To see the other types of publications on this topic, follow the link: 030306 Synthesis of Materials.

Journal articles on the topic '030306 Synthesis of Materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic '030306 Synthesis of Materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rathinamala, I., J. Pandiarajan, N. Jeyakumaran, and N. Prithivikumaran. "Synthesis and Physical Properties of nanocrystalline CdS Thin Films – Influence of sol Aging Time & Annealing." International Journal of Thin Films Science and Technology 3, no. 3 (2014): 113–20. http://dx.doi.org/10.12785/ijtfst/030306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lipp-Symonowicz, Barbara, Sławomir Sztajnowski, and Iwona Kardas. "EXAMINATION OF THE AGEING OF SELECTED SYNTHETIC FIBRES UNDER THE INFLUENCE OF UV RADIATION." AUTEX Research Journal 3, no. 3 (2003): 139–47. http://dx.doi.org/10.1515/aut-2003-030306.

Full text
Abstract:
Abstract An attempt has been undertaken to assess the effect of UV radiation on the molecular and supermolecular structure of polyamide and polypropylene fibres that are characterised by various macroscopic features, colours and additives. Based on the measurements performed, the general conclusion can be drawn that UV radiation under the exposure conditions used in our experiments causes changes in both the molecular and supermolecular structures of the investigated fibres. The extent of these changes is clearly dependent on the initial fibre structure, the modifiers added and the macroscopic
APA, Harvard, Vancouver, ISO, and other styles
3

Flynn, C. P., M. H. Yang, F. Tsui, Y. Lee, and R. L. Averback. "Materials science through materials synthesis." Journal of Physics and Chemistry of Solids 55, no. 10 (1994): 1059–66. http://dx.doi.org/10.1016/0022-3697(94)90124-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Takeuchi, Ichiro, Jochen Lauterbach, and Michael J. Fasolka. "Combinatorial materials synthesis." Materials Today 8, no. 10 (2005): 18–26. http://dx.doi.org/10.1016/s1369-7021(05)71121-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shimakawa, Yuichi. "Synthesis of Powder Materials." Journal of the Japan Society of Powder and Powder Metallurgy 54, no. 1 (2007): 22. http://dx.doi.org/10.2497/jjspm.54.22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bill, Joachim, and Fritz Aldinger. "Progress in Materials Synthesis." International Journal of Materials Research 87, no. 11 (1996): 827–40. http://dx.doi.org/10.1515/ijmr-1996-871105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Manukyan, K. V. "Combustion and materials synthesis." International Journal of Self-Propagating High-Temperature Synthesis 26, no. 3 (2017): 143–44. http://dx.doi.org/10.3103/s1061386217030025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Byrappa, K., Richard E. Riman, and G. Dhanaraj. "Materials Synthesis – Novel Approaches." Materials Research Innovations 14, no. 1 (2010): 2. http://dx.doi.org/10.1179/143307510x12599329342881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Solozhenko, Vladimir L., and Eugene Gregoryanz. "Synthesis of superhard materials." Materials Today 8, no. 11 (2005): 44–51. http://dx.doi.org/10.1016/s1369-7021(05)71159-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dan, Nily. "Synthesis of hierarchical materials." Trends in Biotechnology 18, no. 9 (2000): 370–74. http://dx.doi.org/10.1016/s0167-7799(00)01482-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bill, J., and F. Aldinger. "Progress in materials synthesis." Metal Powder Report 52, no. 7-8 (1997): 38. http://dx.doi.org/10.1016/s0026-0657(97)80167-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bill, J. "Progress in materials synthesis." Metal Powder Report 53, no. 7-8 (1997): 38. http://dx.doi.org/10.1016/s0026-0657(97)84673-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Novikov, N. V. "Synthesis of superhard materials." Journal of Materials Processing Technology 161, no. 1-2 (2005): 169–72. http://dx.doi.org/10.1016/j.jmatprotec.2004.07.071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Amrute, Amol P., Jacopo De Bellis, Michael Felderhoff, and Ferdi Schüth. "Mechanochemical Synthesis of Catalytic Materials." Chemistry – A European Journal 27, no. 23 (2021): 6819–47. http://dx.doi.org/10.1002/chem.202004583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ruck, Michael. "Materials Synthesis in Ionic Liquids." ChemistryOpen 10, no. 2 (2021): 60–61. http://dx.doi.org/10.1002/open.202100014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

OKUTANI, Takeshi. "Materials synthesis using microgravity circumstances." Journal of Advanced Science 14, no. 4 (2002): 143–50. http://dx.doi.org/10.2978/jsas.14.143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

HASEGAWA, Takuya, Kenji TODA, Sun-woog KIM, and Mineo SATO. "Synthesis Processing for Phosphor Materials." Journal of Smart Processing 5, no. 6 (2016): 350–57. http://dx.doi.org/10.7791/jspmee.5.350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Barcikowski, Stephan, Anton Plech, Kenneth S. Suslick, and Alfred Vogel. "Materials synthesis in a bubble." MRS Bulletin 44, no. 5 (2019): 382–91. http://dx.doi.org/10.1557/mrs.2019.107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Luyten, Jan, J. F. C. Cooymans, A. De Wilde, and I. Thijs. "Porous Materials, Synthesis and Charaterization." Key Engineering Materials 206-213 (December 2001): 1937–40. http://dx.doi.org/10.4028/www.scientific.net/kem.206-213.1937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kumar, Prashant, Aditya Dey, Jerome Roques, et al. "Photoexfoliation Synthesis of 2D Materials." ACS Materials Letters 4, no. 2 (2022): 263–70. http://dx.doi.org/10.1021/acsmaterialslett.1c00651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Tirrell, Matthew V., and Alexander Katz. "Self-Assembly in Materials Synthesis." MRS Bulletin 30, no. 10 (2005): 700–704. http://dx.doi.org/10.1557/mrs2005.205.

Full text
Abstract:
AbstractThe synthesis of materials via self-assembly typically involves the spontaneous and reversible organization of small building blocks for the purpose of creating conglomerate structures over larger length scales. This introductory article describes self-assembly processes on several length scales, from subnanometer up to millimeter scales, and briefly summarizes some of the incredible diversity of materials that exhibit selfassembly. Articles in this issue cover self-assembly using zeolitic structures, organic molecular crystals, block copolymers, surfactants, mesoscale templates, and s
APA, Harvard, Vancouver, ISO, and other styles
22

Koch, C. C. "Materials Synthesis by Mechanical Alloying." Annual Review of Materials Science 19, no. 1 (1989): 121–43. http://dx.doi.org/10.1146/annurev.ms.19.080189.001005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Holt, J. B., and S. D. Dunmead. "Self-Heating Synthesis of Materials." Annual Review of Materials Science 21, no. 1 (1991): 305–34. http://dx.doi.org/10.1146/annurev.ms.21.080191.001513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ahmad, S. "Band-Structure-Engineered Materials Synthesis." International Journal of Material Science 6, no. 1 (2016): 1–34. http://dx.doi.org/10.12783/ijmsci.2016.0601.01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Liu, Yiding, James Goebl, and Yadong Yin. "Templated synthesis of nanostructured materials." Chem. Soc. Rev. 42, no. 7 (2013): 2610–53. http://dx.doi.org/10.1039/c2cs35369e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kröger, Helge, Inga Gerhards, Velimir Milinović, and Petra Reinke. "Synthesis of Au−C60Cluster Materials." Journal of Physical Chemistry C 111, no. 28 (2007): 10170–74. http://dx.doi.org/10.1021/jp065812h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

McPherson, Ian James, Tim Sudmeier, Joshua Fellowes, and Shik Chi Edman Tsang. "Materials for electrochemical ammonia synthesis." Dalton Transactions 48, no. 5 (2019): 1562–68. http://dx.doi.org/10.1039/c8dt04019b.

Full text
Abstract:
Direct electrochemical synthesis of ammonia is proposed as a means of reducing the carbon footprint of the fertiliser industry, as well as providing new opportunities for carbon-free liquid energy storage.
APA, Harvard, Vancouver, ISO, and other styles
28

Kubota, Koji. "Organic Synthesis Using Piezoelectric Materials." ECS Meeting Abstracts MA2024-02, no. 39 (2024): 2600. https://doi.org/10.1149/ma2024-02392600mtgabs.

Full text
Abstract:
Visible-light-mediated photoredox catalysis has gained momentum over the past decades as an indispensable tool for selective small-molecule activation. We postulated that a complementary method for the redox-activation in response to applied mechanical energy could be developed through the piezoelectric effect. Based on our experience of organic synthesis using ball milling, we designed a new redox-activation platform, mechanoredox. In this approach, the agitation of piezoelectric materials such as BaTiO3 via ball milling could generate temporarily highly polarized particles. These particles c
APA, Harvard, Vancouver, ISO, and other styles
29

Baranchikov, Aleksandr Y., Vladimir K. Ivanov, and Yuri D. Tretyakov. "Sonochemical synthesis of inorganic materials." Russian Chemical Reviews 76, no. 2 (2007): 133–51. http://dx.doi.org/10.1070/rc2007v076n02abeh003644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Suslick, Kenneth S., Gennady Dantsin, Arash Ekhtiarzadeh, and Arul Dhas. "Sonochemical synthesis of new materials." Journal of the Acoustical Society of America 105, no. 2 (1999): 1380–81. http://dx.doi.org/10.1121/1.426528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Xiao, Xu, Hao Wang, Patrick Urbankowski, and Yury Gogotsi. "Topochemical synthesis of 2D materials." Chemical Society Reviews 47, no. 23 (2018): 8744–65. http://dx.doi.org/10.1039/c8cs00649k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Swager, Timothy. "Cluster Preface: Synthesis of Materials." Synlett 29, no. 19 (2018): 2497–98. http://dx.doi.org/10.1055/s-0037-1610835.

Full text
Abstract:
Timothy M. Swager is the John D. MacArthur Professor of Chemistry and the Director, Deshpande Center for Technological Innovation at the Massachusetts Institute of Technology. A native of Montana, he received a BS from Montana State University in 1983 and a Ph.D. from the California Institute of Technology in 1988. After a postdoctoral appointment at MIT he was on the chemistry faculty at the University of ­Pennsylvania and returned to MIT in 1996 as a Professor of Chemistry and served as the Head of Chemistry from 2005 to 2010. He has published more than 450+ peer-reviewed papers and more tha
APA, Harvard, Vancouver, ISO, and other styles
33

Kühl, G. "Source materials for zeolite synthesis." Microporous and Mesoporous Materials 22, no. 4-6 (1998): 515–16. http://dx.doi.org/10.1016/s1387-1811(98)00133-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chen, Jiajun, Shijun Wang, and M. Stanley Whittingham. "Hydrothermal synthesis of cathode materials." Journal of Power Sources 174, no. 2 (2007): 442–48. http://dx.doi.org/10.1016/j.jpowsour.2007.06.189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Feng, Shouhua, and Ruren Xu. "New Materials in Hydrothermal Synthesis." Accounts of Chemical Research 34, no. 3 (2001): 239–47. http://dx.doi.org/10.1021/ar0000105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kim, Edward, Kevin Huang, Olga Kononova, Gerbrand Ceder, and Elsa Olivetti. "Distilling a Materials Synthesis Ontology." Matter 1, no. 1 (2019): 8–12. http://dx.doi.org/10.1016/j.matt.2019.05.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Storhoff, James J., and Chad A. Mirkin. "Programmed Materials Synthesis with DNA." Chemical Reviews 99, no. 7 (1999): 1849–62. http://dx.doi.org/10.1021/cr970071p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Mendelovici, Efraim. "Thermal synthesis of inorganic materials." Thermochimica Acta 148 (August 1989): 205–18. http://dx.doi.org/10.1016/0040-6031(89)85217-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Song, W. D., M. H. Hong, T. Osipowicz, et al. "Laser synthesis of new materials." Applied Physics A 79, no. 4-6 (2004): 1349–52. http://dx.doi.org/10.1007/s00339-004-2776-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kostiner, Edward. "Chemical synthesis of advanced materials." Journal of Solid State Chemistry 90, no. 2 (1991): 388. http://dx.doi.org/10.1016/0022-4596(91)90159-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Garkina, Irina, and Alexander Danilov. "Composite Materials: Identification, Control, Synthesis." IOP Conference Series: Materials Science and Engineering 471 (February 23, 2019): 032005. http://dx.doi.org/10.1088/1757-899x/471/3/032005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Segal, David. "Chemical synthesis of ceramic materials." Journal of Materials Chemistry 7, no. 8 (1997): 1297–305. http://dx.doi.org/10.1039/a700881c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Manukyan, Khachatur V., Sergei Rouvimov, Eduardo E. Wolf, and Alexander S. Mukasyan. "Combustion synthesis of graphene materials." Carbon 62 (October 2013): 302–11. http://dx.doi.org/10.1016/j.carbon.2013.06.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Varma, Arvind, and Jean-Pascal Lebrat. "Combustion synthesis of advanced materials." Chemical Engineering Science 47, no. 9-11 (1992): 2179–94. http://dx.doi.org/10.1016/0009-2509(92)87034-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Tompsett, Geoffrey A., William Curtis Conner, and K. Sigfrid Yngvesson. "Microwave Synthesis of Nanoporous Materials." ChemPhysChem 7, no. 2 (2006): 296–319. http://dx.doi.org/10.1002/cphc.200500449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wang, Li-Jun, Yun-Hua Wang, Min Li, et al. "Synthesis of Ordered Biosilica Materials." Chinese Journal of Chemistry 20, no. 1 (2010): 107–10. http://dx.doi.org/10.1002/cjoc.20020200121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Desai, Aamod, Erlantz Lizundia, Andrea Laybourn, et al. "Green Synthesis of Reticular Materials." Advanced Functional Materials 34, no. 43 (2025): 2304660. https://doi.org/10.5281/zenodo.14739928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Alkan Gürsel, Selmiye, Alp Yurum, Begüm Yarar Kaplan, et al. "(Invited) Advanced Graphene-Supported Pt Catalysts for ORR in PEM Fuel Cells and Next-Generation Transition Metal Incorporated Iridium Oxides for OER in PEM Electrolyzers." ECS Meeting Abstracts MA2025-01, no. 55 (2025): 2645. https://doi.org/10.1149/ma2025-01552645mtgabs.

Full text
Abstract:
The development of cost-effective and durable catalysts for polymer electrolyte membrane (PEM) fuel cells and electrolyzers is paramount for advancing clean energy technologies. This work addresses the critical challenges of catalytic activity, stability, and cost, focusing on optimizing the oxygen reduction reaction (ORR) in PEM fuel cells and the oxygen evolution reaction (OER) in PEM electrolyzers. The distinct reaction conditions of OER and ORR necessitate significantly different catalyst properties. The most effective and durable catalysts for cathodic ORR are typically platinum-based met
APA, Harvard, Vancouver, ISO, and other styles
49

Spadaro, Lorenzo. "Catalytic Materials in Green-Fuels Synthesis." Video Proceedings of Advanced Materials 1, no. 1 (2020): 2020–0824. http://dx.doi.org/10.5185/vpoam.2020.0824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Naka, Kensuke. "Synthesis of Organic-Inorganic Hybrid Materials." Seikei-Kakou 20, no. 4 (2008): 210–16. http://dx.doi.org/10.4325/seikeikakou.20.210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!