного соку." Automation of technological and business processes 13, no. 1 (April 19, 2021): 58–63. http://dx.doi.org/10.15673/atbp.v13i1.2002.

Full text
Abstract:
Здоров'я - безцінне надбання не тільки кожної людини, але і всього суспільства. Для підтримки здоров`я людини на певному рівні, необхідно включати в раціон харчування фруктові та овочеві соки, зокрема яблучний сок, який має високі споживні властивості. Збереження цих властивостей можна забезпечити лише за рахунок автоматичного керування технологічним процесом виробництва яблучного соку. Автоматичне керування процесом пастеризації яблучного соку – одне з найбільш складних та важливих завдань, оскільки забезпечує дотримання технологічного регламенту термічної обробки яблучного соку. Процес пастеризації яблучного соку, як об'єкт керування являє собою складну динамічну систему. Аналіз існуючих систем автоматичного керування пастеризацією яблучного соку демонструє певні недоліки і ставить задачі наступної розробки. В Одеській національній академії харчових технологій, на кафедрі автоматизація технологічних процесів і робототехнічних систем розроблено новий спосіб пастеризації яблучного соку, з використанням каскадної системи автоматичного регулювання, яка зменшує запізнення в контурі регулювання температури пастеризації, що підвищує якість готового продукту, продуктивність процесу та знижує його енергоємність. Результати структурно-параметричного синтезу і аналізу розробленої системи автоматичного керування підтверджують переваги запропонованого підходу. Побудована каскадна система автоматичного регулювання забезпечує високу динамічну точність керування розглянутим технологічним процесом. Розроблене автоматизоване робоче місце оператора-технолога і наладчика системи автоматичного керування в SCADA-системі дозволяє зручно і ефективно спостерігати та керувати ходом процесу пастеризації яблучного соку. Подальший розвиток питання автоматизації керування процесом пастеризації яблучного соку знайде в магістерській випускній роботі.
APA, Harvard, Vancouver, ISO, and other styles
14

Лєві, Л. І. "Синтез автоматизованої системи керування вологозабезпеченістю сільськогосподарських культур при підґрунтовому зволоженні." Вісник Полтавської державної аграрної академії, no. 1 (March 29, 2019): 227–31. http://dx.doi.org/10.31210/visnyk2019.01.27.

Full text
Abstract:
Мета статті – обґрунтувати ефективний підхід до синтезу структурної схеми каскадно-комбінованої автоматизованої системи керування вологозабезпеченістю модульної ділянки ґрунту за допомогою зміни рівня ґрунтових вод. Методика дослідження. Включає моделі та методи системно-структурного аналізу та принципи адаптивного керування складними технічними системами в умовах невизначеності. Результати дослідження. Розроблено каскадно-комбіновану структурну схему автоматизованої системи керування вологозабезпеченістю сільськогосподарських культур при підґрунтовому зволоженні за допомогою зміни рівня ґрунтових вод. Показано, що така система має два контури регулювання: внутрішній контур регулювання рівня води у керуючому колодязі каскадно-комбінованої автоматизованої системи керування вологозабезпеченістю модульної ділянки ґрунту та зовнішній задаючий контур регулювання всмоктуючого тиску ґрунту, який характеризує вологість. Елементи наукової новизни. Розроблено двоконтурну структурну схему автоматизованої системи керування вологозабезпеченістю сільськогосподарських культур при підґрунтовому зволоженні з урахуванням збурень. Практична значущість. Дану розробку проведено для підвищення ефективності функціонування автоматизованих систем керування вологозабезпеченістю сільськогосподарських культур при підґрунтовому зволоженні та забезпечення отримання гарантованих врожаїв сільськогосподарських культур з одночасною економією водних та енергетичних ресурсів. The purpose of the article is to substantiate the effective approach to the synthesis of the structural scheme of the cascade-combined automated system for controlling moisture supply of a module soil plot by changing the groundwater level. Research methods include models and methods of systemic-structural analysis and the principles of adaptive regulation of complex technical systems under uncertain conditions. The results of the research. The cascade-combined structural scheme of automated moisture regulation system for crops at subsoil moistening by changing the groundwater level has been developed. It has been shown that this system has two regulating circuits: the internal circuit for regulating water level in the master well of the cascade-combined automated moisture regulation system for a module plot of soil and the external setting circuit for regulating the suction pressure of the soil characterizing its humidity. The elements of scientific novelty. A two-circuit structural scheme of automated control system for moisture supply of crops in case of subsoil moistening with perturbations has been developed. Practical significance. This development was carried out to increase the efficiency of functioning automated systems for regulating moisture supply of crops during subsoil moistening and ensure the obtaining of guaranteed crop yields with simultaneous saving water and energy resources.
APA, Harvard, Vancouver, ISO, and other styles
15

Pantyeyev, R. "МОДЕЛЮВАННЯ ТА АНАЛІЗ ЯКОСТІ ПЕРЕХІДНИХ ПРОЦЕСІВ В НЕЧІТКИХ СИСТЕМАХ УПРАВЛІННЯ ЕЛЕКТРОПРИВОДОМ." Herald of Kiev Institute of Business and Technology 43, no. 1 (March 5, 2020): 58–64. http://dx.doi.org/10.37203/kibit.2020.43.08.

Full text
Abstract:
Розглядаються методи використання нечіткої логіки для вирішення задач керування електромеханічними системами. Як засіб для підвищення якості функціонування автоматизованих електромеханічних систем використовується один з сучасних принципів автоматичного управління - адаптивне управління, що реалізується за допомогою інтелектуальних технологій формування адаптивних алгоритмів регулювання та управління, а саме технологій нечіткого управління (Fuzzy-control). Побудовано дві моделі систем управління: класична двоконтурна система стабілізації швидкості обертання двигун постійного струму - керований випрямляч з пропорційно-інтегральним регулятором і система стабілізації системи двигун постійного струму-керований випрямляч на основі нечіткого регулятора швидкості. Моделювання систем стабілізації і подальший аналіз перехідних процесів здійснювався за допомогою середовища моделювання Matlab Simulink. Після проведення необхідних математичних розрахунків і вибору найбільш оптимальних передавальних функцій, для кожного елемента була розроблена повна функціональна схема класичної двухконтурной системи стабілізації швидкості досліджуваної системи двигун постійного струму – керований випрямляч. Проводиться порівняльний аналіз основних показників якості перехідного процесу для класичної і нечіткої систем управління з метою виявлення переваг і недоліків останньої. Досліджуються дві системи керування: класична двоконтурна система стабілізації швидкості обертання з пропорційно-інтегральним регулятором і система стабілізації на основі нечіткого регулятора швидкості. Моделювання систем стабілізації і подальший аналіз перехідних процесів здійснюється у середовищі моделювання Matlab Simulink з використанням блоку інтелектуального керування Fuzzy Control Toolbox.
APA, Harvard, Vancouver, ISO, and other styles
16

Моркун, В. С., І. А. Котов, О. Ю. Сердюк, and І. А. Гапоненко. "Подання знань в інтелектуальних системах автоматизації керування енергосистемами гірничо-металургійного комплексу в умовах невизначеності." ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, no. 4(268) (June 10, 2021): 40–48. http://dx.doi.org/10.33216/1998-7927-2021-268-4-40-48.

Full text
Abstract:
У статті розглянута проблема урахування невизначеності інформації для побудови баз знань в системах підтримки рішень оперативного керування режимами електроенергетичних систем. Обґрунтовано, що формулювання логіки управління проводиться, переважно, на рівні якісних уявлень і понять. Останні можуть бути формалізовані у вигляді логіко-лінгвістичних моделей, які повинні розглядатися з точки зору теорії нечітких множин і лінгвістичних змінних. Проведено аналіз існуючих підходів до подання та обробки нечітких знань про керування енергосистем гірничо-металургійного комплексу. Обґрунтовано підхід до подання інкорпорації різних форм репрезентації професійних онтологій на базі нечіткої логіки. Методи дослідження полягають у використанні апарату нечіткої логіки, формальних мов, теорії систем штучного інтелекту і систем підтримки рішень. Реалізовано програмний комплекс системи підтримки рішень для автоматизації диспетчерського оперативного керування нормальними і аварійними режимами енергосистеми гірничо-металургійного комплексу. Запропонована схема впровадження системи підтримки прийняття рішень в середу діючої автоматизованої системи диспетчерського керування енергосистем. Розроблено нову структуру компонування ядра системи підтримки прийняття рішень.
APA, Harvard, Vancouver, ISO, and other styles
17

Канарський, Євгеній, Олександр Орєхов, and Олександр Желтухін. "РОЗРОБКА АВТОМАТИЗОВАНОЇ СИСТЕМИ КЕРУВАННЯ ТЕПЛИЧНИМ ГОСПОДАРСТВОМ." Молодий вчений, no. 3 (103) (March 31, 2022): 5–12. http://dx.doi.org/10.32839/2304-5809/2022-3-103-2.

Full text
Abstract:
Дана стаття присвячена розробці автоматизованої системи керування тепличним господарством. В останній час тема використання теплиць для забезпечення продуктами харчування стала доволі популярною. Особливо це стосується власників дачних ділянок та приватних будинків. Але тепличне господарство потребує постійного огляду для підтримки необхідних параметрів, що не завжди є можливим. В такому разі постає питання використання автоматизованої системи. В даній роботі проводиться дослідження існуючих рішень для автоматизації процесів у тепличному господарстві з використанням бездротової передачі даних для керування параметрами та проводиться аналіз існуючих стандартів бездротової передачі даних. Також було проведено огляд існуючих публікацій на тему автоматизації тепличного господарства і проаналізовані основні сучасні стандарти забезпечення бездротового зв’язку у IoT-системах. В результаті було розроблено схему автоматизованої системи керування тепличним господарством з можливістю дистанційного керування за допомогою бездротової передачі даних та ручного налаштування параметрів мікроклімату, освітлення і поливу.
APA, Harvard, Vancouver, ISO, and other styles
18

Сердюк, О. Ю., and І. А. Маринич. "СИСТЕМА ВІЗУАЛІЗАЦІЇ РОБОТИ ПИЛОВЛОВЛЮЮЧОЇ УСТАНОВКИ З КОНТРОЛЕМ ЇЇ ОСНОВНИХ ТЕХНОЛОГІЧНИХ ПАРАМЕТРІВ В УМОВАХ ЦЕМЕНТНОГО ВИРОБНИЦТВА." Таврійський науковий вісник. Серія: Технічні науки, no. 3 (November 2, 2021): 38–46. http://dx.doi.org/10.32851/tnv-tech.2021.3.5.

Full text
Abstract:
Стаття присвячена дослідженню технологічного процесу очищення газів від пилу електрофільтрами в умовах цементного виробництва з метою розробки автоматизова- ної системи контролю та візуалізації технологічних параметрів, що дає змогу контро- лювати процес у режимі реального часу, вчасно визначити аварійні ситуації. Це питання є актуальним з огляду на те, що цементна промисловість з кожним роком збільшує свою виробничу потужність, а зменшення викидів в атмосферу запилених та отруйних газів дозволить уникнути виплати штрафів та зменшити виплати за шкідливі викиди. Для досягнення поставленої мети було проаналізовано технологічний процес і роботу наяв- ної системи управління обезпиленням газів та визначено, що цю систему можна вдоско- налити шляхом застосування нових підходів і методів управління та візуалізації роботи самої системи у режимі реального часу. Досліджено схему руху часток в електрофільтрі та схему руху газу під дією електричного вітру, на основі цього аналізу виконано мате- матичний опис технологічного процесу та розроблено алгоритми керування струшу- ванням, в якому передбачено корекцію сили струшування, що дає змогу проводити ефек- тивні струшування з мінімальним руйнуванням обладнання електрофільтра. Розроблена система контролю та візуалізації відповідає трирівневій структурі, де на першому рівні виконується вимірювання параметрів технологічного процесу, на другому реалізується логічне управління механізмами згідно алгоритмів керування, а на третьому відбувається взаємодія системи управління з операторами, накопичується та обробляється архівна та оперативна інформація про стан обладнання. Практичне значення полягає в засто- суванні отриманої автоматизованої системи контролю та візуалізації основних техно- логічних параметрів для отримання оперативної інформації у реальному часі як самого технологічного процесу, так і оптимізації режиму струшування електродів при очищенні газів холодного кінця печі від пилу в електрофільтрі.
APA, Harvard, Vancouver, ISO, and other styles
19

Yermilova, N., S. Kyslytsia, and R. Tarasiuk. "РОЗРОБЛЕННЯ АВТОМАТИЗОВАНОЇ СИСТЕМИ КЕРУВАННЯ ОБЛАДНАННЯМ ОВОЧЕСХОВИЩА НА БАЗІ НЕЧІТКИХ НЕЙРОННИХ МЕРЕЖ." Системи управління, навігації та зв’язку. Збірник наукових праць 1, no. 53 (February 5, 2019): 50–54. http://dx.doi.org/10.26906/sunz.2019.1.050.

Full text
Abstract:
У статті розглядаються недоліки існуючих систем автоматичного керування (САК) роботою холодильного обладнання овочесховищ та способи усунення цих недоліків. Запропоновано відмежуватися від традиційних методів керування та перейти до використання інтелектуальних методів, які дозволять системі гнучко адаптуватися при зміні внутрішніх параметрів об'єкту та збурювальних дій в широкому діапазоні змінення їх величин. Розроблено математичні моделі окремих елементів системи – повітроохолоджувача, зволожувача повітря та холодильної камери, на базі яких створено узагальнену модель САК холодильного зберігання, котра дозволила визначити температуру та вологовміст повітря в динаміці. Проведеними теоретичними дослідженнями взаємодії охолоджувального повітря з об'єктом зберігання встановлено визначальний вплив температури на динаміку втрат продукту та визначено основний параметр регулювання – зміна холодопродуктивності компресорної установки в функції температури повітря на виході камери шляхом зміни об'ємних витрат холодоагенту, яка здійснюється регулюванням частоти обертання вала компресора. Проведений синтез нейроінформаційної експертної системи автоматичного керування холодопродуктивністю компресора, проаналізовані графічні залежності потужності на валу компресора від вхідних параметрів. Виявилося, що мінімальна потужність компресора досягається зменшенням теплонадходжень в камеру як із зовні, так і з середини холодильної камери, а масові витрати повітря впливають тільки на швидкість охолодження. Зроблено висновок, що визначення потужності компресора за допомогою нечітких нейронних мереж відповідає поставленій задачі. Запропоновано схему для апаратної та програмної реалізації САК технологічним мікрокліматом в холодильній камері з використанням системи СКАДА.
APA, Harvard, Vancouver, ISO, and other styles
20

Кокошко Р.В., Кріль Б.А., and Кріль О.В. "ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ СТРУКТУРНИХ СХЕМ СИСТЕМ КЕРУВАННЯ МУЛЬТИКОМПРЕСОРНИМИ УСТАНОВКАМИ ДЛЯ ОДЕРЖАННЯ СТИСНЕНОГО ПОВІТРЯ." Перспективні технології та прилади, no. 16 (July 31, 2020): 48–56. http://dx.doi.org/10.36910/6775-2313-5352-2020-16-7.

Full text
Abstract:
Стиснене повітря є універсальним енергоносієм для живлення різних виконавчих пристроїв в автоматизованих і роботизованих виробництвах. Проте системи для одержання стисненого повітря є одними з найбільших споживачів електричної енергії. Експериментальні дослідження перехідних процесів роботи цих установок потрібні для створення більш ефективних алгоритмів роботи систем керування мультикомпресорними установками. Результати дослідження алгоритмів роботи систем керування мультикомпресорними установками з різними випереджуючими сигналами наводяться в цій статті. Структурна схема керування мультикомпресорною установкою складається з головного вільнопрограмованого логічного контролера, на якому реалізовувались і досліджувались алгоритми керування, та локальних контролерів окремих компресорних агрегатів. Суттєве покращення роботи системи керування мультикомпресорною установкою досягнене при введенні додаткового інформативного сигналу від швидкодіючого витратоміра для вимірювання витрати споживаного повітря.
APA, Harvard, Vancouver, ISO, and other styles
21

Скаковський, Ю. М., А. В. Бабков, and О. Ю. Мандро. "ІНФОРМАЦІЙНА СИСТЕМА ТУРБІННОГО ЦЕХУ У СКЛАДІ СИСТЕМИ КЕРУВАННЯ ТЕПЛОВОЇ ЕЛЕКТРОСТАНЦІЇ ЦУКРОВОГО ЗАВОДУ." Automation of technological and business processes 10, no. 3 (November 13, 2018): 4–9. http://dx.doi.org/10.15673/atbp.v10i3.1083.

Full text
Abstract:
Розглядаються технічні рішення з розробки інформаційно-керуючої системи турбінного цеху, яка, сумісно з раніше розробленої інформаційної системи котельного відділення, є складовою частиною системи керування теплової електростанції цукрового заводу. Система побудована як автоматизоване робоче місце (АРМ) оператора на базі комп’ютера, мережі мікропроцесорних контролерів та регуляторів, датчиків та виконавчих механізмів. Мережа мікропроцесорних контролерів та регуляторів реалізована на базі перетворювача MODBUS RTU – USB типу БПІ-52. АРМ включає також щит оператора для реалізації дистанційного режиму керування. На фронтальній стороні щита розташовані мікропроцесорні контролери, а також прилади, що показують, та органи дистанційного керування. На внутрішніх панелях щита розташована група клемно-блочних з’єднувачів та приладів системи живлення. Інформаційна система спроектована з використанням мікропроцесорних контролерів, приладів і SCADA українського виробництва. Імітаційне моделювання проводилося на спеціалізованому стенді із застосуванням промислових контролерів і програм. Результати досліджень застосовані для модернізації інформаційно-керуючої системи турбінного цеху цукрового заводу.
APA, Harvard, Vancouver, ISO, and other styles
22

Пташкін, Роман Леонідович, Артем Володимирович Гончаров, and Олександр Степанович Гавриш. "ІНФОРМАЦІЙНО-АНАЛІТИЧНА СИСТЕМА ОБЛІКУ ЕКСПЕРТНИХ ПРОВАДЖЕНЬ У ПІДРОЗДІЛАХ ЕКСПЕРТНОЇ СЛУЖБИ МВС УКРАЇНИ." Вісник Черкаського державного технологічного університету, no. 2 (June 22, 2021): 5–17. http://dx.doi.org/10.24025/2306-4412.2.2021.241061.

Full text
Abstract:
Робота присвячена проблемам побудови моделей, розробки, реалізації та впровадження інформаційно-аналітичної системи обліку експертних проваджень у підрозділах Експертної служби МВС України. Аналізуючи сучасні вимоги та принципи розробки програмних засобів для підрозділів МВС України, авторами було сформовано перелік вимог та базових принципів стосовно розробки необхідного програмного забезпечення. Окрім того, було здійснено аналіз сучасних технологій, які можливо використати для розробки системи. Відокремлено ті технологічні рішення, що повністю задовольняють поставлені вимоги. Відтак авторами для розробки програмного засобу обрано архітектуру на кшталт web-додатка, для роботи з яким користувачеві необхідний лише web-браузер, в якому буде відображений графічний інтерфейс користувача, а вся функціональність системи забезпечується web-сервером. При розробці авторами приділено особливу увагу питанню захисту інформації, оскільки воно продиктовано ключовими вимогами до програмного забезпечення, що може бути використане в підрозділах МВС України. Відтак розроблена система фундаментально базується на моделі безпеки «Zero Trust» і здійснює багаторівневе фільтрування та перевірку будь-яких даних, що обробляються в системі. Також система має алгоритми автоматизованої реакції на спроби несанкціонованого вторгнення. Як ключові технології було обрано систему керування базами даних PostgreSQL для збереження та маніпулювання даними, web-сервер nginx для забезпечення функціонування сервера, мову програмування PHP для написання коду серверної частини системи та мови HTML, CSS, Java Script для реалізації графічного інтерфейсу користувача. Виходячи з вимог безпеки, при розробці не використовувалися сторонні бібліотеки чи фреймворки. Безпосередньо для реалізації серверної частини додатка авторами обрано дещо модифіковану модель MVC та реалізовано принцип абсолютної модульності системи. Інформаційно-аналітичну систему було успішно впроваджено в діяльність усіх підрозділів Експертної служби МВС України. Наразі система активно використовується для автоматизованого створення звітності й формування статистичних та аналітичних даних про окремі напрями діяльності служби.
APA, Harvard, Vancouver, ISO, and other styles
23

Єфіменко, Вікторія Сергіївна. "Автоматизоване тестування як метод педагогічної діагностики." Theory and methods of e-learning 4 (February 17, 2014): 90–94. http://dx.doi.org/10.55056/e-learn.v4i1.375.

Full text
Abstract:
Педагогічна діагностика набуває особливого значення у зв’язку з особистісною організацією сучасної освіти. Становлення системи зовнішнього незалежного оцінювання сприяло інтенсивному розвитку теорії і практики педагогічних вимірювань, широкому впровадженню тестових технологій в освітній процес.Проблемам педагогічного вимірювання присвячені роботи В. С. Аванесова, Л. І. Білоусової, І. Є. Булах, О. І. Ляшенка, Т. В. Солодкої, І. В. Солухи та ін. Теорія та методика педагогічної діагностики розвинена у працях В. П. Беспалька, К. Інгенкампа, В. М. Лозової, І. Я. Лернера, О. С. Масалітіної, М. М. Скаткіна та ін. Питанням вимірювання і оцінювання навчальних досягнень учнів з інформатики присвячено роботи М. О. Войцеховької, Н. Б. Копняк, О. Г. Кузмінської, Л. М. Меджитової, Н. В. Морзе, Т. Г. Проценко, П. С. Уханя та ін.Педагогічна діагностика є невід’ємним компонентом навчального процесу. Вона дозволяє своєчасно впливати на перебіг навчання на основі систематичного отримання індивідуальних даних про результативність навчання учнів.На думку П. Є. Решетникова [1], педагогічна діагностика, перш за все, пов’язана зі збиранням, збереженням і опрацюванням інформації про об’єкти й суб’єкти, що вивчаються, та використанням її для управління педагогічними процесами.Функції педагогічної діагностики [2, 26]: а) зворотного зв’язку; б) оцінювання результативності педагогічної діяльності; в) виховна і спонукальна; г) комунікативна; д) конструктивна; е) інформаційна; ж) прогностична.Тестування є одним із методів педагогічної діагностики. Проблемам тестування присвячено праці багатьох вчених, які розглядають питання побудови та основних характеристик тестів, шкалювання тестових результатів, теорії і методики автоматизованого тестування, достовірності комп’ютерного тестування, створення тестів з інформатики, впровадження тестових технологій у навчальні заклади.Тест (від англ.) – випробування, перевірка. За визначенням В. І. Лозової та Г. В. Троцко, «у вузькому значенні тест розуміють як короткочасний, технічно просто поставлений експеримент, комплекс завдань, що відповідають змісту навчання і забезпечують виявлення ступеня оволодіння навчальним матеріалом» [3]. За В. С. Аванесовим педагогічний тест – це «…система репрезентативних паралельних завдань зростаючої складності, специфічної форми, яка дозволяє якісно та ефективно визначити рівень та структуру підготовленості учнів» [4].Аналіз науково-педагогічної літератури показав, що проблема функцій педагогічного тесту і окремих їх особливостей розглядається в роботах багатьох учених (В. С. Аванесов, С. І. Денисенко, Н. С. Михайлова, Р. І. Шевельова та ін.) Виділимо основні функції тестування:1. Діагностична функція, що дозволяє виявити пропуски в підготовці, визначити їх причини та прийняти рішення для поліпшення навчального процесу. Систематичне виявлення причин пропусків та їх видалення веде до підвищення якості підготовки.2. Прогностична функція, що дозволяє передбачити можливості учнів у засвоєнні нового матеріалу, тобто на основі отриманих результатів можна зробити висновки щодо здатності учня до засвоєння нового матеріалу.3. Виховна або мотиваційна функція полягає у формуванні та стимулюванні особових якостей.4. Навчальна функція дозволяє закріпити та поглибити знання, вміння та навички.5. Розвивальна функція полягає у розвитку пам’яті, логічного мислення, уваги та вміння застосовувати свої знання на практиці.6. Обліково-контрольна функція полягає у систематичній фіксації результатів навчання.За місцем педагогічного тестування у навчальному процесі відповідно до мети виокремлюють такі види тестів [5]:тести для початкового контролю (тести на готовність), що дозволяють отримати інформацію про наявність знань і навичок учнів перед початком вивчення предмета на початку навчального року (навчального курсу), що є передумовою успішного навчання;тести для поточного (тематичного, проміжного) контролю, що здійснюються систематично у процесі навчання з метою отримання інформації про успішність або неуспішність засвоєння учнями матеріалу, формування у них професійних навичок і вмінь.тести для етапного (рубіжного) контролю. У цих тестах домінує оціночна функція контролю, оскільки тестування проводиться після закінчення роботи над розділом, тематичним циклом в кінці семестру (залік);тести для підсумкового контролю знань запроваджуються після проходження всього курсу;відстрочене тестування проводиться через певний час після вивчення курсу (від 3 місяців до року і більше).Науковці визначають наступні переваги тестування перед традиційними формати перевірки: об’єктивність оцінювання; психологічна комфортність для значної частини учнів; повнота охоплення матеріалу; здатність виявити не тільки те, що засвоєно, але й те, що не засвоєно; економія аудиторного часу; стимулювання учнів; можливість впровадження системи рейтингового контролю; ширша шкала оцінювання; технологічність.Серед проблем, які потрібно вирішувати при підготовці та проведенні тестування можна назвати відносну складність створення якісного тесту, ймовірність вгадування, ризик підміни цілей навчання, похибку педагогічних вимірювань [4].Звісно, якість педагогічного процесу залежить від багатьох факторів. Тестування має на меті надання вчителю вичерпної систематичної інформації про досягнення та пропуски у навчанні для якісного керування навчальним процесом. На основі отриманої інформації вчитель має виявити причини пропусків у навчанні, індивідуалізувати процес навчання, спрогнозувати можливості учня у засвоєнні нового матеріалу. Тестування має доповнюватися іншими формами контролю, такими як спостереження, усне опитування, письмовий контроль, комбіноване опитування, програмований контроль, практичний контроль [3]. Застосування тестів у навчальному процесі, з одного боку, розвантажує вчителя, з іншого – спонукає до постійного підвищення педагогічної кваліфікації стосовно знання основних методик тестології та педагогічної діагностики.За застосуванням технічних засобів тести поділяють на бланкові з ручною обробкою або комп’ютерною обробкою результатів та комп’ютерні.Використання автоматизованих систем тестування дозволяє:– значно економити аудиторний час;– здійснювати попередній тренаж;– неодноразово проходити тестування з однієї теми;– негайно отримати результати;– об’єктивно оцінити навчальні досягнення учнів;– сприяти інформативності результатів діагностики, демократизації та самостійності навчання.До переваг для вчителя можна віднести відсутність необхідності переносу та обробки даних, що значно економить час.Але існують і недоліки в комп’ютерному тестуванні:– неможливість одночасного виконування завдання усіма учнями;– значні витрати часу;– підвищені вимоги до еквівалентності паралельних завдань.Автоматизоване тестування є ефективним засобом діагностики навчальних досягнень і може успішно застосовуватися під час здійснення попереднього, поточного, тематичного, підсумкового контролю та сприяє реалізації його дидактичних функцій.Проходження учнями автоматизованого тестування вносить у перевірку елемент гри, де за умовами успішного проходження одного рівня учень потрапляє до іншого, більш складного. Значення ігрових ситуацій в навчанні відмічав ще Я. А. Коменський.На думку В. П. Беспалька [6], повноцінне тестування якості знань учнів і відстеження на цій основі їх просування неможливе без участі комп’ютера.Існує чимало комп’ютерного програмного забезпечення, яке призначається для подання учню тестових завдань. Але справжня діагностика має проводитися за допомогою розвинених комп’ютерних систем тестування, які забезпечують усі вимоги до побудови автоматизованих систем тестування, в тому числі статистичний аналіз якості завдань і надійності тестових результатів [7].Застосування автоматизованого навчання ефективно використовувати під час проведення поточного контролю [8], адже автоматизована система зазвичай має великий банк варіантів завдань і забезпечує автоматичний їх вибір для формування конкретного варіанту тесту. Все це дозволяє значно економити час, проходити тестування з однієї теми неодноразово за наявності великої кількості варіантів, дає можливість попереднього тренування та негайного отримання результатів.Облік оцінки під час такої перевірки не обов’язковий, адже її метою є надання своєчасної допомоги учням та побудова навчального процесу відповідно до можливостей кожного. Бланкове тестування доцільно застосовувати при здійсненні тематичного контролю, що сприяє психологічній підготовці учнів до процедур зовнішнього оцінювання, державної підсумкової атестації, не потребує забезпечення кожного учня комп’ютером та дозволяє обмежитися одним варіантом тесту.Сьогодні систематично проводити автоматизоване тестування має можливість лише вчитель інформатики [9]. Це обумовлюється станом розвитку матеріально-технічної бази, тобто комп’ютерного оснащення.Висновки:1. Показана провідна роль автоматизованого тестування.2. Завдяки якісній підготовці педагогічних тестів, реалізованих у автоматизованих системах, систематичному проведенню тестування, з використанням інших видів контролю можливо значно підвищити рівень досягнень учнів.
APA, Harvard, Vancouver, ISO, and other styles
24

Volkanin, Yevhen, Serhii Boiko, Oleksiy Gorodny, Oksana Borysenko, and Andrii Dymerets. "АВТОМАТИЗАЦІЯ ПРОЦЕСУ МАГНІТНОЇ СЕПАРАЦІЇ НАНОЧАСТИНОК." TECHNICAL SCIENCES AND TECHNOLOG IES, no. 4 (14) (2018): 169–77. http://dx.doi.org/10.25140/2411-5363-2018-4(14)-169-177.

Full text
Abstract:
Актуальність теми дослідження. Актуальним науково-практичним завданням є розробка автоматизованої системи управління сепаратора, з метою точного підтримання режимних параметрів. Постановка проблеми. Головна мета цієї роботи полягає в розробці методів контролю магнітних і режимних параметрів системи магнітної сепарації за фракціями наночастинок у ліпідних оболонках. Аналіз останніх досліджень і публікацій. Для магнітного поділу магнітно-сприйнятливих частинок (молекул, колоїдних частинок) у потоці рідини застосовується технологія Mаgnеtiс Split-flоw thin Frасtiоnаtiоn (SPLITT) [9]. SPLITT – технологія магнітної сепарації в тонких каналах (<0,5 мм) з розсікачем потоків, орієнтованих перпендикулярно магнітному полю. Удосконалення технології поділу можливо шляхом заміни магнітної системи, традиційної для SPLITT, магнітною системою, яка використовується у ферогідростатичних сепараторах, з більшою областю однорідного градієнта в робочому проміжку. Виділення недосліджених частин загальної проблеми. Виробництво нанопрепарату для цільової доставки лікарських засобів і візуалізації (діаметр магнітних наночастинок 20…80 нм) передбачає виділення із вихідного препарату наночастинок середньої фракції. Існуючі на сьогодні магнітні методи сепарації не дозволяють цього зробити. Одним із рішень є удосконалення магнітної системи Фарадея, з метою отримання великої області однорідного градієнта магнітного поля в робочому проміжку. Це дає можливість розмістити в зазначеній області сепараційний канал, конструкція якого дозволяє розділити вихідний препарат на три фракції. Розроблена магнітна система, яка створює в робочій області високоградієнтне магнітне поле, яке впливає на траєкторії руху магнітних наночастинок, що рухаються в потоці рідини в сепараційному каналі. Також розроблена конструкція сепараційного каналу, яка дозволяє розділяти потоки рідини, які несуть наночастинки різних фракцій. Запропонована система призначена розділяти вихідний нанопрепарат на наступні фракції: дрібні наночастинки з розміром магнітного ядра 20 нм і менше (у тому числі порожні ліпідні оболонки); середні наночастинки (діаметр ядра 20...80 нм); великі наночастинки (діаметр ядра 81…100 нм). На сьогодні завдання полягає у створенні методів розрахунку автоматизованої системи, що забезпечить необхідні магнітні й режимні параметри сепараційної системи. Мета дослідження. Метою цієї роботи є розробка методів моніторингу магнітних та режимних параметрів системи магнітної сепарації для фракцій наночастинок у ліпідних оболонках. Виклад основного матеріалу. Для поділу наночастинок фракціями необхідно, щоб частинки різних розмірів рухалися вздовж різних траєкторій під дією магнітних та гідродинамічних сил. На траєкторію частинок впливає її розмір, магнетизація та градієнт поля. Щоб максимізувати відхилення намагнічених частинок від спрямування потоку випарного продукту, конструкція системи розділення передбачає генерацію магнітної сили, напрямок якої перпендикулярний напрямку потоку відокремленого продукту. Для забезпечення необхідних експлуатаційних параметрів процесу поділу пропонується використовувати автоматизовану систему керування з використанням нейроконтролера. Висновки відповідно до статті. Розроблена система сепарації дозволяє розділяти фракції наночастинок у потоці рідини, що підтверджується чисельним моделюванням. Без застосування автоматизованої системи управління режимними параметрами процесу магнітної сепарації неможливо забезпечити поділ фракцій наночастинок, оскільки навіть незначне відхилення від розрахункових параметрів призведе до спотворення профілю швидкостей рідини. Одним із найбільш перспективних підходів реалізації автоматизованого управління є застосування нейроконтролера. Подальша робота в зазначеному напрямку буде полягати у формуванні алгоритму управління на базі нейроконтролера. Підтвердженням достовірності отриманих методів будуть результати експериментальних досліджень.
APA, Harvard, Vancouver, ISO, and other styles
25

Teslyuk, V. M., and A. G. Kazarian. "Вибір оптимального типу штучної нейронної мережі для автоматизованих систем "розумного" будинку." Scientific Bulletin of UNFU 30, no. 5 (November 3, 2020): 90–93. http://dx.doi.org/10.36930/40300515.

Full text
Abstract:
Розроблено метод вибору оптимального типу ШНМ, ідеєю якого є практичне використання декількох типів ШНМ, подальшого обчислення похибок роботи кожного типу з використанням ідентичних наборів даних для навчання ШНМ, що унеможливлює вплив на результати роботи алгоритму і специфіки даних у навчальній вибірці. Запропонований метод дає змогу визначити оптимальний тип ШНМ для керування побутовими приладами у будинку. Розглянуто особливості процесу розроблення програмного забезпечення, що дає змогу провести процеси навчання, випробування та отримати вихідні результати роботи алгоритму штучної нейронної мережі. Вибір штучної нейронної мережі використовують для автоматизації обчислення значень оптимальних температурних режимів у кімнатах будинку, налаштувань параметрів освітлювальних приладів та режимів роботи системи безпеки "розумного" будинку. Наведено результати дослідження взаємозв'язку між різними типами нейронних мереж, кількістю внутрішніх шарів штучної нейронної мережі і кількістю нейронів на кожному внутрішньому шарі та зміни похибки обчислень параметрів налаштувань відносно очікуваних результатів роботи. Вирішення кожної окремої поставленої задачі за допомогою систем "розумного" будинку потребує використання різних алгоритмів машинного навчання. Великі обсяги даних, що генеруються у системах "розумного" будинку, та різноманітність типів і форматів цих даних не дає змоги створити універсальний автоматизований механізм з використанням алгоритмів штучного інтелекту, який вирішував би проблеми безпеки, енергоефективності та підтримки комфортних умов проживання користувачів. Тому використання запропонованого методу вибору оптимального типу нейронної мережі, що найкраще підходить для вирішення кожної окремої задачі, забезпечує високі показники ефективності роботи систем "розумного" будинку з мінімальними значеннями похибки отриманих автоматизованих рішень порівняно з рішеннями, що прийняла людина.
APA, Harvard, Vancouver, ISO, and other styles
26

Кір’язов, І. М., С. В. Шестопалов, М. Т. Степанов, and В. А. Хобін. "Дослідження ефективності функціонування АСОЗ ПТЛ прийому зерна з залізничного транспорту на елеваторі «МКХП Орексім» м. Миколаїв." Automation of technological and business processes 12, no. 2 (June 30, 2020): 4–8. http://dx.doi.org/10.15673/atbp.v12i2.1801.

Full text
Abstract:
У статті розглядаються результати функціонування в виробничих умовах автоматизованої системи оптимізації завантаження (АСОЗ) поточно транспортних ліній (ПТЛ) прийому зерна з залізничного транспорту на елеваторі «МКХП Орексім» у місті Миколаїв. Система призначена для формування потоку зерна одночасно з декількох вагонів розташованих на різних коліях та стабілізації продуктивності загального потоку зерна на заданому рівні, підвищення продуктивності та виведення її на максимально досяжну з урахуванням паспортних характеристик обладнання ПТЛ, зниження енерговитрат на перевантаження, запобігання аварійних ситуацій, пов'язаних з завалами зерна в башмаках норій. АСОЗ реалізує технології Leffol & Senumac які запатентовані SE Group International. Програмне забезпечення системи інтегровано в програмне забезпечення автоматизованої системи керування технологічними процесами елеватора і дозволяє оператору задавати компоненти потоку прийнятого зерна та початкову продуктивність ПТЛ, здійснювати вибір режиму керування завантаженням ПТЛ та вибір режиму завдання продуктивності ПТЛ в поточній технологічної ситуації, контролювати функціонування АСОЗ. Результати порівняльного аналізу ефективності управління завантаженням при прийомі зерна з залізничних вагонів оператором «вручну» і з використанням автоматизованої системи оптимізації завантаження, проведені в 2020 році, показали наступне: - середній час прийому зерна з залізничних вагонів з урахуванням простоїв зменшилось на 15%; - середня продуктивність прийому зерна без урахування простоїв збільшилася на 10%. При цьому аварійних зупинок транспортного обладнання ПТЛ пов'язаних з завалами зерна на протязі виробничих випробувань та опитної експлуатації не виникало.
APA, Harvard, Vancouver, ISO, and other styles
27

Скаковський, Ю. М. "Автоматизація оперативного обліку цукрового утфелю в модернізованій cистемі керування для продуктового відділення цукрового заводу." Automation of technological and business processes 12, no. 3 (November 5, 2020): 19–28. http://dx.doi.org/10.15673/atbp.v12i3.1922.

Full text
Abstract:
Розглядаються технічні рішення з розробки підсистеми автоматичного оперативного обліку цукрового утфелю в модернізованій системі керування для продуктового відділення цукрового виробництва. Наведений аналіз відомих рішень із розробки аналогічних систем. Проведені лабораторні дослідження програми оперативного обліку цукрового утфелю, що був зварений у вакуум-апараті періодичної дії (ВА) протягом зміни. Програма була складена FBD подібною мовою програмування контролера МІК52 українського виробництва. Імітаційне моделювання підсистеми проводилось на спеціалізованому стенді із застосуванням промислових контролерів та програмних засобів українського виробництва, в тому числі SCADA-системи «ІНДЕЛ». Для зв'язку програмованого контролера та комп’ютера використаний перетворювач інтерфейсів MODBUS RTU – USB типу БПІ-52. Наведені результати моделювання підсистеми оперативного обліку утфелю, аналіз котрих дозволяє зробити висновки про працездатність розроблених алгоритмів та програм. Інтегрування розробленої підсистеми обліку утфелю до системи автоматизованого керування (САК) процесами у ВА дозволило розширити перелік функцій, що виконуються у САК, та підвищити інтелектуальні можливості системи. Отримані позитивні результати проведеного дослідження дозволили сформувати рекомендації та пропозиції до модернізації АСКТП продуктового відділення, на основі методики автоматизованих розрахунків традиційних показників обліку виробництва цукрового заводу. Розроблена промислова версія АРМ оператора-варщика, котра запропонована до впровадження. Крім того, за отриманими результатами були визначені напрямки подальших досліджень САК технологічними процесами цукрового заводу.
APA, Harvard, Vancouver, ISO, and other styles
28

Кириченко, Г. І., and Ю. А. Бердниченко. "Складові інформаційної моделі перевізного процесу вантажних перевезень залізничного транспорту." Інформаційно-керуючі системи на залізничному транспорті 26, no. 3 (September 24, 2021): 12–17. http://dx.doi.org/10.18664/ikszt.v26i3.240455.

Full text
Abstract:
У статті наведено результати аналізу і теоретичного узагальнення наукових праць, у яких розглядаються проблеми функціонуючої автоматизованої системи залізниці. Розглянуто множину моделей перевізного процесу (інформаційних образів об’єктів управління), яка складає логічну базу даних, що забезпечує єдність інформаційного середовища автоматизованої системи керування вантажними перевезеннями Укрзалізниці (АСК ВП УЗ-Є). Нормативно-технологічні документи суттєво відрізняються від реальних ситуацій та експлуатаційних умов. Приймати рішення диспетчерський апарат часто вимушений у неочікуваних ситуаціях і в умовах невизначеності. Завдання розвитку ІТ простору залізниці полягає у розробленні та впровадженні технологій управління оперативною роботою, створенні систем підтримки прийняття диспетчерським апаратом рішення щодо управління технологічними процесами.
APA, Harvard, Vancouver, ISO, and other styles
29

Моркун, В. С., І. А. Котов, О. Ю. Сердюк, and І. А. Гапоненко. "Автоматизація керування енергетичними системами на основі процесу інтерпретації метаправил бази знань інтелектуальної системи." ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, no. 2 (266) (March 13, 2021): 26–34. http://dx.doi.org/10.33216/1998-7927-2021-266-2-26-34.

Full text
Abstract:
У статті розглянута проблема побудови інтелектуальної програмної системи, реактивної по відношенню до подій зовнішнього середовища, для автоматизації управління режимами енергосистем. Модель реактивної тригерної системи підтримки рішень інтерактивно пов'язана як з станами компонентів енергосистеми, так і з діями користувача-оператора. Обґрунтоване, що теоретична розробка та впровадження програмного комплексу тригерної системи підтримки прийняття рішень в середу автоматизованої системи диспетчерського керування енергосистеми є актуальною науково-технічною проблемою. Методи дослідження полягають в застосуванні автоматної моделі станів функціонування автоматизованої програмної системи підтримки рішень. Для схеми станів реалізована автоматна модель функціонування з конкретизацією семантики станів, транзакцій і тригерів. У статті приведена схема трансляції програми тригерних транзакцій метаправил в байт-код інтерпретатора. Приведені результати інтерпретації метаправил бази знань інтелектуальної системи.
APA, Harvard, Vancouver, ISO, and other styles
30

Lievi, L. "ОПТИМІЗАЦІЯ ЕНЕРГЕТИЧНИХ ЗАТРАТ І ВИТРАТ ВОДИ В АВТОМАТИЗОВАНІЙ СИСТЕМІ КЕРУВАННЯ ВОЛОГОЗАБЕЗПЕЧЕНІСТЮ СІЛЬСЬКОГОСПОДАРСЬКИХ КУЛЬТУР." Системи управління, навігації та зв’язку. Збірник наукових праць 4, no. 56 (September 11, 2019): 17–20. http://dx.doi.org/10.26906/sunz.2019.4.017.

Full text
Abstract:
Метою керування водним режимом ґрунту є отримання планового врожаю сільськогосподарських культур. Сучасні методи розрахунку зрошувальних систем та управління ними вимагають використання кількісних зв‘язків між водним режимом ґрунту та врожайністю культур. Існують підходи по зв‘язуванню врожайності із сумарним випаровуванням, коефіцієнтом вологозабезпеченості, опадами, кількістю днів, в які рослини відчують водний стрес. Найдосконалішими є динамічні моделі формування врожаю, в яких враховуються всі основні чинники життєдіяльності рослин. Вони інваріантні, але для їх практичного застосування необхідно визначати велику кількість недостатньо вивчених на даний час чинників зовнішнього середовища та фізіології рослин, що змінюються у часі за видами та сортами рослин. За фізіологічними властивостями розрізняють два типи культур. До першого типу належать культури, що мають яскраво виражені критичні періоди, наприклад, зернові, для яких недостатнє водопостачання під час цвітіння має необоротний згубний вплив на обсяг врожаю; до другого - культури, наприклад, трави, які можуть переносити підсушування ґрунту протягом невеликого періоду і після цього цілком відновлювати врожай за оптимального водоспоживання. В таких моделях кожна попередня фаза розвитку рослин впливає на зростання і розвиток у наступній фазі. В роботі застосовано інтелектуальні методи підтримки прийняття рішень в умовах багатокритеріальності в задачах оптимального керування вологозабезпеченістю сільськогосподарських культур. Даний підхід дозволяє економити водні та енергетичні ресурси при керуванні вологозабезпеченістю сільськогосподарських культур без втрат врожайності.
APA, Harvard, Vancouver, ISO, and other styles
31

Небилиця, М. С., and О. В. Бойко. "СИСТЕМА МОНІТОРИНГУ ЗАБРУДНЮЮЧИХ ГАЗІВ ТА СПОСІБ РЕГУЛЮВАННЯ ТЕМПЕРАТУРНО-ВОЛОГІСТНОГО РЕЖИМУ ТВАРИННИЦЬКИХ ПРИМІЩЕНЬ." Effective rabbit breeding and fur farming, no. 6 (March 22, 2020): 99–110. http://dx.doi.org/10.37617/2708-0617.2020.6.99-110.

Full text
Abstract:
Метою роботи було розробити інноваційну систему моніторингу забруднюючих газів та спосіб регулювання температурно-вологістного режиму тваринницьких приміщень. Методи. Дослідження проводили в умовах технологічної лабораторії Черкаської ДСБ НААН і лабораторії ФОП «Онищенко Р.О.». Розроблення газоаналітичної та структурної блок-схем здійснювали шляхом узагальнення літературних даних за тематикою досліджень та виготовлення технічних креслень і робочої документації вимірювальних блоків та блоку керування. Проведено закупівлю складових елементів, монтаж і пуско-налагоджувальні роботи вимірювальної системи. Розроблено програмне забезпечення мікропроцесорної системи та спосіб регулювання температурно-вологістного режиму. Результати. Розроблено мультипараметричну систему моніторингу забруднюючих газів тваринницьких приміщень. Вона є автоматизованою, компактною і портативною. Основною частиною системи виступає мікроконтролер. Мультипараметрична система дозволяє оперативно здійснювати оцінку санітарно-гігієнічних умов утримання тварин для прийняття відповідних управлінських рішень. Теплокровні тварини характеризуються розвинутим гомеостазом температури тіла та інших фізіологічних параметрів організму. Занадто стабілізовані впродовж доби умови мікроклімату є причиною надмірного зніження тварин. У зв’язку з цим, в приміщенні для утримання ремонтного молодняку кролів циркадне коливання температури взимку має становити від 8 до 11°C, у перехідний період року від 13 до 16°C і влітку від 18 до 21°C. Аналогічно повинна змінюватися і відносна вологість повітря взимку від 62 до 74 %, у перехідний період від 60 до 72% і влітку від 58 до 70 %. Впродовж добового періоду, запрограмований мікропроцесор, через заданий проміжок часу (2 год.) з відповідним кроком (0,5 °C) задає сигнал необхідної температури та з відповідним кроком (2 %) задає сигнал необхідної відносної вологості повітря. Висновки. Перехід вітчизняного кролівництва на промислову основу сприяв запровадженню кліткового способу утримання тварин у приміщеннях з контрольованим мікрокліматом. Мультипараметрична вимірювальна система здійснює добовий моніторинг низки забруднюючих газів в автоматизованому режимі, що економить 200-224 люд./год. робочого часу в рік зоотехніка-технолога. Експлуатаційні затрати на одне дослідження компонента шкідливого газу в 2,5 рази менші, ніж хімічними методами. Впровадження циркадного ритму дозволяє забезпечити фізіологічні потреби тварин у ритмічних добових змінах температури і відносної вологості повітря тваринницького приміщення. Це дозволяє підвищити резистентність організму тварин, шляхом стимулювання роботи нервової та нейрогуморальної систем.
APA, Harvard, Vancouver, ISO, and other styles
32

Сушенцев, Олександр Олександрович. "Професійна підготовка студентів з використанням комп’ютерних технологій у модульно-рейтингової системи." Theory and methods of e-learning 1 (December 14, 2013): 211–14. http://dx.doi.org/10.55056/e-learn.v1i1.232.

Full text
Abstract:
Актуальність. Високі темпи прогресу науки й технологій, створення й поширення технологічних і організаційних інновацій, розвиток інформаційних технологій в умовах становлення української економіки, заснованої на знаннях, задають якісно нові вимоги до рівня підготовки кадрів з перспективних напрямів і спеціальностей. На теперішній час система вищої освіти є найбільш розвиненою складовою системи освіти України. Інноваційні процеси відбуваються в динамічно мінливому інформаційно-освітньому середовищі сучасного вищого навчального закладу, у ході насичення його новітніми інформаційно-комунікаційними технологіями. Ринкова економіка змінює уявлення особистості про життєві перспективи, у зв’язку із чим освіта сьогодні розглядається як «ключ до успіху» [1, 65]. У майбутній професії увагу студентів привертає не тільки одержання нових знань, умінь та навичок, а й можливості швидкого кар’єрного просування та пов’язані з ним матеріальна забезпеченість і фінансова самостійність. Ці нові орієнтири значно змінили менталітет молоді: абітурієнтів, студентства й випускників. При цьому вони усе чіткіше усвідомлюють, що ринкові й у цілому сучасні суспільні відносини висувають жорсткі вимоги до їх професійних і комунікативних здібностей, умінню знаходити вихід зі складних ситуацій, швидко адаптуватися до стрімко мінливій ситуації. Особливу актуальність здобуває інноваційна освіта, що припускає особистісний підхід, фундаментальність, творче начало, професіоналізм, компетентність. Вирішення даної проблеми лежить в області проектування методичних систем навчання на основі комплексного використання традиційної, комп’ютерної й рейтингової технологій.Постановка проблеми.Існуючі організаційні форми навчання (лекція, практичне заняття та ін.) мають істотні недоліки: перевага словесних методів викладу змісту навчального матеріалу; усереднений загальний темп викладу матеріалу; фронтальна форма проведення практичних занять, що не враховує різнорівневість підготовки і працездатності студентів.Самостійна робота студентів з підручниками, навчальними посібниками утруднена через недостатнє структурування змісту навчального матеріалу, сухості мови викладу, повної відсутності емоційного впливу й контролю засвоєння знань.Автоматизовані навчальні системи дозволяють реалізувати основні принципи дидактики (навчання): науковість, системність, модульність, наступність, наочність і створюють передумови для підвищення якості професійної підготовки. Вони надають студентам наступні можливості: керування темпом викладу, повернення до вивчених розділів, багаторазове опрацювання матеріалу для його закріплення, користування термінологічним словником, перевірка засвоєння за допомогою питань і завдань, відпрацьовування умінь та навичок. Використовуючи автоматизовані навчальні системи неважко якісно організувати самостійну роботу, самоконтроль і контроль знань.Метою статті є розкриття можливостей професійної підготовки з використанням комп’ютерних технологій навчання у модульно-рейтинговій системі навчання.Основна частина. Досвід роботи у вищому навчального закладі показує, що студенти молодших курсів не можуть самі контролювати хід навчання, систематично й напружено працювати протягом семестру. На вирішення цих проблем спрямована модульно-рейтингова технологія як засіб формування в студентів пізнавальної активності протягом усього періоду навчання. Аналіз робіт показує, що модульно-рейтингове навчання сприяє розвитку й закріпленню системного підходу до вивчення дисципліни, формує в студентів навички самоконтролю, вимогливості до себе, стимулює самостійну систематичну роботу, а також допомагає виявити сильних і здібних студентів.Проблему запровадження у практику роботи вищої школи модульної системи навчання досліджували А. Алексюк, І. Богданова, В. Бондар, З. Кучер, П. Сікорський, П. Стефаненко, В. Стрельніков та ін. Запровадженню рейтингової системи навчання присвячені роботи С. Вітвицької, І. Мельничук та ін.Наш науковий інтерес викликала методична система професійної підготовки студентів з використанням комп’ютерних технологій і модульно-рейтингової системи навчання. Під методичною системою будемо розуміти педагогічну структуру, компонентами якої є мета, зміст, методи, форми й засоби навчання. У проектованій методичній системі передбачається, з одного боку, розкрити позитивний досвід існуючої методичної системи, а з іншого, – використати комп’ютерні засоби навчання для вирішення проблем у викладанні окремих дисциплін, наприклад, для викладання традиційно складних курсів у технічних вузах – теорія машин і механізмів (ТММ), теорія автоматичного управління (ТАУ). Для цього необхідно розробити: систему цілей; критерії відбору змісту методичної системи; систему методів навчання; особливості реалізації кожної з основних організаційних форм в умовах застосування автоматизованої навчальної системи; класифікацію комп’ютерних засобів, які будуть використовуватись в методичній системі по курсах ТММ і ТАУ:модульно-рейтинговий комплекс;модель автоматизованої навчальної системи й сценарій електронних підручників; - модель контролю.Система цілей методичної системи: формування наукового світогляду; накопичення знань, умінь і навичок; розвиток продуктивної розумової діяльності студентів; забезпечення професійної готовності майбутніх інженерів до використання отриманих знань при розв’язанні науково-технічних проблем.Комп’ютерні технології мають у своєму розпорядженні більші можливості для вдосконалення пояснювально-ілюстративних і репродуктивних методів, які доповнюються методами, що безпосередньо базуються на використанні комп’ютерів: метод використання комп’ютера як інструмента, що дозволяє значно розширити ілюстративну базу вузівського курсу; метод використання комп’ютера для формування алгоритмічної культури студентів; метод використання комп’ютера при виконанні розрахункових завдань; метод використання комп’ютерних технологій як засіб експериментування й моделювання.У проектованій методичній системі роль засобів навчання значно зростає. Підручники й навчально-методичні посібники традиційно відіграють важливу роль. Комп’ютерні навчальні засоби, що використовуються в різних курсах, можна розбити на два види:навчаючі програмні засоби з елементами моделювання (призначаються для організації й підтримки навчального діалогу студента з комп’ютером, надають середовище для комп’ютерного моделювання, необхідну навчальну інформацію з курсу, направляють навчання (електронні підручники й комп’ютерні практикуми));навчально-демонстраційні засоби навчального характеру (надають наочну навчальну інформацію як статичного, так і динамічного характеру (демонстраційні блоки з елементами мультимедіа)).Модульно-рейтинговий комплекс представляє собою сукупність модульної програми й рейтингової оцінки знань студентів. В основу розробленої рейтингової системи покладена концепція, що полягає в тім, що підготовка фахівця з міцними базовими знаннями залежить від способу їхнього формування. Міцність і надійність знань завжди вище, якщо їхнє формування відбувається не в авральній формі, що ми часто спостерігаємо, а систематично, протягом усього періоду навчання В методичній системі модульно-рейтинговий комплекс виконує дві функції: засобу керування навчальним процесом (реалізується через модульну структуру курсу) і система контролю (яка ґрунтується на оцінюванні всіх видів навчальної роботи з урахуванням якості й своєчасності виконання).Електронні підручники містять курси лекцій, демонстраційні моделі. По кожному розділу електронних підручників підготовлені тести декількох рівнів. Підручники виконані в технології Internet. У структуру підручника входять зміст і предметний покажчик, пов’язаний з лекціями гіперпосиланнями. Навігація реалізована з використанням функцій мовою JavaScript і елементами динамічного HTML. Тексти підручників відповідають державним освітнім стандартам вищої професійної освіти за напрямами і спеціальностями.Комп’ютерні засоби навчання – це програмний засіб або програмно-технічний комплекс, призначений для вирішення певних педагогічних завдань, що має предметний зміст. Предметний зміст передбачає, що комп’ютерні засоби навчання повинні включати навчальний матеріал з певної дисципліни. Під навчальним матеріалом розуміється інформація, як декларативного характеру, так і завдання для контролю знань і вмінь, а також моделі й алгоритми, що представляють досліджувані процеси. Методи оцінювання знань і вмінь студентів з даної дисципліні, курсу, розділу, теми або фрагменту з обліком встановлених кваліфікаційних вимог не зовсім досконалі. Особливістю поточного контролю, наприклад, повинно бути сполучення в ньому функцій перевірки знань і навчання. Засоби пересування по навчальному матеріалу повинні бути реалізовані таким чином, щоб це було можливим.Висновки. Використання комп’ютерних технологій і модульно-рейтингової системи навчання забезпечує підвищення інтересу у студентів до навчання, мотивує їх до навчально-пізнавальної діяльності і створює умови для індивідуалізації навчання у вищому навчальному закладі.
APA, Harvard, Vancouver, ISO, and other styles
33

Ткачук, Андрій Геннадійович, Антон Валерійович Коваль, Анна Анатоліївна Гуменюк, Мартін Віталійович Богдановський, and Марія Степанівна Гриневич. "Інтелектуальна мехатронна система «робот-гексапод»." Технічна інженерія, no. 1(87) (June 16, 2021): 66–72. http://dx.doi.org/10.26642/ten-2021-1(87)-66-72.

Full text
Abstract:
У статті розглянуто особливості конструкції мобільних роботів-гексаподів. Встановлено, що така мобільна платформа є біонічною системою, яка використовує для пересування шість ніг та імітує своїм зовнішнім виглядом і способом пересування павука. Робот-гексапод має шість рухомих ланок, а для забезпечення його руху достатньо всього лише трьох робочих. Перевагами робота є його висока прохідність на нерівних поверхнях порівняно з колісними платформами. Розроблено лабораторний макет автоматизованої мехатронної системи «робота-гексапода». Було обрано класичну конструктивну реалізацію робота, що передбачає шість кінцівок із трьома ступенями рухомості, які розміщені симетрично по три рухомі ланки з двох сторін робота і приводяться в рух завдяки вісімнадцяти серводвигунам. Розроблено систему керування роботом, яка полягає у плануванні переміщення робота з врахуванням інформації, що надходить з датчиків, які в свою чергу забезпечують загальний зворотний зв’язок, надаючи інформацію про різні параметри зовнішнього середовища. Для здійснення рухів гексапода реалізовано відповідний алгоритм, яким передбачено розподіл на дві групи кінцівок робота та систему дистанційного керування ним. Проведено моделювання переміщення робота за допомогою ROS + Gazebo.
APA, Harvard, Vancouver, ISO, and other styles
34

Bashynska, Olha, Yuri Kamak, and Sergii Nesterenko. "МЕТОД ДІАГНОСТИКИ КОМПОНЕНТІВ СИСТЕМИ КЕРУВАННЯ БЕЗПІЛОТНОГО АВІАЦІЙНОГО КОМПЛЕКСУ." TECHNICAL SCIENCES AND TECHNOLOG IES, no. 2 (12) (2018): 142–50. http://dx.doi.org/10.25140/2411-5363-2018-2(12)-142-150.

Full text
Abstract:
Актуальність теми дослідження. Перспективним напрямком розвитку програмно-апаратних засобів технічного діагностування є використання в їх складі інтелектуальних компонентів. Відомі засоби технічного діагностування орієнтовані на вирішення окремих вузькоспеціалізованих діагностичних задач і не забезпечують достатнього рівня універсальності, тому проблема підвищення ефективності діагностування за рахунок розробки та вдосконалення інтелектуальних засобів є актуальною і потребує подальших досліджень. Також актуальним є дослідження впливу різних факторів на роботу компонентів системи керування безпілотного авіаційного комплексу. Постановка проблеми. Сучасні системи керування безпілотним авіаційним комплексом є складними комплексами, в яких відбувається тісна взаємодія різнотипових підсистем. Використання БпАК у високотехнологічних сферах вимагає забезпечення високого рівня надійності функціонування СК БпАК та її компонентів. Одним із засобів підвищення надійності роботи є розробка і впровадження ефективних програмно-апаратних засобів діагностування. Аналіз останніх досліджень і публікацій. Нині в умовах глобальної автоматизації пристроїв та їх комплексів, питання пошуку несправностей за допомогою автоматизованих систем із кожним днем стає все більш актуальним. Пристрої та їх комплекси стають більш складними та потребують більш глибокої деталізації при пошуку несправностей. Саме тому це питання звернуло увагу на себе багатьох науковців. Так, наприклад, Є. В. Нікітенко неодноразово звертав увагу на вивчення проблем автоматизованого пошуку несправностей в електронних приладах [1; 2]. Виділення недосліджених частин загальної проблеми. Розробка науково обґрунтованої методології технічної діагностики елементів системи керування БпАК. Постановка завдання. Розробка методу діагностування компонентів СК БпАК на базі узагальненої математичної моделі програмно-апаратного пристрою діагностики. Виклад основного матеріалу. Для проведення технічної діагностики компонентів системи керування БпАК пропонується метод, що розглядає кожен елемент СК БпАК у вигляді орієнтованого графа причинно-наслідкових зв’язків. Розроблено алгоритм програмного компонента діагностичної системи СК БпАК. Висновки відповідно до статті. Сформульовано та надано математичний опис методу технічної діагности-ки елементів СК БпАК. Наведено алгоритм програмного компонента діагностичної системи СК БпАК.
APA, Harvard, Vancouver, ISO, and other styles
35

Глущенко, Г. А., В. В. Залозний, and А. К. Давиденко. "ДОСВІД ВПРОВАДЖЕННЯ МІКРОПРОЦЕСОРНОГО УПРАВЛІННЯ РЕГУЛЬОВАНОЮ ЗАСУВКОЮ." Bulletin of Sumy National Agrarian University. The series: Mechanization and Automation of Production Processes, no. 1 (43) (February 21, 2022): 39–45. http://dx.doi.org/10.32845/msnau.2021.1.7.

Full text
Abstract:
В статті розглянуто особливості впровадження автоматизованої системи керування процесом зняття параметрів модельних проточних елементів горизонтальних відцентрових насосів. Наведено конструктивні особливості електропривода та регулюючої засувки, які ускладнюють процес регулювання. Запропоновано спосіб подолання зони нечутливості, люфта, нелінійності характеристики регулюючого органу. Показано, що високі значення зони нечутливості, люфта, нелінійності характеристики засувки не є перешкодою для зміни подавання в малих діапазонах середовища, що перекачується. Наведено приклад подолання конструктивно обумовлених недоліків існуючої засувки за допомогою використання алгоритмів керування. Описана алгоритмічна послідовність керування засувкою.
APA, Harvard, Vancouver, ISO, and other styles
36

МАРИНИЧ, Іван, and Ольга СЕРДЮК. "ЗАСТОСУВАННЯ НЕЙРОННИХ РЕГУЛЯТОРІВ ПРИ МОДЕЛЮВАННІ КЕРУВАННЯ СТАДІЄЮ ПОДРІБНЕННЯ В УМОВАХ ГІРНИЧО-ЗБАГАЧУВАЛЬНОГО КОМБІНАТУ." INFORMATION TECHNOLOGY AND SOCIETY, no. 1 (May 12, 2022): 45–53. http://dx.doi.org/10.32689/maup.it.2022.1.6.

Full text
Abstract:
Анотація. Стаття присвячена можливості застосування стандартних типів нейрорегуляторів, що пропонує середовище MATLAB & Simulink при моделюванні керування технологічним процесом, а саме стадією подрібнення, шляхом застосування узгодженого інтелектуального керування в умовах невизначеності. Застосування технологій штучного інтелекту в гірському ділі є досить актуальним в цей час. На відміну від «класичних» детермінованих автоматизованих систем керування, які засновані на використанні жорстких алгоритмів (або чіткої логіки), системи з використанням штучного інтелекту мають властивості навчання та самонавчання (тобто накопичення та узагальнення досвіду). Використання штучних нейро‑нечітких мереж для моделювання і ідентифікації об’єкта керування – підхід, який зазвичай розглядається як альтернатива методам, заснованим на фізичних або технологічних принципах. Зокрема, це стосується можливості використання нейронних мереж та нечіткої логіки для управління технологічними процесами дроблення-подрібнення та збагачення корисних копалин. В роботі було розглянуто три можливих типи регуляторів, які пропонує середовище MATLAB & Simulink, а саме регулятора з передбаченням NN Predictive Controller, регулятору на основі моделі авторегресії NARMA-L2 та контролера на основі еталонної моделі – Model Reference Controller. Кожен з розглянутих регуляторів може застосовуватись при моделюванні технологічного процесу, але доцільність використання того чи іншого типу, в першу чергу залежить від характеру технологічного процесу. При моделюванні була досліджена можливість керування технологічним процесом за допомогою штучного інтелекту (регуляторів на основі нейронних мереж). Аналіз результатів моделювання трьох типів нейрорегуляторів, показав, що найбільш доцільним при моделюванні керування технологічного процесу подрібнення є застосування регулятора типу NARMA-L2.
APA, Harvard, Vancouver, ISO, and other styles
37

Сакалюк, О. Ю. "Реалізація проекту розробки програмного забезпечення автоматизованого керування процесом формування розкладу навчальних занять засобами пакета Gantt Project." Automation of technological and business processes 13, no. 3 (November 4, 2021): 57–63. http://dx.doi.org/10.15673/atbp.v13i3.2142.

Full text
Abstract:
Основою якісної організації освітнього процесу будь-якого навчального закладу, особливо закладу вищої освіти є розклад навчальних занять. Якість підготовки спеціалістів в значній мірі залежить від методично правильного сформованого розкладу навчальних занять. Розклад навчальних занять та екзаменів є одним з найбільш відповідальних, трудомістких та стомлюючих завдань планування освітнього процесу [1]. Дослідники доклали значних зусиль для розробки універсальної автоматизованої системи керування процесом формування розкладу навчальних занять. Однак на сьогоднішній день немає ідеального рішення цієї проблеми, тому що ми повинні враховувати численні параметри та обмеження. Жодна з раніше розроблених систем не є універсальною і не може задовольнити потреби всіх вищих навчальних закладів. Більшість систем використовують велику кількість вхідної інформації, що зберігається в базах даних. За допомогою складних алгоритмів на основі аналізу вхідної інформації складається розклад. Однак підсумковий графік не завжди ідеальний і може потребувати багато ресурсів та часу. Розклад повинен задовольняти інтереси всіх учасників процесу [2]. Для розробки такої системи потрібно якісно розподілити роботи між виконавцями. Створення, будь-якого проекту завжди починається з його плануванням. Для виконання цих завдань уже давно багато компаній використовують системи управління проектами, які дозволяють ставити певні завдання, визначати людей, слідувати за процесом виконання завдань та виділенням необхідних ресурсів. Завдання управління проектом програмного забезпечення може бути надзвичайно складним, виходячи з багатьох особистих, командних та організаційних ресурсів. Якість програмного продукту залежить від процесу завершення проекту. Час затримок у проекті з розробки програмного забезпечення та низька продуктивність, як правило, впливають на кінцевий результат. Останнім часом еволюція інструментів управління проектами як для програмних, так і для непрограмних додатків прискорюється швидкими темпами, а кількість доступних продуктів значно зросла. Щодня розробляється багато інструментів та програмного забезпечення для управління проектами, які допомагають менеджерам автоматизувати адміністрування окремих проектів або груп проектів протягом їх життєвого циклу [3].
APA, Harvard, Vancouver, ISO, and other styles
38

Verkhovsky, V., I. Zakharchenko, and R. Tarasov. "РОЗРОБКА МОДЕЛІ НАВЧАЄМОГО ДЛЯ АВТОМАТИЗОВАНОЇ СИСТЕМИ КЕРУВАННЯ ТРЕНАЖЕРНОЮ ПІДГОТОВКОЮ ПІЛОТІВ ЦИВІЛЬНОЇ АВІАЦІЇ." Системи управління, навігації та зв’язку. Збірник наукових праць 3, no. 65 (September 3, 2021): 18–23. http://dx.doi.org/10.26906/sunz.2021.3.018.

Full text
Abstract:
В статті розглянуто процес створення моделі навчаємого, як однієї з складових автоматизованої системи керування тренажерною підготовкою пілотів цивільної авіації. Проаналізовано існуючі методи побудови моделі навчаємого та особливості їх реалізації, а саме: оверлейну, пертурбаційну, різницеві моделі. Визначено компоненти моделі навчаємого, особливу увагу приділено компоненту - психологічному профіль особистості. З урахуванням специфіки льотної діяльності в психологічний профіль особистості моделі навчаємого крім його загальних особистісних якостей запропоновано додатково включити ті характеристики, що можуть впливати на успішність виконання програми тренажерної підготовки і обумовлені структурою та змістом діяльності пілота при експлуатації літака. Для визначення цих додаткових якостей проаналізовано опорні фрагменти діяльності пілотів і фактори, що необхідні для їх успішної реалізації. Запропоновано структуру моделі навчаємого, яка побудована з урахуванням психологічних аспектів особистості, які впливають на льотні здібності та їх розвиток
APA, Harvard, Vancouver, ISO, and other styles
39

Levkin, D., A. Zavgorodniy, and A. Levkin. "Solution of problems of designing automated management systems." Energy and automation, no. 2(48) (April 29, 2020): 106–14. http://dx.doi.org/10.31548/energiya2020.02.106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Boriak, B. "ПОРІВНЯЛЬНИЙ АНАЛІЗ ЯКОСТІ ФІЛЬТРАЦІЇ І ПРОГНОЗУВАННЯ ДВОКОНТУРНОГО І ТРИКОНТУРНОГО АДАПТИВНИХ ЕКСПОНЕНЦІАЛЬНИХ ФІЛЬТРІВ." Системи управління, навігації та зв’язку. Збірник наукових праць 1, no. 53 (February 5, 2019): 45–49. http://dx.doi.org/10.26906/sunz.2019.1.045.

Full text
Abstract:
Вступ. У статті проведено порівняльний аналіз якості фільтрації та прогнозування адаптивних експоненціальних двоконтурного і триконтурного фільтрів. Головна відмінність між дво- і триконтурним фільтрами полягає у кількості контурів фільтрації, які використовуються для оцінки якості фільтрації, та їх програмна реалізації. Цілі. Розглянути доцільність використання триконтурного фільтра-предиктора у системах керування у ролі алгоритму обробки інформації, у порівнянні із двоконтурним. Методологія. Було застосовано концепції аналізу часових рядів та математичне моделювання в пакеті Matlab. Результати. Отримано характеристики середньоквадратичних похибок фільтрації і прогнозу в залежності від кількості кроків, на які здійснюється прогнозування, та кількості кроків, що використовуються для оцінювання якості фільтрації, для двох варіацій фільтрів. Оригінальність. Вперше було визначено зв'язок між середньоквадратичними похибками (фільтрації та прогнозу) та наступними параметрами: кількість кроків, на які здійснюється прогнозування; кількість кроків, які алгоритм обробки даних використовує для оцінки якості процесу фільтрації, для дво- та триконтурного алгоритмів фільтрації та прогнозування. Проаналізовано актуальність застосування двох різних алгоритмів адаптації коефіцієнта згладжування в залежності від ресурсів ЕОМ. Практичне значення. Здійснено реалізацію запропонованих алгоритмів на мові програмування Matlab, які можуть бути інтегровані в різні автоматизовані системи управління з метою фільтрації та прогнозування значень спотвореного шумами сигналу. Це дослідження дає можливість обрати ефективний алгоритм обробки даних в залежності від поставленої задачі.
APA, Harvard, Vancouver, ISO, and other styles
41

Bahan, T. G., V. S. Smyrnov, O. V. Samkov, and D. V. Vaits. "CONCEPTUAL ASPECTS OF SYNTHESIS OF CONTROL SYSTEMS BY CONVERTERS OF AUTOMATED STAND-ALONE OBJECTS." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2019, no. 52 (March 13, 2019): 88–96. http://dx.doi.org/10.15407/publishing2019.52.088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Лежняк, Тетяна Василівна. "Системний підхід до вивчення інформатики та інформаційних технологій в технічному університеті." Theory and methods of learning fundamental disciplines in high school 1 (March 30, 2014): 133–38. http://dx.doi.org/10.55056/fund.v1i1.416.

Full text
Abstract:
В умовах інтенсивного розвитку нових інформаційних технологій особливої актуальності набуває організація підготовки студентів вищих навчальних закладів з інформатики. У зв’язку з новими завданнями вищої школи, стають все більш відчутними недоліки процесу організації навчання (переважно репродуктивний характер викладу матеріалу, стандарти у проведенні занять) і, як наслідок, пасивність студентів, слабкий вплив на розвиток особистості, зниження інтересу до навчання. Перебудова системи вищої освіти зорієнтована на розвиток пізнавальної самостійності і активності студентів, на формування в них творчого мислення, виховання інтересу до навчання.Пошуки шляхів удосконалення організації навчального процесу висунули на передній план системний підхід до навчання. Системне навчання – це спеціально організована пізнавальна діяльність студентів, яка, враховуючи індивідуальні відмінності, спрямована на оптимальний інтелектуальний розвиток кожного студента й передбачає структурування змісту навчального матеріалу, добір форм прийомів і методів навчання.Насамперед проаналізуємо форми навчання. В переважній більшості вузів надають перевагу традиційним формам навчання – очній і заочній. Ведуться численні дискусії про те, якою має бути освіта в новому XXI столітті. Широкої популярності набуває дистанційна освіта. ЇЇ активне поширення є відгуком систем освіти багатьох країн на процес просування до інформаційного суспільства. Дистанційна освіта – це завершена форма, що поєднує елементи очного, очно-заочного і вечірнього навчання на основі інформаційних технологій та систем мультимедіа. Утворення і застосування дистанційних видів інформаційних освітніх технологій може вирішити проблеми підготовки викладачів на сучасному рівні. Телекомунікаційна передача матеріалів навчальних курсів дає змогу планувати знання, використовувати педагогічну та наукову інформацію як в освітній установі, так і вдома або на робочому місці. Сучасні засоби телекомунікацій і електронних видань дозволяють перебороти недоліки традиційних форм навчання, зберігаючи при цьому усі їх переваги.Система дистанційної освіти дозволить тим, хто навчається, отримати як базову, так і додаткову освіту паралельно з їх основною діяльністю. Необхідно здійснювати важливі заходи щодо впровадження технологій дистанційної освіти в навчальний процес, тобто, науково-методичну роботу, спрямовану на розробку підходу до підготовки і викладання дисциплін з використанням технологій дистанційної освіти.На сучасному етапі необхідна пристосована до власних умов вузу технологія організації навчального процесу. Пропонується схема (рис. 1) організації навчального процесу при вивченні інформатики та інформаційних технологій у технічному університеті.Рис. 1. Практична реалізація даних вимог можлива тільки на основі індивідуалізації навчальних планів. Система організації навчального процесу повинна будуватись з поступовим зростанням складності, неперервності підготовки навчання, сприяти протидії виробленню стереотипів, містити достатню кількість предметів для досягнення необхідного рівня підготовки пов’язаного з майбутньою практичною діяльністю. Навчання буде ефективним, якщо дотримуватись певних загально методичних вимог та принципів: науковості, систематичності, доступності, динамічності, зв’язку навчання з життям та основних принципів організації навчального процесу:проведення лекційних занять не лише в аудиторіях, але й в комп’ютерних класах (в залежності від теми) з використанням комп’ютерних проекторів, тренажерів, автоматизованих навчаючих систем тощо;закріплення за кожним студентом персонального комп’ютера при проведенні лабораторних занять;методичне забезпечення дисципліни відповідною літературою та прикладними програмами;індивідуальний підхід і розробка різних за складністю завдань в залежності від рівня підготовки студента;використання активних методів навчання для ефективного засвоєння знань;поєднання теорії з практикою;розвиток пізнавальної діяльності студентів.Роль викладача у системних дослідженнях навчального процесу дуже велика і проблематична. Об’єктивність інформації з боку викладача, пов’язана зі змістом навчального процесу, його плануванням і управлінням, повинна забезпечуватися професіоналізмом і ефективністю результатів роботи. Головним у розумовому розвитку тих, хто навчається, є не лише метод навчання, а й зміст навчання. В процесі навчання викладачі найчастіше використовують інформаційно-повідомляючий та пояснювальний методи навчання. Та студент повинен не тільки сприймати навчальну інформацію, а також виробляти своє відношення до знань. Щоб активізувати мислення студента, необхідно сформулювати перед ним задачу, створити таку ситуацію, щоб виникла особиста зацікавленість в її розв’язанні. Заняття потрібно проводити у вигляді ділової гри, створювати проблемні ситуації, давати студенту можливість висувати свої гіпотези, задавати питання. Навчання буде ефективним тоді, коли існує зворотній процес.Пропонуються методи навчання, з яких кожен викладач віднайде необхідний для того, щоб розвинути пізнавальну, мотиваційно-стимулюючу діяльність студента в досягненні мети:1) інформаційно-повідомляючий:науковість;систематичність;цілеспрямованість викладання;керування навчально-пізнавальною діяльністю студентів;2) пояснювальний:індивідуальний підхід до кожного студента;трирівнева система складності лабораторних і курсових робіт;доступність;робота за аналогією;3) проблемний підхід:аналіз ситуацій;ділова гра;мотиваційно-стимулююча діяльність;4) частково-пошуковий:практична форма прояву навчання;самостійна робота студента;5) дослідницький:аналіз і встановлення причинно-наслідкових зв’язків;порівняння, узагальнення і конкретизація;висування гіпотез;6) практичний:зв’язок теорії з практикою;практична форма прояву навчання;самостійна робота студента.Об’єктивно визначити рівень засвоєння предмета дуже важко. У зв’язку з цим, потрібно використовувати контроль знань, як засіб навчання. Найбільш ефективними є відбірний або аналітичний контроль, поточний контроль, атестаційний контроль, модульно-рейтинговий контроль, тестування.Мета і зміст навчання та способи досягнення визначених цілей – це і є, як переконує досвід, ті вихідні категорії, що забезпечують успіх навчальному процесу.Проведено аналіз навчального плану спеціальності “Економіка підприємства” та змісту дисциплін, які формують навички використання сучасних комп’ютерних технологій (табл. 1). Таблиця №1. СеместрЗагальна к-сть год.ДисциплінаЗастосування інформаційних технологій1, 2351Інформатика та комп’ютерна технікаОпераційна система Windows 98, сервісні програми, системи обробки тексту та табличної обробки даних, алгоритмізація обчислювальних процесів, системи керування базами даних Fox Pro, глобальна мережа Internet.3189СтатистикаКореляційний аналіз і дисперсійний аналіз взаємозв’язку. Пакет прикладних програм для тестового контролю знань і кваліфікаційного іспиту студентів-бакалаврів.4108Математичне програмуванняРозв’язування задач оптимізації. Табличний процесор Excel.5108МаркетингПрактичні та курсові роботи з використанням персонального комп’ютера. Контрольна тестова програма з курсу “Маркетинг”.6108ЕконометріяПрактичні заняття з використанням персонального комп’ютера. База вихідних даних, табличний процесор Excel. Internet сайт з “Економетрії”.7135Економічний аналізКурсове проектування.8108Стратегія підприємствВ стадії розробки.8108Інформаційні системи і технології підприємстваСистема керування базами даних Access. Розробки баз даних.9108Стратегічне управлінняВ стадії розробки.10–Дипломна роботаЗастосування отриманих знань та навичок з інформаційних технологій.Як бачимо з таблиці №1, студенти першого курсу отримують базові знання з використання персонального комп’ютера та програмного забезпечення і, завдяки неперервності комп’ютерної підготовки, мають змогу на старших курсах застосовувати їх при вивченні інших дисциплін та при виконанні курсових і дипломних робіт. Основною перешкодою в якісній підготовці фахівців із спеціальності “Економіка підприємства” є недостатнє забезпечення навчального процесу технічною та методичною літературою і сучасними пакетами навчальних та прикладних програм, особливо на старших курсах навчання.Звичайно, перехід до системного навчання процес складний і вимагає аналізу робочих програм і змісту навчання, але передбачає створення найбільш ефективного навчального процесу шляхом системних досліджень його складових.Неперервність та систематичність у вивченні інформаційних технологій дозволять розкрити творчий потенціал майбутнього фахівця практично в усіх галузях.
APA, Harvard, Vancouver, ISO, and other styles
43

Timchuk, S., P. Kundenko, and V. Mardzyavko. "Analysis of automated control systems of equipment for transportation of grain products on elevators." Energy and automation, no. 6(58) (November 24, 2021): 18–31. http://dx.doi.org/10.31548/energiya2021.06.018.

Full text
Abstract:
This article presents an analysis of the process of routing process lines in the elevator, which is carried out by an automated control system. The relevance of this topic is justified on the basis of the mismatch of elevator productivity to modern needs and volumes of grain products. As the organizational and functional structure of elevator complexes remains without significant changes, which directly affects the characteristics of the management of the technological process of transportation and as a consequence on the quality of grain products. And since the volumes and requirements will always only increase, the question arises in the increased efficiency of elevator processes under the same conditions, with possible changes that will result in modernization, optimization and improvement of the process itself without changing the technological layout of equipment. Therefore, the purpose of the study was to analyze the methods of organization and management of technological routes of transportation at the elevator complex, to determine opportunities to improve its productivity. During the study of the control process and technological routes of the elevator complex, the structural control scheme and the algorithm for laying the route of grain movement at the specified coordinates were analyzed. According to the found shortcomings, one of the directions of increase and improvement of technological process on the elevator was defined, which consists in improvement of control algorithms towards optimization of technological processes of the elevator on many criteria which should improve not only operational indicators, but also qualitative indicators of production. What is the problem in optimizing the modes and structural parameters of control of the electromechanical complex of the elevator, by improving existing and developing new methods, software and hardware means of operational intervention in the modes of electromechanical equipment of the elevator to improve energy saving and product quality.
APA, Harvard, Vancouver, ISO, and other styles
44

Buslavets, О. А., О. V. Martyniuk, O. A. Savchenko, O. O. Miroshnyk, and S. V. Diubko. "THE CONCEPT OF LINE AUTOMATION SYSTEM AS A COMPONENT OF SMART NETWORKS OF THE FUTURE." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2018, no. 51 (October 24, 2018): 40–46. http://dx.doi.org/10.15407/publishing2018.51.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Baluta, S., L. Kopilova, and I. Litvin. "SYSTEM ANALYSIS AND APPROACHES TO THE CONSTRUCTION OF THE AUTOMATED ELECTRICITY MANAGEMENT SYSTEM AND ELECTRICAL SUPPLY OF THE INDUSTRIAL ENTERPRISE." Scientific Works of National University of Food Technologies 23, no. 5(2) (October 2017): 83–89. http://dx.doi.org/10.24263/2225-2924-2017-23-5-2-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

KOROTYCH, Olha, Vitalii NEIMAK, Anatolii ZALIZETSKYI, and Nataliya ZASHCHEPKINA. "DEVELOPMENT OF LABORATORY INSTALLATION FOR RESEARCH OF CHARACTERISTICS OF THE ADVANCED REFRIGERATING SHOWCASE WITH AUTOMATED CONTROL SYSTEM." HERALD OF KHMELNYTSKYI NATIONAL UNIVERSITY 295, no. 2 (May 2021): 245–53. http://dx.doi.org/10.31891/2307-5732-2021-295-2-245-253.

Full text
Abstract:
The article describes the stages of development of a laboratory installation for research and analysis of operational temperature and energy characteristics of refrigerated display cases with automated and non-automated control systems for cold set and thawing. The main elements of the developed laboratory installation are: 1) Refrigerating show-window of TATIANA 1.0NS type which components are systems: cooling, control, and thawing. 2) Processor control unit – Eliwell ID controller is equipped with a digital screen, has inputs for two temperature sensors RTS or NTC and three output relays to control the refrigeration compressor, fan and temperature process of the thawing cycle. The processor unit also provides control of the process of throttling the refrigerant in the evaporator to prevent water hammer in the motor-compressor of the refrigeration unit showcase 3) Flexible electric heater built into the evaporator to provide faster heating during automatic thawing. 4) System of forced air cooling of the condenser. The automatic control system with the processor control unit, which is implemented in the laboratory unit instead of the standard thermostat, provides precise temperature control in an extended range of cooling modes and cyclic thawing process. The showcase works in a stable and economical mode. The operating laboratory installation for research of parameters of the improved refrigerating show-window with the automated control system is developed and equipped. The laboratory refrigeration unit is equipped with devices for measuring and controlling electrical and energy parameters, temperature and humidity in the refrigeration chamber of the shop window during the study of cooling and defrosting modes. With an automatic control system in the shop windows, food products can be stored constantly without spending time on overloading them during the thawing of the evaporator. The developed operating laboratory installation can be used in the educational process for research and comparative analysis of operational temperature and energy characteristics of refrigerated display cases with automated and non-automated control systems for cold storage and defrosting.
APA, Harvard, Vancouver, ISO, and other styles
47

Savytskyi, O. I., and M. A. Tymoshenko. "Development of automation control system for iron ore enrichment section with use of soft sensors in terms of plc programming." Jornal of Kryvyi Rih National University, no. 49 (2019): 117–21. http://dx.doi.org/10.31721/2306-5451-2019-1-49-117-121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Гуржій, Андрій Миколайович, Валерій Яковлевич Жуйков, Анатолій Тимофійович Орлов, Віктор Михайлович Співак, Олександр Володимирович Богдан, Микола Іванович Шут, Людмила Юріївна Благодаренко, et al. "Викладання фізики з використанням вітчизняної електронної цифрової лабораторії, створеної на основі ІКТ." Theory and methods of e-learning 4 (February 17, 2014): 69–78. http://dx.doi.org/10.55056/e-learn.v4i1.372.

Full text
Abstract:
У зв’язку із загальною інформатизацією освіти і швидким розвитком цифрових засобів обробки інформації назріла необхідність впровадження в лабораторні практикуми вищих та середніх навчальних закладів цифрових засобів збору, обробки та оформлення експериментальних результатів, в тому числі під час виконання лабораторних робот з основ електротехнічних пристроїв та систем. При цьому надмірне захоплення віртуальними лабораторними роботами на основі комп’ютерного моделювання в порівнянні з реальним (натурним) експериментом може призводити до втрати особової орієнтації в технології освіти і відсутності надалі у випускників навчальних закладів ряду практичних навичок.У той же час світові компанії, що спеціалізуються в учбово-технічних засобах, переходять на випуск учбового устаткування, що узгоджується з комп’ютерною технікою: аналого-цифрових перетворювачів і датчиків фізико-хімічних величин, учбових приладів керованих цифро-аналоговими пристроями, автоматизованих учбово-експеримен­тальних комплексів, учбових експериментальних установок дистанційного доступу.У зв’язку із цим в області реального експерименту відбувається поступовий розвиток інформаційних джерел складної структури, до яких, у тому числі, відносяться комп’ютерні лабораторії, що останнім часом оформлюються у новий засіб реалізації учбового натурного експерименту – цифрові електронні лабораторії (ЦЕЛ).Відомі цифрові лабораторії для шкільних курсів фізики, хімії та біології (найбільш розповсюджені компаній Vernier Software & Technology, USA та Fourier Systems Inc., Israel) можуть бути використані у ВНЗ України, але вони мають обмежений набір датчиків, необхідність періодичного ручного калібрування, використовують застарілий та чутливий до електромагнітних завад аналоговий інтерфейс та спрощене програмне забезпечення, що не дозволяє проводити статистичну обробку результатів експерименту та з урахуванням низької розрядності аналого-цифрових перетворювачів не може використовуватись для проведення науково-дослідних робіт у вищих навчальних закладах, що є однією із складових підготовки висококваліфікованих спеціалістів, особливо в університетах, які мають статус дослідницьких.Із вітчизняних аналогів відомі окремі компоненти цифрових лабораторій, що випускаються ТОВ «фірма «ІТМ» м. Харків. Вони поступаються продукції компаній Vernier Software & Technology, USA та Fourier Systems Inc. та мають близькі цінові характеристики на окремі компоненти. Тому необхідність розробки вітчизняної цифрової навчальної лабораторії є нагальною, проблематика досліджень та предмет розробки актуальні.Метою проекту є створення сучасної вітчизняної цифрової електронної лабораторії та відпрацювання рекомендацій по використанню у викладанні на її основі базового переліку науково-природничих та біомедичних дисциплін у ВНЗ I-IV рівнів акредитації при значному зменшенні витрат на закупку приладів, комп’ютерної техніки та навчального-методичного забезпечення. В роботі використані попередні дослідження НДІ Прикладної електроніки НТУУ «КПІ» в галузі МЕМС-технологій (micro-electro-mechanical) при створенні датчиків фізичних величин, виконано огляд технічних та методичних рішень, на яких базуються існуючі навчальні цифрові лабораторії та датчики, розроблені схемотехнічні рішення датчиків фізичних величин, проведено конструювання МЕМС – первинних перетворювачів, та пристроїв реєстрації інформації. Розроблені прикладні програми інтерфейсу пристроїв збору інформації та вбудованих мікроконтролерів датчиків. Сформульовані вихідні дані для розробки бездротового інтерфейсу датчиків та програмного забезпечення цифрової лабораторії.Таким чином, у даній роботі пропонується нова вітчизняна цифрова електронна лабораторія, що складається з конструкторської документації та дослідних зразків обладнання, програмного забезпечення та розробленого єдиного підходу до складання навчальних методик для цифрових лабораторій, проведення лабораторних практикумів з метою економії коштів під час створення нових лабораторних робіт із реєстрацією даних, обробки результатів вимірювань та оформленням результатів експерименту за допомогою комп’ютерної техніки.Цифрова електронна лабораторія складається із таких складових частин: набірного поля (НП); комплектів модулів (М) із стандартизованим вихідним інтерфейсом, з яких складається лабораторний макет для досліджування об’єкту (це – набір електронних елементів: резисторів, ємностей, котушок індуктивності, цифро-аналогових та аналого-цифрових перетворювачів (ЦАП та АЦП відповідно)) та різноманітних датчиків фізичних величин; комп’ютерів студента (планшетного комп’ютера або спеціалізованого комп’ютера) з інтерфейсами для датчиків; багатовходових пристроїв збору даних та їх перетворення у вигляд, узгоджений з інтерфейсом комп’ютера (реєстратор інформації або Data Logger); комп’ютер викладача (або серверний комп’ютер із спеціалізованим програмним забезпеченням); пристрої зворотного зв’язку (актюатори), що керуються комп’ютером; трансивери для бездротового прийому та передачі інформації з НП.Таким чином, з’являється новий клас бездротових мереж малої дальності. Ці мережі мають ряд особливостей. Пристрої, що входять в ці мережі, мають невеликі розміри і живляться в основному від батарей. Ці мережі є Ad-Hoc мережами – високоспеціалізованими мережами з динамічною зміною кількісного складу мережі. У зв’язку з цим виникають завдання створення та функціонування даних мереж – організація додавання і видалення пристроїв, аутентифікація пристроїв, ефективна маршрутизація, безпека даних, що передаються, «живучість» мережі, продовження часу автономної роботи кінцевих пристроїв.Протокол ZigBee визначає характер роботи мережі датчиків. Пристрої утворюють ієрархічну мережу, яка може містити координатор, маршрутизатори і кінцеві пристрої. Коренем мережі являється координатор ZigBee. Маршрутизатори можуть враховувати ієрархію, можлива також оптимізація інформаційних потоків. Координатор ZigBee визначає мережу і встановлює для неї оптимальні параметри. Маршрутизатори ZigBee підключаються до мережі або через координатор ZigBee, або через інші маршрутизатори, які вже входять у мережу. Кінцеві пристрої можуть з’єднуватися з довільним маршрутизатором ZigBee або координатором ZigBee. По замовчуванню трафік повідомлень розповсюджується по вітках ієрархії. Якщо маршрутизатори мають відповідні можливості, вони можуть визначати оптимізовані маршрути до визначеної точки і зберігати їх для подальшого використання в таблицях маршрутизації.В основі будь-якого елементу для мережі ZigBee лежить трансивер. Активно розробляються різного роду трансивери та мікроконтролери, в які потім завантажується ряд керуючих програм (стек протоколів ZigBee). Так як розробки ведуться багатьма компаніями, то розглянемо та порівняємо новинки трансиверів тільки кількох виробників: СС2530 (Texas Instruments), AT86RF212 (Atmel), MRF24J40 (Microchip).Texas Instruments випускає широкий асортимент трансиверів. Основні з них: CC2480, СС2420, CC2430, CC2431, CC2520, CC2591. Всі вони відрізняються за характеристиками та якісними показниками. Новинка від TI – мікросхема СС2530, що підтримує стандарт IEEE 802.15.4, призначена для організації мереж стандарту ZigBee Pro, а також засобів дистанційного керування на базі ZigBee RF4CE і обладнання стандарту Smart Energy. ІС СС2530 об’єднує в одному кристалі РЧ-трансивер і мікроконтролер, ядро якого сумісне зі стандартним ядром 8051 і відрізняється від нього поліпшеною швидкодією. ІС випускається в чотирьох виконаннях CC2530F32/64/128/256, що розрізняються обсягом флеш-пам’яті – 32/64/128/256 Кбайт, відповідно. В усьому іншому всі ІС ідентичні: вони поставляються в мініатюрному RoHS-сумісному корпусі QFN40 розмірами 6×6 мм і мають однакові робочі характеристики. СС2530 являє собою істотно покращений варіант мікросхеми СС2430. З точки зору технічних параметрів і функціональних можливостей мікросхема СС2530 перевершує або не поступається CC2430. Однак через підвищену вихідну потужність (4,5 дБм) незначно виріс струм споживання (з 27 до 34 мА) при передачі. Крім того, ці мікросхеми мають різні корпуси і кількість виводів (рис. 1). Рис. 1. Трансивери СС2530, СС2430 та СС2520 фірми Texas Instruments AT86RF212 – малопотужний і низьковольтний РЧ-трансивер діапазону 800/900 МГц, який спеціально розроблений для недорогих IEEE 802.15.4 ZigBee-сумісних пристроїв, а також для ISM-пристроїв з підвищеними швидкостями передачі даних. Працюючи в діапазонах частот менше 1 ГГц, він підтримує передачу даних на малих швидкостях (20 і 40 Кбіт/с) за стандартом IEEE 802.15.4-2003, а також має опціональну можливість передачі на підвищених швидкостях (100 і 250 Кбіт/с) при використанні модуляції O-QPSK у відповідності зі стандартом IEEE 802.15.4-2006. Більше того, при використанні спеціальних високошвидкісних режимів, можлива передача на швидкості до 1000 Кбіт/с. AT86RF212 можна вважати функціональним блоком, який з’єднує антену з інтерфейсом SPI. Всі критичні для РЧ тракту компоненти, за винятком антени, кварцового резонатора і блокувальних конденсаторів, інтегровані в ІС. Для поліпшення загальносистемної енергоефективності та розвантаження керуючого мікроконтролера в ІС інтегровані прискорювачі мережевих протоколів (MAC) і AES- шифрування.Компанія Microchip Technology виробляє 8-, 16- і 32- розрядні мікроконтролери та цифрові сигнальні контролери, а також аналогові мікросхеми і мікросхеми Flash-пам’яті. На даний момент фірма випускає передавачі, приймачі та трансивери для реалізації рішень для IEEE 802.15.4/ZigBee, IEEE 802.11/Wi-Fi, а також субгігагерцового ISM-діапазону. Наявність у «портфелі» компанії PIC-мікроконтролерів, аналогових мікросхем і мікросхем пам’яті дозволяє їй запропонувати клієнтам комплексні рішення для бездротових рішень. MRF24J40 – однокристальний приймач, що відповідає стандарту IEEE 802.15.4 для бездротових рішень ISM-діапазону 2,405–2,48 ГГц. Цей трансивер містить фізичний (PHY) і MAC-функціонал. Разом з мікроспоживаючими PIC-мікроконтролерами і готовими стеками MiWi і ZigBee трансивер дозволяє реалізувати як прості (на базі стека MiWi), так і складніші (сертифіковані для роботи в мережах ZigBee) персональні бездротові мережі (Wireless Personal Area Network, WPAN) для портативних пристроїв з батарейним живленням. Наявність MAC-рівня допомагає зменшити навантаження на керуючий мікроконтролер і дозволяє використовувати недорогі 8-розрядні мікроконтролери для побудови радіомереж.Ряд компаній випускає завершені модулі ZigBee (рис. 2). Це невеликі плати (2÷5 кв.см.), на яких встановлено чіп трансивера, керуючий мікроконтролер і необхідні дискретні елементи. У керуючий мікроконтролер, у залежності від бажання і можливості виробника закладається або повний стек протоколів ZigBee, або інша програма, що реалізує можливість простого зв’язку між однотипними модулями. В останньому випадку модулі іменуються ZigBee-готовими (ZigBee-ready) або ZigBee-сумісними (ZigBee compliant).Всі модулі дуже прості в застосуванні – вони містять широко поширені інтерфейси (UART, SPI) і управляються за допомогою невеликого набору нескладних команд. Застосовуючи такі модулі, розробник позбавлений від роботи з високочастотними компонентами, так як на платі присутній ВЧ трансивер, вся необхідна «обв’язка» і антена. Модулі містять цифрові й аналогові входи, інтерфейс RS-232 і, в деяких випадках, вільну пам’ять для прикладного програмного забезпечення. Рис. 2. Модуль ZigBee із трансивером MRF24J40 компанії Microchip Для прикладу, компанія Jennic випускає лінійку ZigBee-сумісних радіомодулів, побудованих на низькоспоживаючому бездротовому мікроконтролері JN5121. Застосування радіомодуля значно полегшує процес розробки ZigBee-мережі, звільняючи розробника від необхідності конструювання високочастотної частини виробу. Використовуючи готовий радіомодуль, розробник отримує доступ до всіх аналогових і цифрових портів вводу-виводу чіпу JN5121, таймерам, послідовного порту і інших послідовних інтерфейсів. У серію входять модулі з керамічної антеною або SMA-коннектором з дальністю зв’язку до 200 метрів. Розмір модуля 18×30 мм. Версія модуля з підсилювачем потужності і підсилювачем вхідного сигналу має розмір 18×40 мм і забезпечує дальність зв’язку більше 1 км. Кожен модуль поставляється з вбудованим стеком протоколу рівня 802.15.4 MAC або ZigBee-стеком.За висновками експертів з аналізу ринку сьогодні одним з найперспективніших є ринок мікросистемних технологій, що сягнув 40 млрд. доларів станом на 2006 рік зі значними показниками росту. Самі мікросистемні технології (МСТ) почали розвиватися ще з середини ХХ ст. і, отримуючи щоразу нові поштовхи з боку нових винаходів, чергових удосконалень технологій, нових галузей науки та техніки, динамічно розвиваються і дедалі ширше застосовуються у широкому спектрі промислової продукції у всьому світі.Прилад МЕМС є об’єднанням електричних та механічних елементів в одну систему дуже мініатюрних розмірів (значення розмірів механічних елементів найчастіше лежать у мікронному діапазоні), і достатньо часто такий прилад містить мікрокомп’ютерну схему керування для здійснення запрограмованих дій у системі та обміну інформацією з іншими приладами та системами.Навіть з побіжного аналізу структури МЕМС зрозуміло, що сумарний технологічний процес є дуже складним і тривалим. Так, залежно від складності пристрою технологічний процес його виготовлення, навіть із застосуванням сучасних технологій, може тривати від кількох днів до кількох десятків днів. Попри саме виготовлення, доволі тривалими є перевірка та відбраковування. Часто виготовляється відразу партія однотипних пристроїв, причому вихід якісної продукції часто не перевищує 2 %.Для виготовлення сучасних МЕМС використовується широка гама матеріалів: різноманітні метали у чистому вигляді та у сплавах, неметали, мінеральні сполуки та органічні матеріали. Звичайно, намагаються використовувати якомога меншу кількість різнорідних матеріалів, щоби покращити технологічність МЕМС та знизити собівартість продукції. Тому розширення спектра матеріалів прийнятне лише за наявності специфічних вимог до елементів пристрою.Спектр наявних типів сенсорів в арсеналі конструктора значно ширший та різноманітніший, що зумовлено багатоплановим застосуванням МЕМС. Переважно використовуються ємнісні, п’єзоелектричні, тензорезистивні, терморезистивні, фотоелектричні сенсори, сенсори на ефекті Холла тощо. Розроблені авторами в НДІ Прикладної електроніки МЕМС-датчики, їх характеристики, маса та розміри наведені у табл. 1.Таблиця 1 №з/пМЕМС-датчикиТипи датчиківДіапазони вимірюваньГабарити, маса1.Відносного тиску, тензорезистивніДВТ-060ДВТ-1160,01–300 МПа∅3,5–36 мм,5–130 г2.Абсолютного тиску,тензорезистивніДАТ-0220,01–60 МПа∅16 мм,20–50 г3.Абсолютного тиску, ємнісніДАТЄ-0090,05–1 МПа5×5 мм4.Лінійного прискорення,тензорезистивніДЛП-077±(500–100 000) м/с224×24×8 мм,100 г5.Лінійного прискорення,ємнісніАЛЄ-049АЛЄ-050±(5,6–1200) м/с235×35×22 мм, 75 г6.Кутової швидкості,ємнісніДКШ-011100–1000 °/с
APA, Harvard, Vancouver, ISO, and other styles
49

Diordiiev, V., A. Kashkarov, and O. Diordiiev. "AUTOMATED MONITORING AND CONTROL SYSTEM FOR MICROCLIMATE OF THE GREENHOUSE." Scientific bulletin of the Tavria Agrotechnological State University 8, no. 2 (2018). http://dx.doi.org/10.31388/2220-8674-2018-2-25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ковальчук, Д. А., О. В. Мазур, and С. С. Гудзь. "ДОСЛІДЖЕННЯ ПРОЦЕСІВ УТИЛІЗАЦІЇ ТЕПЛА ПАРОПОВІТРЯНИХ СУМІШЕЙ: ЛАБОРАТОРНА УСТАНОВКА, ВИМІРЮВАНІ ЗМІННІ, АВТОМАТИЗАЦІЯ ЕКСПЕРИМЕНТІВ." Automation of technological and business processes 10, no. 2 (July 17, 2018). http://dx.doi.org/10.15673/atbp.v10i2.981.

Full text
Abstract:
У статті розглянуті деякі шляхи підвищення енергоефективності виробництва. Обґрунтовано актуальність і необхідність застосування систем, що дозволяють утилізувати тепло пароповітряних сумішей як енергетичних відходів. Розглянуто різні варіанти утилізації і виділені їх недоліки. Запропоновано можливість застосування теплового насоса для більш глибокої утилізації тепла пароповітряних сумішей. Описана конструкція автоматизованого робочого місця дослідника процесів утилізації тепла пароповітряних сумішей, яке дозволить проводити попередні дослідження перед побудовою систем утилізації для конкретного технологічного процесу. Автоматизоване робоче місце включає в себе технологічну систему, що дозволяє імітувати пароповітряну суміш із заданими параметрами, проводити утилізацію її теплової енергії. Глибока утилізація досягається за рахунок застосування в системі теплового насоса «вода-вода». Система обладнана датчиками, що дозволяють вимірювати значення всіх параметрів, що цікавлять і виконавчими пристроями. Також автоматизоване робоче місце включає програмне забезпечення, яке працює на персональному комп'ютері, і дозволяє управляти ходом експерименту, як в ручному, так і в автоматичному режимі, реєструвати всі дані. При проведенні автоматизованого експерименту усі змінні стабілізуються, окрім однієї, яка змінюється по заданому закону. Наведені результати експериментів, по дослідженню режимів роботи випарника, виконаних в автоматичному режимі. Результати представляють собою сімейства квазістатичних залежностей змінних процесу. Проведено аналіз результатів експериментів. Зроблено висновки за результатами експериментів й розглянуті шляхи вдосконалення системи керування випарником.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography