Academic literature on the topic 'Тепловий потік'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Тепловий потік.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Тепловий потік"

1

Vasylkivskyi, I. S., V. O. Fedynets та Ya P. Yusyk. "Вимірювання теплопровідності листових матеріалів з урахуванням контактних теплових опорів". Scientific Bulletin of UNFU 28, № 5 (2018): 106–10. http://dx.doi.org/10.15421/40280523.

Full text
Abstract:
Розглянуто питання впливу контактних теплових опорів (КТО) на точність вимірювання теплопровідності матеріалів. Наведено конструкцію пристрою для визначення значень КТО. В основі пристрою є пакет із двох пар плоских зразків, розміщених у різній послідовності між джерелом тепла і приймачами тепла однакової температури. Один із зразків у всіх парах має одну і ту саму товщину, другий зразок у двох парах пакета відрізняється за товщиною вдвічі. Реєструють тепловий потік через пакети, різницю температур між серединними зразками пакетів та перепад температур на тонкому зразку і за отриманими даними розраховують шукану величину. Подано результати експериментального визначення КТО між різними матеріалами. Показано, що знехтувати впливом КТО на результат вимірювання у визначенні коефіцієнта теплопровідності різних матеріалів (особливо високотеплопровідних) не можна, оскільки він співвимірний з тепловими опорами досліджуваних зразків. Для виключення цього впливу на результат вимірювання теплопровідності розроблено вимірювальний перетворювач для вимірювання теплопровідності листових матеріалів на основі мостової теплової вимірювальної схеми. Наведено схему з'єднання теплових опорів і КТО, розподілу теплових потоків і температур у зрівноваженій мостовій тепловій вимірювальній схемі та принципову схему вимірювального перетворювача теплопровідності листових матеріалів.
APA, Harvard, Vancouver, ISO, and other styles
2

ГРЕЧИХИН, Леонид, Надежда КУЦЬ, Юрий БУЛИК та Александр ДУБИЦКИЙ. "Транспорт и вихревой тепловой насос". СУЧАСНІ ТЕХНОЛОГІЇ В МАШИНОБУДУВАННІ ТА ТРАНСПОРТІ 1, № 14 (2020): 78–85. http://dx.doi.org/10.36910/automash.v1i14.349.

Full text
Abstract:
У роботах [1, 2] для транспорту запропоновано застосувати вихровий тепловий насос на штучно створеному вітрові. В результаті показано, що такий вихровий насос перетворює не механічну енергію вітру в електричну потужність, а теплову складову потоку повітря, що прокачується. Розглянуто загальний принцип роботи такого вихрового теплового насоса. Конкретний розрахунок перетворення енергій виконаний для повітряних вітрогенераторів. Вихровий тепловий насос, який може бути застосований на транспорті, описаний якісними параметрами. У зв'язку з цим виникла необхідність провести розрахунок енергій перетворення вихровим тепловим насосом із застосуванням конкретного електричного двигуна, електричного генератора, повітряного гвинта і лопатей вітрогенератора для транспортних систем.
 Вентилятор створює повітряний потік, який впливає на лопаті вітрогенератора, вітрогенератор виробляє потужність більше потужності, споживаної електродвигуном вентилятора і витраченої потужності на подолання сил тертя при обертанні якорів в електромоторах, а також тертя об повітря при обертанні лопатей вітрогенератора.
 В результаті проведених досліджень встановлено, що для збільшення захоплюваної поверхні вентилятором необхідно використовувати високооборотний гвинт порівняно великого діаметра, а обертання такого гвинта повинен забезпечувати електромотор з підвищеною потужністю, але це суттєво зменшить коефіцієнт перетворення. Збільшення числа лопаток в вітрогенераторі можливе при зростанні діаметра електрогенератора, що також знижує коефіцієнт перетворення.
 Встановлено, що найбільш ефективний спосіб отримання максимального коефіцієнта перетворення енергії - це збільшення швидкості руху потоку повітря до певної межі. Якщо застосувати каскадну схему шляхом розташування двох і більше лопатевих кілець в вітрогенераторі, то різко зросте коефіцієнт перетворення вихрового теплового насоса.
 Ключові слова: тепловий насос, вітрогенератор, вентилятор, повітряний гвинт, лопаті, зривний потік.
APA, Harvard, Vancouver, ISO, and other styles
3

Павленко, А. М., та Л. П. Шумська. "Математична модель процесу нагрівання і сушіння вологих матеріалів". Refrigeration Engineering and Technology 56, № 1-2 (2020): 19–26. http://dx.doi.org/10.15673/ret.v56i1-2.1825.

Full text
Abstract:
Вирішення проблеми створення ефективних пористих теплоізоляційних матеріалів і технологій їх виробництва нерозривно пов’язане з науковими дослідженнями в області енергопереносу в пористій структурі на етапах спучування, затвердіння і сушіння за умови забезпечення найбільш низької теплопровідності і густини. Зазначені властивості матеріалів визначаються величиною їх пористості, співвідношенням мікро- та макропористі, властивостями міжпорових матеріалів, що утворюють своєрідний несучий каркас, який у свою чергу визначається технологією виробництва, видом сировинних матеріалів і умовами їх підготовки. Проблема теплової обробки вологих матеріалів містить питання перенесення теплоти і маси всередині тіла (внутрішня задача) і в граничному шарі на межі розділення фаз (зовнішня задача). Кількість видаленої вологи залежить від ступеня розвитку кожного з цих процесів. При нагріванні зменшується вміст вологи на поверхні, і це створює перепад концентрації по перерізу тіла. Тому в тілі виникає потік вологи з глибинних шарів до поверхні, назустріч якому спрямований потік теплоти. Таким чином, при нагріванні вологих матеріалів відбуваються складні процеси волого- і теплообміну, котрі взаємно впливають на ентальпію і вологовміст як матеріалу, що нагрівається, так і навколишнього середовища. У статті розглядаються особливості побудови математичної моделі процесу нагрівання і сушіння вологих матеріалів. Процес сушіння розглядається як тепловий процес з ефективними коефіцієнтами теплоперенесення, що враховують масоперенесення. Це дозволяє отримати зручні для інженерних розрахунків аналітичні залежності, за допомогою яких можна визначити температурне поле і оцінити кінетику сушіння вологих матеріалів
APA, Harvard, Vancouver, ISO, and other styles
4

Роганков, О. В. "Конденсаційна генерація тиску в літієвих контурних теплових трубах". Refrigeration Engineering and Technology 56, № 3-4 (2021): 100–113. http://dx.doi.org/10.15673/ret.v56i3-4.1950.

Full text
Abstract:
Звичайні і контурні теплові труби відносяться до найбільш ефективних способів передачі тепла від таких джерел, як активна зона ядерного реактора. Конвективні потоки маси і теплоти, утворені у випарнику, передаються конденсатору потоком пари робочої речовини, яка розширюється (v), і потім сконденсована рідина (l) повертається у випарник через вузькі пористі канали ґніту. Зміна капілярного тиску в ґноті вважається єдиним (крім опціонного впливу гравітації) рушійним фактором для повернення рідини і забезпечення стійкої роботи теплової труби. У даній статті обґрунтовується наявність додаткового рушійного фактора, так званого конденсаційного теплового насосу, у будь-яких реальних випарно-конденсаційних циклах при відносно невеликих перепадах температури і тиску. Це підтверджується детальним розглядом контурної теп­лової труби з літієвим теплоносієм та її термодинамічного циклу, який функціонує головним чином в області вологої та перегрітої пари. В роботі проведено аналіз способів передачі тепла від активної зони реактору, визначено обмежуючі фактори та наведено можливі шляхи їх усунення у реалізації малогабаритних потужних автономних джерел енергії. У згаданому контексті розглянуто особливості та переваги роботи контурних теплових труб у порівнянні з протиточними тепловими трубами і надана нова інтерпретація їх термодинамічного циклу. Вона заснована на результатах нещодавніх робіт [10-12], в яких обґрунтовується існування області гетерогенних станів перегрітої парової фази, так званої v-інтерфази. Показана асиметрія (незворотність) теплоти фазового переходу дозволяє ввести таке поняття, як конденсаційний тепловий насос в доповнення до капілярного насосу ґніту теплових труб. Запропоновано модифіковані способи оцінки оптимальних температур робочих циклів з урахуванням зазначених термодинамічних ефектів
APA, Harvard, Vancouver, ISO, and other styles
5

Горін, В. В., В. В. Середа та П. О. Барабаш. "Метод розрахунку теплообміну під час конденсації холодоагентів у середині горизонтальних труб у разі стратифікованого режиму течії фаз". Refrigeration Engineering and Technology 55, № 1 (2019): 47–53. http://dx.doi.org/10.15673/ret.v55i1.1353.

Full text
Abstract:
У сучасних конденсаторах систем кондиціонування повітря, теплових насосів, випарниках систем опріснювання морської води і нагрівачах електростанцій процес конденсації пари здійснюється переважно у середині горизонтальних труб і каналів. Процеси теплообміну, що відбуваються у теплообмінниках цього типу, мають суттєвий вплив на загальну енергоефективність таких систем. У даній роботі представлено експериментальні дослідження теплообміну у разі конденсації холодоагентів R22, R406A, R407C у гладкій горизонтальній трубі з внутрішнім діаметром d = 17 мм за наступними режимними параметрами:температура насичення 35 - 40ºC, масова швидкість 10 - 100 кг/кв.м/c, масовий паровміст 0,1 - 0,8, питомий тепловий потік 5 ‑ 50 кВт/кв.м, різниця між температурою конденсації та температурою стінки труби 4 - 14 К. Вимірювання локальних за перерізом труби теплових потоків і коефіцієнтів тепловіддачі проводились за методом «товстої стінки» під час різних режимів конденсації. За результатами досліджень установлено, що у верхній частині труби з підвищенням теплового потоку зростає товщина плівки конденсату, що призводить до зменшення тепловіддачі. У нижній частині труби збільшення теплового потоку підвищує тепловіддачу, що характерно для турбулентної течії рідини в трубі. Отримані результати роботи дозволили покращити метод розрахунку теплообміну у разі конденсації пари, яка ураховує вплив течії конденсату у нижній частині труби на теплообмін. Цей метод із достатньою точністю (похибка ±30%) узагальнює експериментальні дані під час конденсації пари холодоагентів R22, R134a, R123, R125, R32, R410a за умови стратифікованого потоку. Використання цього методу у разі проектування теплообмінних апаратів, які використовують такі типи речовин, підвищить ефективність енергетичних систем.
APA, Harvard, Vancouver, ISO, and other styles
6

Zakir, Zahid. "Diffusionnaya gravitatsiya i eyo sledstviya." KVANTOVAYA I GRAVITATSIONNAYA FIZIKA 2 (November 1, 2021): 1–5. http://dx.doi.org/10.9751/kgf.2-014.7610.

Full text
Abstract:
Диффузионная квантовая механика (ДКМ), предложенная недавно (З. Закир, 2020-21), описывает консервативную диффузию классических частиц в флуктуирующем классическом скалярном поле и в случае однородного поля выводит формализм квантовой механики. В неоднородном скалярном поле ДКМ воспроизводит гравитацию и в данной статье рассматриваются следующая из неё теория диффузной гравитации и её различные следствия. В ДКМ часть энергии скалярного поля передаётся частицам в виде энергии их флуктуаций («тепловая» энергия), которая проявляется как их энергия покоя (масса). Результирующее локальное уменьшение плотности энергии поля вокруг макроскопического тела генерирует «тепловой» диффузионный поток частиц в эту область. Свойства этой «тепловой» части консервативной диффузии аналогичны гравитации. Высокая концентрация вещества в некоторой области снижает локальную плотность энергии скалярного поля в достаточной мере, чтобы уменьшить локальную интенсивность флуктуаций. Из-за консервативности диффузии приращения скорости дрейфа частиц являются кумулятивными, и возникает «тепловое» диффузионное ускорение, не зависящее от массы частицы. Мировые линии становятся искривлёнными, и все процессы с частицами замедляются, что означает замедление времени. На гиперповерхностях одновременности t=const, где определено скалярное поле, возникают эффективные метрики, связность и кривизна. Они подчиняются уравнениям Эйнштейна, вытекающим из баланса между энергиями материи и фонового скалярного поля.
APA, Harvard, Vancouver, ISO, and other styles
7

Turchyn, I. M., та O. Yu Turchyn. "НЕСТАЦІОНАРНА ЗАДАЧА ТЕПЛОПРОВІДНОСТІ ДЛЯ ШАРУВАТОЇ ПІВ БЕЗМЕЖНОЇ ПЛИТИ". Visnyk of Zaporizhzhya National University Physical and Mathematical Sciences, № 2 (12 березня 2021): 21–26. http://dx.doi.org/10.26661/2413-6549-2020-2-03.

Full text
Abstract:
У багатьох задачах про поширення тепла в неоднорідних тілах слід ураховувати нестаціонарність процесу. Під час побудови точних аналітичних розв’язків просторових нестаціонарних задач теплопровідності неоднорідних тіл на дослідників чекають значні труднощі математичного характеру, пов’язані із застосуванням інтегрального перетворення Лапласа. Особливо це стосується випадків, коли одночасно з цим перетворенням застосовується інтегральне за просторовою змінною. У роботі до таких задач пропонується застосовувати новий метод – інтегральне перетворення Лагерра. Розглянуто нестаціонарну задачу теплопровідності про нагрів пів безмежної плити тепловим потоком, який діє на її боковій поверхні. На межах поділу матеріалів плити виконуються умови ідеального теплового контакту. На нижній і верхній основах неоднорідної плити відбувається теплообмін за законом Ньютона. До рівнянь нестаціонарної теплопровідності для кожного шару, крайових умов та умов спряження застосовано спочатку інтегральне перетворення Лагерра за часовою змінною, а потім інтегральне cos-перетворення Фур’є за просторовою змінною. Як наслідок, отримано трикутні послідовності звичайних диференціальних рівнянь, у які ввійшли задані інтенсивності теплових потоків на бічній поверхні. Загальний розв’язок цих послідовностей отримано у вигляді алгебричної згортки фундаментальних розв’язків та набору сталих. Фундаментальні розв’язки трикутних послідовностей побудовано методом невизначених коефіцієнтів, а набір сталих визначено з трансформованих за Лагерром і Фур’є крайових умов та умов ідеального теплового контакту складників півсмуги у вигляді рекурентних співвідношень. Остаточний розв’язок вихідної задачі записано у вигляді ряду за поліномами Лагерра з коефіцієнтами у вигляді інтегралів Фур’є. Числовий експеримент проведено для пів безмежної плити з двостороннім покриттям і з тепловими властивостями алюмінієвого стопу та кераміки. Виявлено фізично обґрунтовані закономірності нестаціонарного поширення тепла в таких шаруватих тілах.
APA, Harvard, Vancouver, ISO, and other styles
8

Sidorenko, V. I., and I. V. Shtennikov. "Mathematical Model of the Thermal State of the Basis in the Course of Vacuum Chromium Plating of Hollow Details." Intellekt. Sist. Proizv. 15, no. 2 (2017): 71. http://dx.doi.org/10.22213/2410-9304-2017-2-71-75.

Full text
Abstract:
Обоснована актуальность проведения исследований теплового состояния полой детали при нанесении металлических покрытий на поверхность отверстий методом термического испарения материала в вакууме с соосно расположенного стержневого резистивного испарителя. Проанализированы тепловые процессы, протекающие при вакуумном хромировании полых деталей, приведена схема теплообмена и составлено уравнение, описывающее тепловое состояние q ( t ) детали во время осаждения покрытия: . На покрываемую поверхность детали действуют тепловые потоки, образованные за счет излучения испарителя - плотностью q изл и выделения теплоты конденсации материала покрытия - плотностью q конд . Теплообмен между наружной цилиндрической поверхностью детали и внутренними устройствами вакуумной камеры характеризуется потоком плотностью qдет.нар; передача тепла от торцовых поверхностей детали к элементам технологической оснастки - потоком плотностью q тор . На эндотермическую реакцию фазового превращения в материале детали расходуется тепловой поток плотностью q фаз . Вследствие близкого расположения испарителя к покрываемой поверхности достаточно интенсивных режимов нанесения покрытий и хорошей теплоизоляции детали от элементов технологической оснастки принято, что тепло распространяется только в радиальном направлении; испарение материала происходит равномерно по всей длине испарителя; перераспределением тепла вдоль детали и тепловыми потерями ее торцов q тор пренебрегаем. Влияние теплоты эндотермической реакции фазового перехода q фаз решено не учитывать, поскольку формирование покрытия производят обычно при температурах, не превышающих температуру фазовых превращений в материале детали. С учетом описанных особенностей условий формирования покрытия составлено уравнение теплопроводности, определены начальные и граничные условия, разработана математическая модель теплового состояния основы (поверхности конденсации). Результаты теоретических исследований получены методом конечных разностей при использовании метода прогонки. Вычисления выполнены в соответствии с разработанным алгоритмом по программе расчета изменения температуры детали при формировании хромового покрытия на поверхности отверстий. Отличие расчетных данных математической модели от результатов экспериментальных исследований не превышает 5 %, что подтверждает достоверность полученной математической модели теплового состояния основы в процессе вакуумного хромирования полых деталей с использованием резистивного стержневого испарителя.
APA, Harvard, Vancouver, ISO, and other styles
9

(Vyacheslav I. Maksimov), Максимов Вячеслав Иванович, та Салум Амер (Amer Saloum). "МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ТЕПЛОПЕРЕНОСА ПРИ РАБОТЕ ТЕПЛОНАСОСНЫХ СИСТЕМ ИСПОЛЬЗОВАНИЯ ГЕОТЕРМАЛЬНОЙ ЭНЕРГИИ". Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 330, № 4 (2019): 126–35. http://dx.doi.org/10.18799/24131830/2019/4/229.

Full text
Abstract:
Актуальность. Использование теплонасосных установок для отопления вместо традиционных систем, которые получают энергию в процессе сжигания различных видов топлива, имеет ряд экологических и экономических преимуществ. Тепловые насосы могут получать энергию из воздуха, грунта и воды. Их сферы применения разнообразны: горячее водоснабжение и кондиционирование помещений, нагрев и охлаждение воды для различных нужд, сушки/осушения воздуха, производства пара, испарения, дистилляции. При применении природных водоёмов (озёра, пруды, водохранилища) в качестве низкопотенциального источника энергии теплонасосных установок на поверхности трубки испарителя образуется лёд. Важно рассматривать закономерности и характеристики процессов теплообмена между водой и трубкой испарителя при образовании льда на её поверхности. Цель: математическое моделирование нестационарного конвективного теплообмена между водой и трубками испарителя теплонасосных установок в условиях формирования льда на их поверхности. Объект: теплообменник испарителя теплового насоса, погружённый в воду. Методы: численное решение задач конвективного теплообмена в условиях фазового перехода воды методом конечных элементов в среде COMSOL. Результаты. Установлены закономерности нестационарного конвективного теплопереноса вблизи трубок испарителя водяного теплового насоса с температурой, при которой образуется лёд на их поверхности. Показана необходимость учета влияния термогравитационной конвекции в воде на тепловой поток и процесс образования льда на поверхности трубки испарителя теплонасосной установки. Получены зависимости числа Нуссельта от характеристики конвективного теплообмена в воде (чисел Рэлея, Фурье и Стефана). Выявлено, что перепад температур в воде вблизи трубки увеличивался при уменьшении глубины её расположения относительно поверхности водного источника при показателях температур воды выше 277 К. При температурах воды ниже 277 К тепловой поток достигал максимального значения у поверхности трубки, которая находилась глубже.
APA, Harvard, Vancouver, ISO, and other styles
10

Попов, И. П., В. Г. Чумаков та А. В. Ильтяков. "ИНЕРТНЫЕ РЕАКТАНСЫ ВИБРОМАШИН ДЛЯПРОСЕИВАНИЯ МУКИ И САХАРА". Ползуновский вестник, № 4 (25 грудня 2019): 21–23. http://dx.doi.org/10.25712/astu.2072-8921.2019.04.005.

Full text
Abstract:
Показано, что производной работы или соответствующей ей механической энергии является тепловая мощность, которую в электротехнике называют активной. Эта мощность является пульсирующей, нознакопостоянной, поскольку тепловой поток при механических колебаниях необратим. Производная кинетической энергии по времени является знакопеременной, поэтому ее аналоги в электротехнике называют реактивными. Большинство приводоввибромашиндляпросеивания муки и сахараявляются электромеханическими, поэтому реактивная механическая мощность при колебаниях массивныхситовых корпусовв соответствии с законом сохранения энергии трансформируется в реактивную электрическую мощность питающей сети, существенно ухудшая качество тока и вызывая заметные потери в проводах при ее циркуляции. В этой связи задача корректного учета как активной, так и реактивной механических мощностей для целей энергосбережения, а также силовых конструкторских расчетов является актуальной.Цель работызаключается в установлении взаимосвязи между активной, реактивной и полной мощностями при механических колебанияхситовых корпусов.Реактивная (инерционная) мощность представляет собой чисто мнимую величину. Активная (тепловая) мощность при любом характере движения, например, развиваемая силой трения скольжения, является вещественной величиной. Активная и реактивная механические мощности, являясь условно ортогональными , не складываются. Для полной мощности справедлив аналог теоремы Пифагора (точно также как в электротехнике). Инертныереактансы характеризуютсвойствомассивныхситовых корпусовоказывать сопротивление приводу, понуждающему их совершать колебания. В силу специфики работывибромашиндляпросеивания муки и сахара инертные реактансы являются одними из ключевых их параметров.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Тепловий потік"

1

Очеретнюк, Р. В. "Теплообмін та гідродинаміка потоку з надкритичними параметрами при стаціонарному режимі". Thesis, Сумський державний університет, 2015. http://essuir.sumdu.edu.ua/handle/123456789/40662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Бабак, В. П. "Методи та засоби моніторингу теплофізичних процесів". Thesis, Київський національний університет технологій та дизайну, 2020. https://er.knutd.edu.ua/handle/123456789/16421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Бабак, Б. "Температурне поле однорідного циліндричного стержня в умовах стаціонарного режиму". Thesis, Сумський державний університет, 2014. http://essuir.sumdu.edu.ua/handle/123456789/39360.

Full text
Abstract:
Розглядається круговий циліндр радіус якого малий у порівнянні з довжиною. При цих умовах температура змінюється лише вздовж радіуса циліндру. Внутрішні джерела тепла рівномірно розподілені по об’єму тіла.
APA, Harvard, Vancouver, ISO, and other styles
4

Тутко, Т. Ф. "Аналітичне дослідження термогазодинамічних процесів у газопроводах і іх взаємодія з довкіллям". Thesis, Івано-Франківський національний технічний університет нафти і газу, 2002. http://elar.nung.edu.ua/handle/123456789/3974.

Full text
Abstract:
Робота присвячена визначенню і дослідженню термогазодинамічних процесів у системі двох паралельних газопроводів. Побудовані математичні моделі дають можливість врахувати всі види термогазодинамічних втрат енергії, в тому числі і потік теплообміну між газопроводами і грунтом. Показано, що для короткочасних динамічних процесів у газопроводах температуру точок грунту можна приймати незмінною, оскільки температура грунту під впливом теплової дії газопроводів змінюється відносно повільно. Для динамічних процесів, що протікають протягом більших проміжків часу, необхідно враховувати зміну температурного поля в грунті. Розглянуто температурне поле в грунті навколо двох паралельних газопроводів і запропоновано способи визначення теплового потоку між газопроводом і грунтом. Встановлено, що на температурне поле навколо газопроводу і на тепловий потік від газопроводу суттєво впливає природне температурне поле грунту, яке розглядається як функція глибини його точок і часу. Визначено тиск, температуру і масову швидкість газу під час пуску газопроводу і при його зупинці. Отримані результати, що відповідають зупинці газопроводу, порівнювалися з відомими результатами, які були знайдені при певних спрощеннях математичної моделі. Дана оцінка точності і адекватності моделей.<br>Работа посвящена определению и исследованию термогазодинамических процессов в системе параллельных газопроводов. Проведенный анализ литературных источников по данной проблеме показал, что использованные ранее математические модели термогазодинамических процесов, протекающих в магистральном газопроводе, во многих случаях упрощены, а это неизбежно ведет к получению результатов исследования, не вполне совпадающих с реальностью. Определены давление, температура и массовая скорость газа в периоды пуска газопровода и его остановки при использовании построенных математических моделей, в которых газодинамические уравнения приведены к характеристическому виду, допускающему эффективный числовой метод их решения. Установлены закономерности изменения давления, температуры и массовой скорости газа во время пуска и остановки газопровода. Результаты исследования, полученные для остановки газопровода, сравнивались с известными результатами, найденными при определенных упрощениях математической модели. Получена качественно новая картина стабилизации давления и массовой скорости газа при остановке газопровода, адекватная реальному физическому процессу.<br>The activity is dedicated to definition and research thermal and gas dynamic of processes in a system of two parallel gas pipelines. The constructed mathematical models enable to take into account all kinds thermal and gas dynamic of energy losses, including a flow of thermoexchange between gas pipelines and soil Is rotined, that for short-lived dynamic processes in gas pipelines it is possible to consider(count) temperature of points of a soil invariable, as temperature of a soil under influencing of thermal effect of gas pipelines changes rather slowly. For dynamic processes which are flowing past during large periods, it is necessary to allow for change of a temperature field in a soil. The temperature field in a soil around of two parallel gas pipelines is reviewed and the methods of definition of a heat flow between the gas pipeline and soil are offered. Is established, that the temperature field around of the gas pipeline and on a heat flow from the gas pipeline essentially is influenced by(with) a natural temperature field of a soil, which one is esteemed as a function of depth of his(its) points and time. Are determined pressure, temperature and mass rate of gas in a starting time of the gas pipeline and at his(its) stop. The obtained outcomes conforming to a stop of the gas pipeline, were compared to known outcomes retrieved at definite simplifications of mathematical mode! Dan an estimation of accuracy and adequacy of models.
APA, Harvard, Vancouver, ISO, and other styles
5

Гайович, Владислав Володимирович, та Vladyslav Hajovych. "Охолодження світлодіодних освітлювачів тепловими трубами". Bachelor's thesis, Тернопільський національний технічний університет імені Івана Пулюя, кафедра електричної інженерії,Тернопіль, Україна, 2021. http://elartu.tntu.edu.ua/handle/lib/35339.

Full text
Abstract:
В даний час напівпровідникові джерела світла все впевненіше завойовують сучасний ринок світлотехнічної продукції [1-3]. Світлодіодні освітлювачі і лампи, які містять світлодіоди і світлодіодні матриці надзвичайно перспективні для використання в побуті та промисловості. Це пояснюється рядом їх властивостей, які не притаманні традиційним освітлювальним приладам - лампам розжарювання і газорозрядним лампам. Світлодіодні лампи створюють потужну освітленість при малій споживаній потужності, випромінюють світло будь-якого забарвлення, мають великий термін служби [4]. Виробники НПДС стверджують, що їх термін експлуатації досягає понад 100000 годин безперервної роботи. Завдяки відсутності скляних механічно вразливих елементів світлодіоди дуже надійні і міцні. До інших чудових якостей світлодіодів належать їх еклолгічна чистота і безпека експлуатації, мініатюрність і технологічність, широкий спектр напруг живлення та струмів. Сучасні напівпровідникові джерела світла є економними енергозберігаючими джерелами світла. Коефіцієнт перетворення електроенергії в енергію світла сягає майже 30%. При цьому СД лампа потужністю 100 Вт за величиною світлового потоку може замінити десять ламп розжарювання потужністю по 100 Вт кожна. Якщо світлодіодна лампа в середньому буде світити хоча б шість годин щодоби, то за рік вона принесе економії майже 1000 кВт год.<br>У кваліфікаційній робот і розглянуто та проаналізовано систему о холодже ння світлодіодних освітлювачів тепловими трубами . Мета кваліфікаційної роботи полягає у розробці системи о холодже ння світлодіодних освітлювачів тепловими трубами . Кваліфікаційна робота скл адається із вступу, 4 розділів і загальних висновків. У вступі ви значено актуальність роботи, об’ єкт, предмет, мету і завдання, практичн у значимість роботи У першому розділі виконано порівняльний аналіз існуючих систем охолодження світлодіодних освітлюва чів У другому здійснено вибір та обгрунтування можливих варіантів технічної реалізації системи охолодження світлодіодних освітлювачів тепловими трубами У третьому розділі побудована теплова математична модель системи охолодження. Р озглянуті варіанти по будови систем охолодження світлодіодних освітлювачів тепловими трубами та радіатором . У четвертому розділі розглянуті основні аспекти охорони праці та безпеки життєдіяльності при роботі з освітлювальними приладами.<br>In the qualification work the system of cooling of LED illuminators by heat pipes is considered and analyzed. The purpose of the qualification work is to dev elop a system for cooling LED luminaires with heat pipes. Qualification work consists of an introduction, 4 sections and general conclusions. The introduction identifies the relevance of the work, the object, subject, purpose and objectives, the practical significance of the work. The first section compares the existing cooling systems of LED luminaires . In the second choice and substantiation of possible variants of technical realization of system of cooling of LED illuminators by heat pipes is carried out . In the third section the thermal mathematical model of cooling system is constructed. Variants of construction of cooling systems of LED illuminators by heat pipes and a radiator are considered. The fourth section discusses the main aspects of occupation al safety and health when working with lighting fixtures.<br>ЗМІСТ ВСТУП 5 1. АНАЛІТИЧНИЙ РОЗДІЛ 8 1.1 Вплив температури на параметри світлодіодів 8 1.2 Системи охолодження світлодіодів 9 1.3 Охолодження вентилятором і тепловою трубкою 14 Висновки до першого розділу 16 2. ПРОЕКТНО-КОНСТРУКТОРСЬКИЙ РОЗДІЛ 17 2.1 Конструкція теплової труби 17 2.2 Види теплових трубок 20 2.3 Практичні конструкції світлодіодних ламп з тепловими трубками 25 3. РОЗРАХУНКОВИЙ РОЗДІЛ 30 3.1 Модель системи охолодження світлодіода з тепловою трубкою 30 3.2 Розрахунок тепловго режиму світлодіода з тепловою трубкою для проектування освітлювальних систем 35 3.3 Розрахунок теплового режиму світлодіода з тепловою трубкою та радіатором 40 4. БЕЗПЕКА ЖИТТЄДІЯЛЬНОСТІ ТА ОСНОВИ ОХОРОНИ ПРАЦІ 47 4.1 Аналіз шкідливих виробничих факторів, електробезпеки, пожежної небезпеки світлодіодних ламп 47 4.2 Захист персоналу та навколишнього середовища від небезпечних виробничих факторів 52 ЗАГАЛЬНІ ВИСНОВКИ 55 ПЕРЕЛІК ПОСИЛАНЬ 56
APA, Harvard, Vancouver, ISO, and other styles
6

Бойко, Антон Петрович, та Anton Bojko. "Стабілізація температурного режиму світлодіодних освітлювачів модулями Пельтьє". Bachelor's thesis, Тернопільський національний технічний університет імені Івана Пулюя, кафедра електричної інженерії,Тернопіль, Україна, 2021. http://elartu.tntu.edu.ua/handle/lib/35341.

Full text
Abstract:
Напівпровідникові джерела світла (НПДС) все впевненіше завойовують сучасний ринок світлотехнічної продукції [1-3]. Світлодіодні освітлювачі і лампи, які містять світлодіоди і світлодіодні матриці надзвичайно перспективні для використання в побуті та промисловості. Це зв’язано з їх перевагами перед традиційними джерелами світла - лампами розжарювання і газорозрядними лампами. Світлодіодні освітлювачі забезпечують високу освітленість об’єктів, споживають мало енергії, дозволяють отримати будь-який колір випромінювання, мають великий термін експлуатації [4]. Виробники НПДС стверджують, що їх термін експлуатації досягає понад 100000 годин безперервної роботи. Завдяки відсутності скляних механічно вразливих елементів світлодіоди дуже надійні і міцні. До інших чудових якостей світлодіодів належать їх еклолгічна чистота і безпека експлуатації, мініатюрність і технологічність, широкий спектр напруг живлення та ін.. Сучасні світлодіодні лампи є енергозберігаючими джерелами світла. Зокрема, їх ККД перетворення електричної енергії в світлову близький до 30%. При цьому СД лампа потужністю 100 Вт за величиною світлового потоку може замінити десять ламп розжарювання потужністю по 100 Вт кожна. Якщо світлодіодна лампа в середньому буде світити хоча б шість годин щодоби, то за рік вона принесе економії майже 1000 кВт год. В даний час провідні країни світу здійснюють переоснащення сфери освітлення. Створюються і впроваджуються в практику спеціальні програми по розробці енергозберігаючих джерел світла. Процес масового впровадження енергоощадної світлотехнічної продукції отримала додатковий імпульс в звязку з наростаючою в світовою енергетичною кризою. Адже запаси викопного вуглеводневого палива обмежені.<br>кваліфікаційній роботі розглянуто та проаналізовано систему охолодження світлодіодних освітлювачів термоелектричними модулями Пельтьє. Мета кваліфікаційної роботи полягає у розробці системи охолодження світлодіодних освітлювачів термоелектричними модулями Пельтьє. Кваліфікаційна робота складається із вступу, 4 розділів і загальних висновків. У вступі визначено актуальність роботи, об’єкт, предмет, мету і завдання, практичну значимість роботи. У першому розділі виконано порівняльний аналіз існуючих систем охолодження світлодіодних освітлювачів. У другому здійснено вибір та обґрунтування можливих варіантів технічної реалізації системи охолодження світлодіодних освітлювачів термоелектричними модулями Пельтьє. У третьому розділі побудована теплова математична модель системи охолодження. Розглянуті варіанти побудови систем охолодження світлодіодних освітлювачів з термоелектричними модулями Пельтьє. У четвертому розділі розглянуті основні аспекти охорони праці та безпеки життєдіяльності при роботі з освітлювальними приладами.<br>In the qualification work the system of cooling of LED illuminators by Peltier thermoelectric modules is considered and analyzed. The purpose of the qualification work is to develop a cooling system for LED luminaires with Peltier thermoelectric modules. Qualification work consists of an introduction, 4 sections and general conclusions. The introduction identifies the relevance of the work, the object, subject, purpose and objectives, the practical significance of the work. The first section compares the existing cooling systems of LED luminaires. In the second the choice and substantiation of possible variants of technical realization of the system of cooling of LED illuminators by Peltier thermoelectric modules is carried out. In the third section the thermal mathematical model of cooling system is constructed. Options for constructing cooling systems for LED luminaires with Peltier thermoelectric modules are considered. The fourth section discusses the main aspects of occupational safety and health when working with lighting fixtures.<br>ЗМІСТ ВСТУП 5 1. АНАЛІТИЧНИЙ РОЗДІЛ 8 1.1 Напівпровідникові джерела світла 8 1.2 Типи напівпровідникових джерел світла 11 1.3 Існуючі способи регулювання теплових режимів 15 Висновки до першого розділу 17 2. ПРОЕКТНО-КОНСТРУКТОРСЬКИЙ РОЗДІЛ 19 2.1 Способи термостабілізації напівпровідникових джерел світла 19 2.2 Термоелектричне охолодження 26 2.3 Конструювання системи охолодження СД з модулем Пельтьє 27 3. РОЗРАХУНКОВИЙ РОЗДІЛ 33 3.1 Вибір методики розрахунку 33 3.2 Вибір сучасних СД матриць та модулів Пельтьє для проектування освітлювальних систем 36 3.3 Розрахунок теплового режиму СД матриці з модулем Пельтьє 39 4. БЕЗПЕКА ЖИТТЄДІЯЛЬНОСТІ ТА ОСНОВИ ОХОРОНИ ПРАЦІ 48 4.1 Аналіз небезпечних і шкідливих виробничих чинників, електробезпеки, пожежної небезпеки світлодіодних ламп 48 4.2 Захист персоналу та навколишнього середовища від небезпечних виробничих факторів 53 ЗАГАЛЬНІ ВИСНОВКИ 56 ПЕРЕЛІК ПОСИЛАНЬ 57
APA, Harvard, Vancouver, ISO, and other styles
7

Колесник, Н. С. "Оптимізація енергоефективності системи теплопостачання приватного житлового будинку". Master's thesis, Сумський державний університет, 2021. https://essuir.sumdu.edu.ua/handle/123456789/86617.

Full text
Abstract:
У роботі виконано розрахунок циклу теплового насосу для контролю клімат системи приватного житлового будинку, а також опис обладнання У результаті розрахунку було підібрано модель і потужність та кількість теплових насосів для енергоефективної роботи. У результаті розрахунку було прийнято два теплові насоси ESVMO-SF-MF-140(3). Також було виконано економічний розрахунок та розрахунок заземлення приміщення тепло генераторної від ураження електричним струмом.<br>В работе выполнен расчет цикла теплового насоса для контроля климата системы частного жилого дома. В результате расчета была подобрана модель и мощность и количество тепловых насосов для энергоэффективной работы. В результате расчета было принято два тепловых насоса ESVMO-SF-MF-140(3). Также был выполнен экономический расчет и расчет заземления помещения теплогенераторной от поражения электрическим током.<br>The calculation of the heat pump cycle for climate control of a private house system is performed in the work. As a result of the calculation, the model and capacity and number of heat pumps for energy efficient operation were selected. As a result of the calculation, two heat pumps ESVMO-SF-MF-140 (3) were adopted. An economic calculation was also performed and calculation of grounding of the heat generator room from electric shock.
APA, Harvard, Vancouver, ISO, and other styles
8

Фера, Василь Іванович, та Vasyl Fera. "Стабілізація теплового режиму світлодіодів при допомозі теплових труб". Master's thesis, Тернопільський національний технічний університет імені Івана Пулюя, 2019. http://elartu.tntu.edu.ua/handle/lib/29644.

Full text
Abstract:
The mathematical thermal model of the cooling system of the LED based on the thermal tube was constructed. The system of differential equations was solved, which includes stationary equation of thermal conductivity and the equation of Joule's thermal generation, both supplemented by thermal boundary conditions. The distribution of temperature in structur elements of the cooling system was calculated in dependance on the power of LED, the parameters of thermal pipe and surrounding temperature.<br>В дипломній роботі побудовано теплову математичну модель систем охолодження світлодіода на базі локального радіатора та на базі теплової труби. Розв’язано систему диференціальних рівнянь, яка включає стаціонарне рівняння теплопровідності та рівняння термогенерації Джоуля доповнених тепловими граничними умовами. Розраховано розподіл температури в структурних елементах системи охолодження в залежності від потужності світлодіода, параметрів охолоджувальної системи і температури середовища. Сформульовано рекомендації по збільшенню світлового потоку світлодіодних ламп при одночасній стабілізації їх температурного режиму.<br>ВСТУП…7 1 АНАЛІТИЧНА ЧАСТИНА …11 1.1 Принцип роботи світлодіодів...11 1.2 Класифікація світлодіодів...13 1.2.1 Індикаторні світлодіоди...13 1.2.2 Освітлювальні світлодіоди...14 1.3 Вплив температури p-n-переходу на параметри світлодіодів...17 1.4 Стабілізація температурного режиму світлодіодів...19 1.4.1 Пасивне охолодження...20 1.4.2 Охолодження через друковану плату...24 1.4.3 Активне повітряне охолодження...27 1.4.4 Струминне охолодження...28 2 НАУКОВО-ДОСЛІДНА ЧАСТИНА …31 2.1 Побудова математичної моделі світлодіода...31 2.2 Розрахунок теплового режиму світлодіода з локальним радіатором...36 2.3 Розрахунок системи охолодження світлодіода на базі теплової труби...43 3 ТЕХНОЛОГІЧНА ЧАСТИНА...52 3.1 Будова і принцип дії теплової труби...52 3.2 Класифікація теплових труб...55 4 ПРОЕКТНО-КОНСТРУКТОРСЬКА ЧАСТИНА…60 4.1 Конструювання пасивних систем охолодження світлодіодів...60 4.1.1 Охолодження через корпус...61 4.1.2 Охолодження пасивним радіатором...61 4.2 Конструювання систем охолодження на базі активного радіатора...63 4.3 Конструювання систем охолодження на базі теплових труб...67 4.3.1 Конструювання систем охолодження на базі теплових труб та пасивного радіатора...67 4.3.2 Конструювання систем охолодження на базі теплових труб та активного радіатора...69 5 СПЕЦІАЛЬНА ЧАСТИНА...72 5.1 Світлодіоди для систем освітлення...72 5.2 Порівняльна характеристика світлодіодних матриць...73 6 ОБГРУНТУВАННЯ ЕКОНОМІЧНОЇ ЕФЕКТИВНОСТІ...81 6.1 Соціально-економічна ефективність нової техніки...81 6.2 Економічний ефект і строк окупності додаткових капіталовкладень в напівпровідникові системи освітлення...82 7 ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ...84 7.1 Охорона праці...86 7.1.1 Інфрачервоне випромінювання та особливості його дії на організм людини...86 7.1.2 Дія електромагнітного випромінювання на організм людини...88 7.2 Безпека в надзвичайних ситуаціях...91 7.2.1 Методи захисту світлотехнічної апаратури від дії електромагнітного імпульсу блискавок...91 8 ЕКОЛОГІЯ...92 8.1 Джерела електромагнітних полів та методи зменшення їх впливу...92 8.2 Екологічний вплив електромагнітного опромінення на живі організми...97 ЗАГАЛЬНІ ВИСНОВКИ ДО ДИПЛОМНОЇ РОБОТИ...99 ПЕРЕЛІК ПОСИЛАНЬ...100
APA, Harvard, Vancouver, ISO, and other styles
9

Гридовий, Володимир Миронович, та Volodymyr Hrydovyi. "Стабілізація теплового режиму напівпровідникових джерел світла термоелектричними модулями охолодження". Master's thesis, Тернопільський національний технічний університет імені Івана Пулюя, 2019. http://elartu.tntu.edu.ua/handle/lib/29642.

Full text
Abstract:
In the thesis the thermal mathematical model of the semiconductor light source is constructed. It describes the influence of the main parameters: power, quantum efficiency, thermal resistance, temperature of the external environment on its thermal regime. The thermal modes of LEDs with local and external radiators are calculated. The thermal mode of the LED with the thermoelectric cooling module is calculated. Recommendations for increasing the light flux and light output of semiconductor light sources with the simultaneous stabilization of their thermal regime are formulated.<br>У дипломній роботі побудовано теплову математичну модель світлодіодної матриці, яка описує вплив основних параметрів: потужності, квантової ефективності, теплового опору системи охолодження, температури зовнішнього середовища на її тепловий режим. Розраховано теплові режими світлодіодних матриць з локальним радіатором. Розраховано тепловий режим світлодіодної матриці з термоелектричним модулем охолодження (ТЕМО). Показано, що застосування ТЕМО дає можливість зменшити температуру матриці до значень нижчих ніж температура навколишнього середовища. Це особливо актуально в умовах, коли температура середовища близька до критичної температури p-n-переходу. Показано, що ефективність використання ТЕМО знижується при збільшенні потужності світлодіодної матриці, температури навколишнього середовища і сумарного теплового опору системи охолодження. Сформульовано рекомендації по збільшенню світлового потоку та світлової віддачі світлодіодної матриці при одночасній стабілізації її теплового режиму.<br>ВСТУП……7 1 АНАЛІТИЧНА ЧАСТИНА ……11 1.1 Освітлювальні світлодіоди 11 1.2 Світлодіодні матриці 13 1.3 Вплив температури на параметри світлодіодних матриць 18 1.4 Активні способи охолодження світлодіодних матриць 21 1.4.1 Охолодження активним радіатором 22 1.4.2 Охолодження за допомогою струменевої технології 23 1.4.3 Охолодження іонним вітром 25 1.4.4 Рідинне охолодження 25 1.4.5 Охолодження за допомогою теплових труб 26 2 НАУКОВО-ДОСЛІДНА ЧАСТИНА 30 2.1 Розрахунок теплового режиму світлодіодних матриць 30 2.1.1 Поширення тепла в середовищі. Метод електротеплової аналогії........30 2.1.2 Розрахунок системи охолодження світлодіодної матриці на основі активного радіатора 33 2.2 Охолодження світлодіодних матриць термоелектричними модулями.......40 2.2.1 Основні співвідношення для розрахунку термоелектричного охолодження 40 2.2.2 Розрахунок системи охолодження світлодіодної матриці на основі термоелектричних модулів 43 2.3 Вплив охолодження на світловий потік світлодіодних матриць 51 3 ТЕХНОЛОГІЧНА ЧАСТИНА 58 3.1 Термоелектричний модуль охолодження 58 3.2 Режими роботи термоелектричного модуля 60 3.3 Технічні характеристики сучасних термоелектричних модулів 62 4 ПРОЕКТНО-КОНСТРУКТОРСЬКА ЧАСТИНА……………64 4.1 Конструювання активних систем охолодження світлодіодних матриць 64 4.1.1 Системи охолодження на базі активних радіаторів 65 4.1.2 Системи охолодження на базі термоелектричних модулів 67 5 СПЕЦІАЛЬНА ЧАСТИНА 71 5.1 Світлодіодні матриці для систем освітлення 71 5.2 Порівняльна характеристика світлодіодних матриць 72 6 ОБГРУНТУВАННЯ ЕКОНОМІЧНОЇ ЕФЕКТИВНОСТІ 80 6.1 Соціально-економічна ефективність нової техніки 80 6.2 Економічний ефект і строк окупності додаткових капіталовкладень в напівпровідникові системи освітлення 81 7 ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ.. 85 7.1 Охорона праці 85 7.1.1 Інфрачервоне випромінювання та особливості його дії на організм людини 85 7.1.2 Дія електромагнітного випромінювання на організм людини 87 7.2 Безпека в надзвичайних ситуаціях 90 7.2.1 Методи захисту світлотехнічної апаратури від дії електромагнітного імпульсу блискавок 90 8 ЕКОЛОГІЯ 93 8.1 Джерела електромагнітних полів та методи зменшення їх впливу...93 8.2 Екологічний вплив електромагнітного опромінення на живі організми...96 ЗАГАЛЬНІ ВИСНОВКИ ДО ДИПЛОМНОЇ РОБОТИ 98 ПЕРЕЛІК ПОСИЛАНЬ 99
APA, Harvard, Vancouver, ISO, and other styles
10

Романько, Сергій Миколайович, Сергей Николаевич Романько та Serhii Mykolaiovych Romanko. "Процес концентрування розчину сульфатної кислоти випаровуванням у потік нейтрального газу за зовнішнього підведення теплоти". Thesis, Сумський державний університет, 2019. http://essuir.sumdu.edu.ua/handle/123456789/72649.

Full text
Abstract:
Дисертаційна робота присвячена виявленню закономірностей процесу концентрування водних розчинів сульфатної кислоти випаровуванням в потік нейтрального газу за умов зовнішнього підведення теплоти. Такий процес дозволяє понизити температуру теплоносія, який використовується для нагрівання розчину кислоти, і відповідно відмовитись від дефіцитних видів палива. У дисертації представлено результати експериментального дослідження впливу нейтрального газу та режимних параметрів процесу на інтенсивність процесу концентрування розчину. Запропоновано методику визначення швидкості випаровування розчину кислоти та експериментально встановлено її залежності від складу розчину. Проведено дослідження тепло- і масопереносу при концентруванні, визначено величини потоків теплоти при теплообміні між рідкою і газовими фазами, встановлено умови, за яких теплообмінний потік міняє напрям. Отримано емпіричні рівняння для розрахунку швидкості випаровування розчину кислоти та коефіцієнтів тепло – і масовіддачі при його концентруванні. У результаті моделювання зазначеного процесу встановлено закономірності зміни складу розчину в часі для періодичного процесу і від величини потоку початкового розчину для безперервного процесу при різних режимах концентрування. Розроблено пропозиції щодо апаратурного оформлення цього процесу на основі типового ємнісного апарату і апарату плівкового типу, а також методику розрахунку періодичного і безперервного процесів концентрування в ємнісному концентраторі.<br>Диссертационная работа посвящена выявлению закономерностей процесса концентрирования водных растворов серной кислоты испарением в поток нейтрального газа при внешнем подводе теплоты. Такой процесс позволяет снизить температуру используемого для нагревания раствора кислоты теплоносителя, и соответственно отказаться от дефицитных видов топлива. В диссертации представлены результаты экспериментального исследования влияния нейтрального газа и режимных параметров процесса на интенсивность процесса концентрирования раствора. Предложена методика определения скорости испарения раствора кислоты и экспериментально установлены ее зависимости от состава раствора. Проведено исследование тепло- и массопереноса при концентрировании, определены величины потоков теплоты при теплообмене между жидкой и газовыми фазами, установлены условия, при которых теплообменный поток меняет направление. Получены эмпирические уравнения для расчета скорости испарения раствора кислоты и коэффициентов тепло- и массоотдачи при его концентрировании. В результате моделирования отмеченного процесса установлены закономерности изменения состава раствора во времени для периодического процесса и от величины потока начального раствора для непрерывного процесса при разных режимах концентрирования. Разработаны предложения по аппаратурному оформлению этого процесса на основе унифицированного емкостного аппарата и аппарата пленочного типа, а также методику расчета периодического и непрерывного процессов концентрирования в емкостном концентраторе.<br>The thesis presents the results of an experimental investigation of the influence of indifferent gas, which is injected into the free space above acid solution or bubbled through it, and operating conditions of the process on the intensity of the solution concentration process. A method of determining the acid solution evaporation rate has been suggested, and its dependences on the solution composition that confirm the presence of the critical acid concentration in the solution, at which the acid (H2SO4 monohydrate) starts evaporating along with water, have been determined experimentally. It has been shown that, within the range of solution concentration values before and after the critical concentration, the dependences of the evaporation rate on the solution composition are of a different nature. The study of concentration heat transfer and mass transfer has been carried out, the heat flux values at heat exchange between liquid and gaseous phases have been determined, and the conditions, at which the heat-exchange flow changes its direction, have been ascertained. By means of modelling the aforementioned process, the regularities of the solution composition change over time for a batch process and the dependences on the initial solution flow value for a continuous process at different concentration conditions have been determined. The suggestions have been made concerning the equipment needed for this process on the basis of a standard capacitive apparatus and a film apparatus, as well as the methods of calculating the batch and continuous concentration processes in the capacitive concentrator.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Тепловий потік"

1

Лысак, С. В. Тепловой поток континентальных рифтовых зон. 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Тепловий потік"

1

Кириллин, А. Р. "Особенности распространения криолитозоны эльконского горного массива, "Современные исследования трансформации криосферы и вопросы геотехнической безопасности сооружений в Арктике"". У Современные исследования трансформации криосферы и вопросы геотехнической безопасности сооружений в Арктике Под ред. В.П.Мельникова и М.Р. Садуртдинова. Правительство Ямало-Ненецкого автономного округа, 2021. http://dx.doi.org/10.7868/9785604610848052.

Full text
Abstract:
Эльконский горный массив (Эльконский горст) является одним из уникальных районов по геокриологическим условиям. Выявление особенностей распространения многолетнемерзлых пород для данного района представляет фундаментальную и прикладную значимость. Так как в горных областях те или иные факторы влияют на формирование температуры пород в большей или меньшей степени. На основании температурных исследований в инженерно-геологических скважинах дана характеристика температуры пород в слое годовых теплооборотов для различных геоморфологических условий. Косвенными и прямыми методами установлены особенности и характер распространения многолетнемерзлых пород Эльконского горста. Для характерных типов горных пород определены теплофизические свойства. По полученным данным рассчитан внутриземный тепловой поток для исследуемой территории.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography