Journal articles on the topic '-1 ribosomal frameshifting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic '-1 ribosomal frameshifting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lopinski, John D., Jonathan D. Dinman, and Jeremy A. Bruenn. "Kinetics of Ribosomal Pausing during Programmed −1 Translational Frameshifting." Molecular and Cellular Biology 20, no. 4 (February 15, 2000): 1095–103. http://dx.doi.org/10.1128/mcb.20.4.1095-1103.2000.
Full textChoi, Junhong, Sinéad O’Loughlin, John F. Atkins, and Joseph D. Puglisi. "The energy landscape of −1 ribosomal frameshifting." Science Advances 6, no. 1 (January 2020): eaax6969. http://dx.doi.org/10.1126/sciadv.aax6969.
Full textHuang, Wan-Ping, Che-Pei Cho, and Kung-Yao Chang. "mRNA-Mediated Duplexes Play Dual Roles in the Regulation of Bidirectional Ribosomal Frameshifting." International Journal of Molecular Sciences 19, no. 12 (December 4, 2018): 3867. http://dx.doi.org/10.3390/ijms19123867.
Full textKontos, Harry, Sawsan Napthine, and Ian Brierley. "Ribosomal Pausing at a Frameshifter RNA Pseudoknot Is Sensitive to Reading Phase but Shows Little Correlation with Frameshift Efficiency." Molecular and Cellular Biology 21, no. 24 (December 15, 2001): 8657–70. http://dx.doi.org/10.1128/mcb.21.24.8657-8670.2001.
Full textMeskauskas, Arturas, Jennifer L. Baxter, Edward A. Carr, Jason Yasenchak, Jennifer E. G. Gallagher, Susan J. Baserga, and Jonathan D. Dinman. "Delayed rRNA Processing Results in Significant Ribosome Biogenesis and Functional Defects." Molecular and Cellular Biology 23, no. 5 (March 1, 2003): 1602–13. http://dx.doi.org/10.1128/mcb.23.5.1602-1613.2003.
Full textFinch, Leanne K., Roger Ling, Sawsan Napthine, Allan Olspert, Thomas Michiels, Cécile Lardinois, Susanne Bell, Gary Loughran, Ian Brierley, and Andrew E. Firth. "Characterization of Ribosomal Frameshifting in Theiler's Murine Encephalomyelitis Virus." Journal of Virology 89, no. 16 (June 10, 2015): 8580–89. http://dx.doi.org/10.1128/jvi.01043-15.
Full textXie, Ping. "Dynamics of +1 ribosomal frameshifting." Mathematical Biosciences 249 (March 2014): 44–51. http://dx.doi.org/10.1016/j.mbs.2014.01.008.
Full textRamos, F. Dos, M. Carrasco, T. Doyle, and I. Brierley. "Programmed −1 ribosomal frameshifting in the SARS coronavirus." Biochemical Society Transactions 32, no. 6 (October 26, 2004): 1081–83. http://dx.doi.org/10.1042/bst0321081.
Full textCao, Song, and Shi-Jie Chen. "Predicting ribosomal frameshifting efficiency." Physical Biology 5, no. 1 (March 11, 2008): 016002. http://dx.doi.org/10.1088/1478-3975/5/1/016002.
Full textTumer, Nilgun E., Bijal A. Parikh, Ping Li, and Jonathan D. Dinman. "The Pokeweed Antiviral Protein Specifically Inhibits Ty1-Directed +1 Ribosomal Frameshifting and Retrotransposition in Saccharomyces cerevisiae." Journal of Virology 72, no. 2 (February 1, 1998): 1036–42. http://dx.doi.org/10.1128/jvi.72.2.1036-1042.1998.
Full textOguro, Akihiro, Tomoaki Shigeta, Kodai Machida, Tomoaki Suzuki, Takeo Iwamoto, Senya Matsufuji, and Hiroaki Imataka. "Translation efficiency affects the sequence-independent +1 ribosomal frameshifting by polyamines." Journal of Biochemistry 168, no. 2 (March 17, 2020): 139–49. http://dx.doi.org/10.1093/jb/mvaa032.
Full textChen, Chaoping, and Ronald C. Montelaro. "Characterization of RNA Elements That Regulate Gag-Pol Ribosomal Frameshifting in Equine Infectious Anemia Virus." Journal of Virology 77, no. 19 (October 1, 2003): 10280–87. http://dx.doi.org/10.1128/jvi.77.19.10280-10287.2003.
Full textPeltz, Stuart W., Amy B. Hammell, Ying Cui, Jason Yasenchak, Lara Puljanowski, and Jonathan D. Dinman. "Ribosomal Protein L3 Mutants Alter Translational Fidelity and Promote Rapid Loss of the Yeast Killer Virus." Molecular and Cellular Biology 19, no. 1 (January 1, 1999): 384–91. http://dx.doi.org/10.1128/mcb.19.1.384.
Full textMeskauskas, Arturas, Alexey N. Petrov, and Jonathan D. Dinman. "Identification of Functionally Important Amino Acids of Ribosomal Protein L3 by Saturation Mutagenesis." Molecular and Cellular Biology 25, no. 24 (December 15, 2005): 10863–74. http://dx.doi.org/10.1128/mcb.25.24.10863-10874.2005.
Full textHong, Samuel, S. Sunita, Tatsuya Maehigashi, Eric D. Hoffer, Jack A. Dunkle, and Christine M. Dunham. "Mechanism of tRNA-mediated +1 ribosomal frameshifting." Proceedings of the National Academy of Sciences 115, no. 44 (September 27, 2018): 11226–31. http://dx.doi.org/10.1073/pnas.1809319115.
Full textBock, Lars V., Neva Caliskan, Bee-Zen Peng, Natalia Korniy, Riccardo Belardinelli, Frank Peske, Marina V. Rodnina, and Helmut Grubmueller. "Kinetics and Thermodynamics of −1 Ribosomal Frameshifting." Biophysical Journal 118, no. 3 (February 2020): 546a—547a. http://dx.doi.org/10.1016/j.bpj.2019.11.2989.
Full textCui, Ying, Jonathan D. Dinman, Terri Goss Kinzy, and Stuart W. Peltz. "The Mof2/Sui1 Protein Is a General Monitor of Translational Accuracy." Molecular and Cellular Biology 18, no. 3 (March 1, 1998): 1506–16. http://dx.doi.org/10.1128/mcb.18.3.1506.
Full textChang, Kai-Chun. "Revealing −1 Programmed Ribosomal Frameshifting Mechanisms by Single-Molecule Techniques and Computational Methods." Computational and Mathematical Methods in Medicine 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/569870.
Full textBiswas, Preetha, Xi Jiang, Annmarie L. Pacchia, Joseph P. Dougherty, and Stuart W. Peltz. "The Human Immunodeficiency Virus Type 1 Ribosomal Frameshifting Site Is an Invariant Sequence Determinant and an Important Target for Antiviral Therapy." Journal of Virology 78, no. 4 (February 15, 2004): 2082–87. http://dx.doi.org/10.1128/jvi.78.4.2082-2087.2004.
Full textMazauric, Marie-Hélène, Yeonee Seol, Satoko Yoshizawa, Koen Visscher, and Dominique Fourmy. "Interaction of the HIV-1 frameshift signal with the ribosome." Nucleic Acids Research 37, no. 22 (October 7, 2009): 7654–64. http://dx.doi.org/10.1093/nar/gkp779.
Full textSharma, Virag, Marie-Françoise Prère, Isabelle Canal, Andrew E. Firth, John F. Atkins, Pavel V. Baranov, and Olivier Fayet. "Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in Escherichia coli." Nucleic Acids Research 42, no. 11 (May 29, 2014): 7210–25. http://dx.doi.org/10.1093/nar/gku386.
Full textXie, Ping. "A dynamical model of programmed −1 ribosomal frameshifting." Journal of Theoretical Biology 336 (November 2013): 119–31. http://dx.doi.org/10.1016/j.jtbi.2013.07.022.
Full textHsu, Chiung-Fang, Kai-Chun Chang, Yi-Lan Chen, Po-Szu Hsieh, An-I. Lee, Jui-Yun Tu, Yu-Ting Chen, and Jin-Der Wen. "Formation of frameshift-stimulating RNA pseudoknots is facilitated by remodeling of their folding intermediates." Nucleic Acids Research 49, no. 12 (June 23, 2021): 6941–57. http://dx.doi.org/10.1093/nar/gkab512.
Full textGao, Feng, and Anne E. Simon. "Multiple Cis-acting elements modulate programmed -1 ribosomal frameshifting in Pea enation mosaic virus." Nucleic Acids Research 44, no. 2 (November 17, 2015): 878–95. http://dx.doi.org/10.1093/nar/gkv1241.
Full textPlant, Ewan P., Rasa Rakauskaitė, Deborah R. Taylor, and Jonathan D. Dinman. "Achieving a Golden Mean: Mechanisms by Which Coronaviruses Ensure Synthesis of the Correct Stoichiometric Ratios of Viral Proteins." Journal of Virology 84, no. 9 (February 17, 2010): 4330–40. http://dx.doi.org/10.1128/jvi.02480-09.
Full textVimaladithan, A., and P. J. Farabaugh. "Special peptidyl-tRNA molecules can promote translational frameshifting without slippage." Molecular and Cellular Biology 14, no. 12 (December 1994): 8107–16. http://dx.doi.org/10.1128/mcb.14.12.8107.
Full textVimaladithan, A., and P. J. Farabaugh. "Special peptidyl-tRNA molecules can promote translational frameshifting without slippage." Molecular and Cellular Biology 14, no. 12 (December 1994): 8107–16. http://dx.doi.org/10.1128/mcb.14.12.8107-8116.1994.
Full textMuldoon-Jacobs, Kristi L., and Jonathan D. Dinman. "Specific Effects of Ribosome-Tethered Molecular Chaperones on Programmed −1 Ribosomal Frameshifting." Eukaryotic Cell 5, no. 4 (April 2006): 762–70. http://dx.doi.org/10.1128/ec.5.4.762-770.2006.
Full textKelly, Jamie A., Michael T. Woodside, and Jonathan D. Dinman. "Programmed −1 Ribosomal Frameshifting in coronaviruses: A therapeutic target." Virology 554 (February 2021): 75–82. http://dx.doi.org/10.1016/j.virol.2020.12.010.
Full textNibert, Max L., Jesse D. Pyle, and Andrew E. Firth. "A +1 ribosomal frameshifting motif prevalent among plant amalgaviruses." Virology 498 (November 2016): 201–8. http://dx.doi.org/10.1016/j.virol.2016.07.002.
Full textHung, Magdeleine, Pratiksha Patel, Susan Davis, and Simon R. Green. "Importance of Ribosomal Frameshifting for Human Immunodeficiency Virus Type 1 Particle Assembly and Replication." Journal of Virology 72, no. 6 (June 1, 1998): 4819–24. http://dx.doi.org/10.1128/jvi.72.6.4819-4824.1998.
Full textDinman, J. D., and R. B. Wickner. "Translational maintenance of frame: mutants of Saccharomyces cerevisiae with altered -1 ribosomal frameshifting efficiencies." Genetics 136, no. 1 (January 1, 1994): 75–86. http://dx.doi.org/10.1093/genetics/136.1.75.
Full textNapthine, Sawsan, Emmely E. Treffers, Susanne Bell, Ian Goodfellow, Ying Fang, Andrew E. Firth, Eric J. Snijder, and Ian Brierley. "A novel role for poly(C) binding proteins in programmed ribosomal frameshifting." Nucleic Acids Research 44, no. 12 (June 2, 2016): 5491–503. http://dx.doi.org/10.1093/nar/gkw480.
Full textDoyon, Louise, Catherine Payant, Léa Brakier-Gingras, and Daniel Lamarre. "Novel Gag-Pol Frameshift Site in Human Immunodeficiency Virus Type 1 Variants Resistant to Protease Inhibitors." Journal of Virology 72, no. 7 (July 1, 1998): 6146–50. http://dx.doi.org/10.1128/jvi.72.7.6146-6150.1998.
Full textPlant, Ewan, P. "The role of programmed-1 ribosomal frameshifting in coronavirus propagation." Frontiers in Bioscience Volume, no. 13 (2008): 4873. http://dx.doi.org/10.2741/3046.
Full textCaliskan, Neva, Frank Peske, and Marina V. Rodnina. "Changed in translation: mRNA recoding by −1 programmed ribosomal frameshifting." Trends in Biochemical Sciences 40, no. 5 (May 2015): 265–74. http://dx.doi.org/10.1016/j.tibs.2015.03.006.
Full textBrierley, Ian, and Francisco J. Dos Ramos. "Programmed ribosomal frameshifting in HIV-1 and the SARS–CoV." Virus Research 119, no. 1 (July 2006): 29–42. http://dx.doi.org/10.1016/j.virusres.2005.10.008.
Full textBailey, Brenae L., Koen Visscher, and Joseph Watkins. "A stochastic model of translation with −1 programmed ribosomal frameshifting." Physical Biology 11, no. 1 (February 5, 2014): 016009. http://dx.doi.org/10.1088/1478-3975/11/1/016009.
Full textToulouse, André, Faith Au-Yeung, Claudia Gaspar, Julie Roussel, Patrick Dion, and Guy A. Rouleau. "Ribosomal frameshifting on MJD-1 transcripts with long CAG tracts." Human Molecular Genetics 14, no. 18 (August 8, 2005): 2649–60. http://dx.doi.org/10.1093/hmg/ddi299.
Full textJacks, Tyler, Michael D. Power, Frank R. Masiarz, Paul A. Luciw, Philip J. Barr, and Harold E. Varmus. "Characterization of ribosomal frameshifting in HIV-1 gag-pol expression." Nature 331, no. 6153 (January 1988): 280–83. http://dx.doi.org/10.1038/331280a0.
Full textChoi, Jinah, Zhenming Xu, and Jing-hsiung Ou. "Triple Decoding of Hepatitis C Virus RNA by Programmed Translational Frameshifting." Molecular and Cellular Biology 23, no. 5 (March 1, 2003): 1489–97. http://dx.doi.org/10.1128/mcb.23.5.1489-1497.2003.
Full textA. Hossain, M., and S. W. Peltz. "Eukaryotic Release Factor 1 Affects +1 and -1 Ribosomal Frameshifting in HeLa Cells." International Journal of Biological Chemistry 3, no. 1 (December 15, 2008): 35–41. http://dx.doi.org/10.3923/ijbc.2009.35.41.
Full textThulson, Eliza, Erik W. Hartwick, Andrew Cooper-Sansone, Marcus A. C. Williams, Mary E. Soliman, Leila K. Robinson, Jeffrey S. Kieft, and Kathryn D. Mouzakis. "An RNA pseudoknot stimulates HTLV-1 pro-pol programmed −1 ribosomal frameshifting." RNA 26, no. 4 (January 24, 2020): 512–28. http://dx.doi.org/10.1261/rna.070490.119.
Full textGurvich, Olga L., Pavel V. Baranov, Raymond F. Gesteland, and John F. Atkins. "Expression Levels Influence Ribosomal Frameshifting at the Tandem Rare Arginine Codons AGG_AGG and AGA_AGA in Escherichia coli." Journal of Bacteriology 187, no. 12 (June 15, 2005): 4023–32. http://dx.doi.org/10.1128/jb.187.12.4023-4032.2005.
Full textGarcia-Miranda, Pablo, Jordan T. Becker, Bayleigh E. Benner, Alexander Blume, Nathan M. Sherer, and Samuel E. Butcher. "Stability of HIV Frameshift Site RNA Correlates with Frameshift Efficiency and Decreased Virus Infectivity." Journal of Virology 90, no. 15 (May 18, 2016): 6906–17. http://dx.doi.org/10.1128/jvi.00149-16.
Full textFirth, A. E., B. W. Jagger, H. M. Wise, C. C. Nelson, K. Parsawar, N. M. Wills, S. Napthine, J. K. Taubenberger, P. Digard, and J. F. Atkins. "Ribosomal frameshifting used in influenza A virus expression occurs within the sequence UCC_UUU_CGU and is in the +1 direction." Open Biology 2, no. 10 (October 2012): 120109. http://dx.doi.org/10.1098/rsob.120109.
Full textLucchesi, Jimmy, Katri Mäkeläinen, Andres Merits, Tiina Tamm, and Kristiina Mäkinen. "Regulation of −1 ribosomal frameshifting directed by Cocksfoot mottle sobemovirus genome." European Journal of Biochemistry 267, no. 12 (June 2000): 3523–29. http://dx.doi.org/10.1046/j.1432-1327.2000.01379.x.
Full textBelfield, Eric J., Richard K. Hughes, Nicolas Tsesmetzis, Mike J. Naldrett, and Rod Casey. "The gateway pDEST17 expression vector encodes a −1 ribosomal frameshifting sequence." Nucleic Acids Research 35, no. 4 (January 31, 2007): 1322–32. http://dx.doi.org/10.1093/nar/gkm003.
Full textPark, Hee Jung, So Jung Park, Doo-Byoung Oh, Sangho Lee, and Yang-Gyun Kim. "Increased -1 ribosomal frameshifting efficiency by yeast prion-like phenotype [PSI+]." FEBS Letters 583, no. 4 (January 21, 2009): 665–69. http://dx.doi.org/10.1016/j.febslet.2009.01.015.
Full textRatinier, Maxime, Steeve Boulant, Christophe Combet, Paul Targett-Adams, John McLauchlan, and Jean-Pierre Lavergne. "Transcriptional slippage prompts recoding in alternate reading frames in the hepatitis C virus (HCV) core sequence from strain HCV-1." Journal of General Virology 89, no. 7 (July 1, 2008): 1569–78. http://dx.doi.org/10.1099/vir.0.83614-0.
Full text