To see the other types of publications on this topic, follow the link: 1/f Baseband noise.

Journal articles on the topic '1/f Baseband noise'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic '1/f Baseband noise.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Landis, Shay, and Ben-Zion Bobrovsky. "1/f Baseband Noise Suppression in OFDM Systems." IEEE Transactions on Communications 59, no. 4 (April 2011): 942–47. http://dx.doi.org/10.1109/tcomm.2011.012711.090196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Georgiadis, A. "AC-coupling and 1/f noise effects on baseband OFDM signals." IEEE Transactions on Communications 54, no. 10 (October 2006): 1806–14. http://dx.doi.org/10.1109/tcomm.2006.881367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Martinez, R. D., D. E. Oates, and R. C. Compton. "Measurement and model for correlating phase and baseband 1/f noise in an FET." IEEE Transactions on Microwave Theory and Techniques 42, no. 11 (1994): 2051–55. http://dx.doi.org/10.1109/22.330118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ghosh, Diptendu, and Ranjit Gharpurey. "A Power-Efficient Receiver Architecture Employing Bias-Current-Shared RF and Baseband With Merged Supply Voltage Domains and 1/f Noise Reduction." IEEE Journal of Solid-State Circuits 47, no. 2 (February 2012): 381–91. http://dx.doi.org/10.1109/jssc.2011.2175270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Xiangyu, Jianping Hu, and Xiaowei Liu. "A High-Performance Digital Interface Circuit for a High-Q Micro-Electromechanical System Accelerometer." Micromachines 9, no. 12 (December 19, 2018): 675. http://dx.doi.org/10.3390/mi9120675.

Full text
Abstract:
Micro-electromechanical system (MEMS) accelerometers are widely used in the inertial navigation and nanosatellites field. A high-performance digital interface circuit for a high-Q MEMS micro-accelerometer is presented in this work. The mechanical noise of the MEMS accelerometer is decreased by the application of a vacuum-packaged sensitive element. The quantization noise in the baseband of the interface circuit is greatly suppressed by a 4th-order loop shaping. The digital output is attained by the interface circuit based on a low-noise front-end charge-amplifier and a 4th-order Sigma-Delta (ΣΔ) modulator. The stability of high-order ΣΔ was studied by the root locus method. The gain of the integrators was reduced by using the proportional scaling technique. The low-noise front-end detection circuit was proposed with the correlated double sampling (CDS) technique to eliminate the 1/f noise and offset. The digital interface circuit was implemented by 0.35 μm complementary metal-oxide-semiconductor (CMOS) technology. The high-performance digital accelerometer system was implemented by double chip integration and the active interface circuit area was about 3.3 mm × 3.5 mm. The high-Q MEMS accelerometer system consumed 10 mW from a single 5 V supply at a sampling frequency of 250 kHz. The micro-accelerometer system could achieve a third harmonic distortion of −98 dB and an average noise floor in low-frequency range of less than −140 dBV; a resolution of 0.48 μg/Hz1/2 (@300 Hz); a bias stability of 18 μg by the Allen variance program in MATLAB.
APA, Harvard, Vancouver, ISO, and other styles
6

Ward, Lawrence, and Priscilla Greenwood. "1/f noise." Scholarpedia 2, no. 12 (2007): 1537. http://dx.doi.org/10.4249/scholarpedia.1537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zaklikiewicz, A. M. "1/f noise of avalanche noise." Solid-State Electronics 43, no. 1 (January 1999): 11–15. http://dx.doi.org/10.1016/s0038-1101(98)00204-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hooge, F. N. "1/f noise sources." IEEE Transactions on Electron Devices 41, no. 11 (1994): 1926–35. http://dx.doi.org/10.1109/16.333808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ninness, B. "Estimation of 1/f noise." IEEE Transactions on Information Theory 44, no. 1 (1998): 32–46. http://dx.doi.org/10.1109/18.650986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lowen, S. B., and M. C. Teich. "Generalised 1/f shot noise." Electronics Letters 25, no. 16 (1989): 1072. http://dx.doi.org/10.1049/el:19890718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Spencer, R. R., and J. Grishaw. "Simplified 1/f noise calculations." Electronics Letters 27, no. 4 (1991): 312. http://dx.doi.org/10.1049/el:19910197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

WEST, BRUCE J. "NETWORKS AND 1/f NOISE." Fluctuation and Noise Letters 10, no. 04 (December 2011): 515–31. http://dx.doi.org/10.1142/s0219477511000703.

Full text
Abstract:
Complex networks form one of the most challenging areas of modern research overarching the traditional scientific disciplines. Of particular importance is the manner in which information is shuttled back and forth between such networks, and whether or not there exists general principles that guide the flow of information. Herein, we identify Wiener's rule, which conjectures how information is transfered in an information-dominated process. Moreover, we show that this rule is a consequence of the Principle of Complexity Management (PCM) that determines the information exchange between complex networks. A consequence of the PCM is that the maximum information transfer occurs at a 1/f noise resonance. The information transfer between two complex networks is also determined by direct numerical calculation of a master equation model of network dynamics using interacting two-state elements, the decision-making model (DMM). The DMM generates phase transitions and on a two-dimensional lattice, reduces to the Ising model in an appropriate limit. The computations using the DMM suggest that the inverse power laws of links and survival probability are not necessarily related.
APA, Harvard, Vancouver, ISO, and other styles
13

Degerli, Y., F. Lavernhe, P. Magnan, and J. Farré. "Bandlimited 1/f-noise source." Electronics Letters 35, no. 7 (1999): 521. http://dx.doi.org/10.1049/el:19990417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

van der Ziel, A. "Unified presentation of 1/f noise in electron devices: fundamental 1/f noise sources." Proceedings of the IEEE 76, no. 3 (March 1988): 233–58. http://dx.doi.org/10.1109/5.4401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Klimontovich, Yu L., and J. P. Boon. "Natural Flicker Noise (“1/ f Noise”) in Music." Europhysics Letters (EPL) 3, no. 4 (February 15, 1987): 395–99. http://dx.doi.org/10.1209/0295-5075/3/4/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

van der Ziel, A., and P. H. Handel. "Quantum 1/f noise phenomena in semiconductor noise." Physica B+C 129, no. 1-3 (March 1985): 578–79. http://dx.doi.org/10.1016/0378-4363(85)90648-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

HANDEL, PETER H., and ADAM G. TOURNIER. "QUANTUM 1/f NOISE AND QUANTUM 1/f PHASE NOISE RELATED TO THE UNCERTAINTY RELATIONS." International Journal of Modern Physics B 20, no. 11n13 (May 20, 2006): 1621–28. http://dx.doi.org/10.1142/s0217979206033887.

Full text
Abstract:
Quantum 1/f noise is the manifestation of the coherent and conventional quantum 1/f effects (Q1/fE). The conventional Q1/fE is a fundamental quantum fluctuation of physical cross sections σ and process rates Γ, caused by the bremsstrahlung (recoil) energy and momentum losses of charged particles, when they are scattered, or accelerated in any way. The closely related coherent Q1/fE is present in any current carried by many particles. It is caused by the energy spread characterizing any coherent state of the electromagnetic field oscillators. According to the Heisenberg's uncertainty principle, because an approximation of the phase or position variable is known, exact knowledge of the energy is precluded. This energy spread results in nonstationary energy values, or fluctuations in the energy of the oscillators. To find the spectral density of these inescapable basic fluctuations, which are known to characterize any quantum state, which is not an energy eigenstate, we use an elementary physical derivation based on Schrödinger's definition of coherent states, which can be supplemented by a rigorous derivation from a well-known quantum-electrodynamical branch-point propagator. The example of a simple harmonic oscillator is also useful for illustrating the uncertainty that arises due to Q 1/f Noise. Clearly illustrating the relation between the uncertainty principle and Q 1/f noise.
APA, Harvard, Vancouver, ISO, and other styles
18

Kendal, Wayne S. "Fluctuation Scaling and 1/f Noise." Journal of Basic and Applied Physics 2, no. 2 (May 8, 2013): 40–49. http://dx.doi.org/10.5963/jbap0202002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kazakov, Kirill A. "1/f noise and quantum indeterminacy." Physics Letters A 384, no. 31 (November 2020): 126812. http://dx.doi.org/10.1016/j.physleta.2020.126812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Dewey, T. G., and J. G. Bann. "Protein dynamics and 1/f noise." Biophysical Journal 63, no. 2 (August 1992): 594–98. http://dx.doi.org/10.1016/s0006-3495(92)81603-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kaulakys, B. "Autoregressive model of 1/f noise." Physics Letters A 257, no. 1-2 (June 1999): 37–42. http://dx.doi.org/10.1016/s0375-9601(99)00284-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Tacano, M., and Y. Sugiyama. "1/f noise in GaAs filaments." IEEE Transactions on Electron Devices 38, no. 11 (1991): 2548–53. http://dx.doi.org/10.1109/16.97421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Gilden, D., T. Thornton, and M. Mallon. "1/f noise in human cognition." Science 267, no. 5205 (March 24, 1995): 1837–39. http://dx.doi.org/10.1126/science.7892611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Clevers, R. H. M. "1/ f noise and number fluctuations." Journal of Applied Physics 60, no. 10 (November 15, 1986): 3794–96. http://dx.doi.org/10.1063/1.337548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kaulakys, B., and T. Meškauskas. "Models for generation 1/f noise." Microelectronics Reliability 40, no. 11 (November 2000): 1781–85. http://dx.doi.org/10.1016/s0026-2714(00)00085-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Van Vliet, Carolyne M. "Random walk and 1/f noise." Physica A: Statistical Mechanics and its Applications 303, no. 3-4 (January 2002): 421–26. http://dx.doi.org/10.1016/s0378-4371(01)00489-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Clevers, R. H. M. "1/f noise in ring geometries." Journal of Applied Physics 65, no. 9 (May 1989): 3477–79. http://dx.doi.org/10.1063/1.342616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ruseckas, J., B. Kaulakys, and V. Gontis. "Herding model and 1/f noise." EPL (Europhysics Letters) 96, no. 6 (December 1, 2011): 60007. http://dx.doi.org/10.1209/0295-5075/96/60007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Collins, Philip G., M. S. Fuhrer, and A. Zettl. "1/f noise in carbon nanotubes." Applied Physics Letters 76, no. 7 (February 14, 2000): 894–96. http://dx.doi.org/10.1063/1.125621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kuzovlev, Yurii E. "Why nature needs 1/f-noise." Uspekhi Fizicheskih Nauk 185, no. 7 (2015): 773–83. http://dx.doi.org/10.3367/ufnr.0185.201507d.0773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kuzovlev, Yu E. "Why nature needs 1/f noise." Physics-Uspekhi 58, no. 7 (July 31, 2015): 719–29. http://dx.doi.org/10.3367/ufne.0185.201507d.0773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Raquet, B., J. M. D. Coey, D. M. Lind, S. von Molnár, A. Anane, and R. H. Koch. "1/f noise in magnetite films." Journal of Applied Physics 85, no. 8 (April 15, 1999): 5582–84. http://dx.doi.org/10.1063/1.369806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Vandamme, L. K. J. "Bulk and surface 1/f noise." IEEE Transactions on Electron Devices 36, no. 5 (May 1989): 987–92. http://dx.doi.org/10.1109/16.299682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Heerema, S. J., G. F. Schneider, M. Rozemuller, L. Vicarelli, H. W. Zandbergen, and C. Dekker. "1/f noise in graphene nanopores." Nanotechnology 26, no. 7 (January 28, 2015): 074001. http://dx.doi.org/10.1088/0957-4484/26/7/074001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Green, C. T., and B. K. Jones. "1/f noise in bipolar transistors." Journal of Physics D: Applied Physics 18, no. 1 (January 14, 1985): 77–91. http://dx.doi.org/10.1088/0022-3727/18/1/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Gilden, David L. "Cognitive emissions of 1/f noise." Psychological Review 108, no. 1 (2001): 33–56. http://dx.doi.org/10.1037/0033-295x.108.1.33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Stephany, Joseph F. "A theory of 1/f noise." Journal of Applied Physics 83, no. 6 (March 15, 1998): 3139–43. http://dx.doi.org/10.1063/1.367071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Yang, Zhiyong. "Conformal invariance and 1/f noise." Physics Letters A 197, no. 3 (January 1995): 235–37. http://dx.doi.org/10.1016/0375-9601(94)00943-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Bulgac, Aurel. "1/ f -noise in metallic clusters." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 40, no. 1-4 (May 1, 1997): 454–57. http://dx.doi.org/10.1007/s004600050250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kinch, M. A., C. F. Wan, and J. D. Beck. "1/f noise in HgCdTe photodiodes." Journal of Electronic Materials 34, no. 6 (June 2005): 928–32. http://dx.doi.org/10.1007/s11664-005-0044-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

El-Nahal, Fady. "Coherent 16 Quadrature Amplitude Modulation (16QAM) Optical Communication Systems." Photonics Letters of Poland 10, no. 2 (June 30, 2018): 57. http://dx.doi.org/10.4302/plp.v10i2.809.

Full text
Abstract:
Coherent optical fiber communications for data rates of 100Gbit/s and beyond have recently been studied extensively primarily because high sensitivity of coherent receivers could extend the transmission distance. Spectrally efficient modulation techniques such as M-ary quadrature amplitude modulation (M-QAM) can be employed for coherent optical links. The integration of multi-level modulation formats based on coherent technologies with wavelength-division multiplexed (WDM) systems is key to meet the aggregate bandwidth demand. This paper reviews coherent 16 quadrature amplitude modulation (16QAM) systems to scale the network capacity and maximum reach of current optical communication systems to accommodate traffic growth. Full Text: PDF ReferencesK. Kikuchi, "Fundamentals of Coherent Optical Fiber Communications", J. Lightwave Technol., vol. 34, no. 1, pp. 157-179, 2016. CrossRef S. Tsukamoto, D.-S. Ly-Gagnon, K. Katoh, and K. Kikuchi, "Coherent Demodulation of 40-Gbit/s Polarization-Multiplexed QPSK Signals with16-GHz Spacing after 200-km Transmission", Proc. OFc, Paper PDP29, (2005). DirectLink K. Kikuchi, "Coherent Optical Communication Technology", Proc. OFC, Paper Th4F.4, (2015). CrossRef J. M. Kahn and K.-P. Ho, "Spectral efficiency limits and modulation/detection techniques for DWDM systems", IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 2, pp. 259–272, (2004). CrossRef S. Tsukamoto, K. Katoh, and K. Kikuchi, "Coherent demodulation of optical multilevel phase-shift-keying signals using homodyne detection and digital signal processing", IEEE Photon. Technol. Lett., vol. 18, no. 10, pp. 1131–1133, (2006). CrossRef Y. Mori, C. Zhang, K. Igarashi, K. Katoh, and K. Kikuchi, "Unrepeated 200-km transmission of 40-Gbit/s 16-QAM signals using digital coherent receiver", Opt. Exp., vol. 17, no. 32, pp. 1435–1441, (2009). CrossRef H. Nakashima, Et al., "Digital Nonlinear Compensation Technologies in Coherent Optical Communication Systems", Proc. OFC, Paper W1G.5, (2017). CrossRef S. J. Savory, "Digital filters for coherent optical receivers", Opt. Exp., vol. 16, no. 2, pp. 804–817, (2008). CrossRef D. S. Millar, T. Koike-Akino, S. Ö. Arık, K. Kojima, K. Parsons, T. Yoshida, and T. Sugihara, "High-dimensional modulation for coherent optical communications systems", Opt. Express, vol. 22, no. 7, pp 8798-8812, (2014). CrossRef R. Griffin and A. Carter, "Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission", Proc. OFC, Paper WX6, (2002). DirectLink K. Kikuchi, "Digital coherent optical communication systems: fundamentals and future prospects", IEICE Electron. Exp., vol. 8, no. 20, pp. 1642–1662, (2011). CrossRef F. Derr, "Optical QPSK transmission system with novel digital receiver concept", Electron Lett., vol. 27, no. 23, pp. 2177–2179, (1991). CrossRef R. No’e, "Phase noise tolerant synchronous QPSK receiver concept with digital I&Q baseband processing", Proc. OECC, Paper 16C2-5, (2004). DirectLink D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, "Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation", J. Lightw. Technol., vol. 24, no. 1, pp. 12–21, (2006). CrossRef M. Taylor, "Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments", IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 674–676, (2004). CrossRef S. Tsukamoto, K. Katoh, and K. Kikuchi, "Unrepeated transmission of 20-Gb/s optical quadrature phase-shift-keying signal over 200-km standard single-mode fiber based on digital processing of homodyne-detected signal for Group-velocity dispersion compensation", IEEE Photon. Technol. Lett., vol. 18, no. 9, pp. 1016–1018, (2006). CrossRef S. Tsukamoto, Y. Ishikawa, and K. Kikuchi, "Optical Homodyne Receiver Comprising Phase and Polarization Diversities with Digital Signal Processing", Proc. ECOC, Paper Mo4.2.1, (2006). CrossRef K. Kikuchi and S. Tsukamoto, "Evaluation of Sensitivity of the Digital Coherent Receiver", J. Lightw. Technol., vol. 20, no. 13, pp. 1817–1822, (2008). CrossRef S. Ishimura and K. Kikuchi, "Multi-dimensional Permutation Modulation Aiming at Both High Spectral Efficiency and High Power Efficiency", Proc. OFC/NFOEC, Paper M3A.2, (2014). CrossRef F. I. El-Nahal and A. H. M. Husein, "Radio over fiber access network architecture employing RSOA with downstream OQPSK and upstream re-modulated OOK data", (Optik) Int. J. Light Electron Opt., vol. 123, no. 14, pp: 1301-1303, (2012). CrossRef T. Koike-Akino, D. S. Millar, K. Kojima, and K. Parsons, "Eight-Dimensional Modulation for Coherent Optical Communications", Proc. ECOC, Paper Tu.3.C.3, (2013). DirectLink B. Sklar, Digital communications: Fundamentals and Applications, Prentice-Hall, (2001).
APA, Harvard, Vancouver, ISO, and other styles
42

WESSELBERG, T. "Photonic theory of 1/f1/f noise." Progress in Quantum Electronics 30, no. 6 (2006): 297–316. http://dx.doi.org/10.1016/j.pquantelec.2006.10.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

BIRBAS, A. N., Q. PENG, A. VAN DER ZIEL, and A. D. VAN RHEENEN. "ACCELERATION 1/F NOISE IN SILICON MOSFETs." Le Journal de Physique Colloques 49, no. C4 (September 1988): C4–153—C4–156. http://dx.doi.org/10.1051/jphyscol:1988430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

VANDAMME, L. K. J. "SPATIAL DISTRIBUTION OF 1/f NOISE SOURCE." Le Journal de Physique Colloques 49, no. C4 (September 1988): C4–157—C4–160. http://dx.doi.org/10.1051/jphyscol:1988431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

TAKAYASU, MISAKO, and HIDEKI TAKAYASU. "1/f NOISE IN A TRAFFIC MODEL." Fractals 01, no. 04 (December 1993): 860–66. http://dx.doi.org/10.1142/s0218348x93000885.

Full text
Abstract:
One-dimensional traffic flow is simulated by a cellular-automaton-type discrete model. As we increase the car density, the model shows a phase transition between a jam phase and a non-jam phase. By adding random perturbations we found a 1/f power spectrum in the jam phase, whereas a white noise is observed in the non-jam phase.
APA, Harvard, Vancouver, ISO, and other styles
46

Xiao, M., K. B. Klassen, and J. C. L. Van Peppen. "1/f noise in saturated GMR heads." IEEE Transactions on Magnetics 36, no. 5 (2000): 2593–95. http://dx.doi.org/10.1109/20.908526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kurdak, C., J. Kim, A. Kuo, J. J. Lucido, L. A. Farina, X. Bai, M. P. Rowe, and A. J. Matzger. "1∕f noise in gold nanoparticle chemosensors." Applied Physics Letters 86, no. 7 (2005): 073506. http://dx.doi.org/10.1063/1.1865324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kleinpenning, T. G. M. "On 1/f trapping noise in MOSTs." IEEE Transactions on Electron Devices 37, no. 9 (1990): 2084–89. http://dx.doi.org/10.1109/16.57173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Csabai, I. "1/f noise in computer network traffic." Journal of Physics A: Mathematical and General 27, no. 12 (June 21, 1994): L417—L421. http://dx.doi.org/10.1088/0305-4470/27/12/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kononovicius, A., and J. Ruseckas. "Nonlinear GARCH model and 1/f noise." Physica A: Statistical Mechanics and its Applications 427 (June 2015): 74–81. http://dx.doi.org/10.1016/j.physa.2015.02.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography