Contents
Academic literature on the topic 'Багатофакторна ідентифікація'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Багатофакторна ідентифікація.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Багатофакторна ідентифікація"
Огородник, В. О., А. Р. Фіалковський, and В. В. Маргітич. "НАУКОВІ ТА ІННОВАЦІЙНІ ФАКТОРИ РОЗВИТКУ ЕКОНОМІКИ ЗАКАРПАТТЯ." Науковий вісник Ужгородського університету. Серія «Економіка», no. 1(57) (July 2, 2021): 85–89. http://dx.doi.org/10.24144/2409-6857.2021.1(57).85-89.
Full textКремень, Василь Григорович, Лілія Михайлівна Гриневич, Володимир Іларіонович Луговий, and Жаннета Василівна Таланова. "ЯКІСТЬ ОСВІТИ ТА ІННОВАЦІЙНИЙ РОЗВИТОК: НОВА УКРАЇНСЬКА ШКОЛА В КОНТЕКСТІ ГЛОБАЛЬНИХ ТЕНДЕНЦІЙ." Science and Innovation 18, no. 1 (February 14, 2022): 29–43. http://dx.doi.org/10.15407/scine18.01.029.
Full textA.I., Krailyuk, and Ponomareva V.K. "THE RELATIONSHIP OF PARENTAL EMPATHY WITH THE PECULIARITIES OF RAISING PRESCHOOL CHILDREN." Scientic Bulletin of Kherson State University. Series Psychological Sciences, no. 4 (December 1, 2021): 40–47. http://dx.doi.org/10.32999/ksu2312-3206/2021-4-5.
Full textDissertations / Theses on the topic "Багатофакторна ідентифікація"
Власов, А. В., О. В. Сєвєрінов, and О. В. Слиш. "Впровадження децентралізованої системи ідентифікації." Thesis, НТУ «ХПІ», 2020. http://openarchive.nure.ua/handle/document/14299.
Full textТодорів, Андрій Дмитрович. "Система багатофакторної аутентифікації користувачів комп’ютерних систем." Master's thesis, КПІ ім. Ігоря Сікорського, 2020. https://ela.kpi.ua/handle/123456789/38366.
Full textTopic relevance The solution to the problem of corporate data protection in the XXI century has gone beyond the physical interaction with employees, due to the transition of the required information into a computer format. This feature has formed the need to develop and implement new mechanisms for corporate data protection. The proposed system of authentication of computer system users, developed on the basis of neural network technologies, provides the possibility of user identification on the basis of individual anthropometric visual and voice indicators of the subject, in order to prevent theft of corporate data and identification of criminal entities. The object of study is the transformation of anthropometric indicators into a computer form. The subject of study is the mechanisms of pattern recognition. The goal of this work is to improve the capabilities of biometric identification methods of subjects by developing a new architecture based on neural networks. Study methods. Comparison of existing algorithms on the criteria of accuracy, speed, resource costs, reliability, in order to implement and further modify the corporate control system. The scientific novelty is the development of a new mechanism for identifying subjects that combines algorithms for voice and visual identification of subjects. The practical value lies in the possibility of using this system in a corporate environment in order to prevent data leakage and identification of criminal entities. Low resource consumption contributes to the application of the developed algorithm in highly loaded systems. Structure and scope of work. The master's dissertation consists of an introduction, four chapters, conclusions and appendices. The introduction analyzes the problem of corporate data protection. The prospects of using the mechanisms of biometric voice and visual identification of subjects for its solution are substantiated. Biometric identification algorithms are investigated. The first section describes the existing algorithms for recognizing visual and voice images. The second section investigates the feasibility of using existing algorithms for voice and visual biometric identification, analyzes and compares existing image recognition architectures. The third section describes the process of developing algorithms for visual and voice biometric user identification The fourth section presents the characteristics of the developed COP, the test results, the system is studied on different data sets, and its modification in order to achieve the specified accuracy. The conclusions summarize the results of research and development.