Academic literature on the topic '13C isotope labeling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '13C isotope labeling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "13C isotope labeling"

1

Sivashankari, Ramamoorthi M., Yuki Miyahara, and Takeharu Tsuge. "Poly(3-Hydroxybutyrate) Biosynthesis from [U-13C6]D-Glucose by Ralstonia eutropha NCIMB 11599 and Recombinant Escherichia coli." Microbiology Research 14, no. 4 (2023): 1894–906. http://dx.doi.org/10.3390/microbiolres14040129.

Full text
Abstract:
The use of stable isotope-labeled polymers in in situ biodegradation tests provides detailed information on the degradation process. As isotope-labeled raw chemicals are generally expensive, it is desirable to prepare polymer samples with high production yields and high isotope-labeling ratios. The biodegradable plastic poly[(R)-3-hydroxybutyrate)] (P(3HB)) is produced by microorganisms. In this study, to produce carbon 13 (13C)-labeled P(3HB) from [U-13C6]D-glucose (13C-glucose), the culture conditions needed for high production yields and high 13C-labeling ratios were investigated using Ralstonia eutropha NCIMB 11599 and recombinant Escherichia coli JM109. We found that over 10 g/L of P(3HB) could be obtained when these microorganisms were cultured in Luria-Bertani (LB3) medium containing 3 g/L NaCl and 40 g/L 13C-glucose, while 1.4–4.7 g/L of P(3HB) was obtained when a mineral salt (MS) medium containing 20 g/L 13C-glucose was used. The 13C-labeling ratio of P(3HB) was determined by 1H nuclear magnetic resonance and gas chromatography-mass spectrometry (GC-MS), and both analytical methods yielded nearly identical results. High 13C-labeling ratios (97.6 atom% by GC-MS) were observed in the MS medium, whereas low 13C-labeling ratios (88.8–94.4 atom% by GC-MS) were observed in the LB3 medium. Isotope effects were observed for the P(3HB) content in cells cultured in the LB3 medium and the polydispersity of P(3HB).
APA, Harvard, Vancouver, ISO, and other styles
2

Ali, Rustam, Lindsay D. Clark, Jacob A. Zahm, et al. "Improved strategy for isoleucine 1H/13C methyl labeling in Pichia pastoris." Journal of Biomolecular NMR 73, no. 12 (2019): 687–97. http://dx.doi.org/10.1007/s10858-019-00281-1.

Full text
Abstract:
Abstract Site specific methyl labeling combined with methyl TROSY offers a powerful NMR approach to study structure and dynamics of proteins and protein complexes of high molecular weight. Robust and cost-effective methods have been developed for site specific protein 1H/13C methyl labeling in an otherwise deuterated background in bacteria. However, bacterial systems are not suitable for expression and isotope labeling of many eukaryotic and membrane proteins. The yeast Pichia pastoris (P. pastoris) is a commonly used host for expression of eukaryotic proteins, and site-specific methyl labeling of perdeuterated eukaryotic proteins has recently been achieved with this system. However, the practical utility of methyl labeling and deuteration in P. pastoris is limited by high costs. Here, we describe an improved method for 1H/13C-labeling of the δ-methyl group of isoleucine residues in a perdeuterated background, which reduces the cost by ≥ 50% without compromising the efficiency of isotope enrichment. We have successfully implemented this method to label actin and a G-protein coupled receptor. Our approach will facilitate studies of the structure and dynamics of eukaryotic proteins by NMR spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
3

Miyatake, Tetsuro, Barbara J. MacGregor, and Henricus T. S. Boschker. "Linking Microbial Community Function to Phylogeny of Sulfate-Reducing Deltaproteobacteria in Marine Sediments by Combining Stable Isotope Probing with Magnetic-Bead Capture Hybridization of 16S rRNA." Applied and Environmental Microbiology 75, no. 15 (2009): 4927–35. http://dx.doi.org/10.1128/aem.00652-09.

Full text
Abstract:
ABSTRACT We further developed the stable isotope probing, magnetic-bead capture method to make it applicable for linking microbial community function to phylogeny at the class and family levels. The main improvements were a substantial decrease in the protocol blank and an approximately 10-fold increase in the detection limit by using a micro-elemental analyzer coupled to isotope ratio mass spectrometry to determine 13C labeling of isolated 16S rRNA. We demonstrated the method by studying substrate utilization by Desulfobacteraceae, a dominant group of complete oxidizing sulfate-reducing Deltaproteobacteria in marine sediments. Stable-isotope-labeled [13C]glucose, [13C]propionate, or [13C]acetate was fed into an anoxic intertidal sediment. We applied a nested set of three biotin-labeled oligonucleotide probes to capture Bacteria, Deltaproteobacteria, and finally Desulfobacteraceae rRNA by using hydrophobic streptavidin-coated paramagnetic beads. The target specificities of the probes were examined with pure cultures of target and nontarget species and by determining the phylogenetic composition of the captured sediment rRNA. The specificity of the final protocol was generally very good, as more than 90% of the captured 16S rRNA belonged to the target range of the probes. Our results indicated that Desulfobacteraceae were important consumers of propionate but not of glucose. However, the results for acetate utilization were less conclusive due to lower and more variable labeling levels in captured rRNA. The main advantage of the method in this study over other nucleic acid-based stable isotope probing methods is that 13C labeling can be much lower, to the extent that δ13C ratios can be studied even at their natural abundances.
APA, Harvard, Vancouver, ISO, and other styles
4

Fahey, Timothy J., Kayla R. Jacobs, and Ruth E. Sherman. "Fine root turnover in sugar maple estimated by 13C isotope labeling." Canadian Journal of Forest Research 42, no. 10 (2012): 1792–95. http://dx.doi.org/10.1139/x2012-128.

Full text
Abstract:
We evaluated variation in root turnover across five root orders in sugar maple ( Acer saccharum Marsh.) saplings growing in a northern hardwood forest in central New York, USA. We used a stable isotope approach in which root systems were labeled with 13C and root structural C sequentially sampled for 13C enrichment. Turnover of first- and second-order roots was apparently rapid with only about 5% of the 13C retained in living roots after two growing seasons. Although third- to fifth-order roots appeared to persist longer, differences among root orders were not statistically significant, probably mostly because of highly nonuniform initial labeling. This nonuniform labeling constrains the precision of root turnover quantification using this approach.
APA, Harvard, Vancouver, ISO, and other styles
5

Bagga, Puneet, Kevin L. Behar, Graeme F. Mason, Henk M. De Feyter, Douglas L. Rothman, and Anant B. Patel. "Characterization of Cerebral Glutamine Uptake from Blood in the Mouse Brain: Implications for Metabolic Modeling of 13C NMR Data." Journal of Cerebral Blood Flow & Metabolism 34, no. 10 (2014): 1666–72. http://dx.doi.org/10.1038/jcbfm.2014.129.

Full text
Abstract:
13C Nuclear Magnetic Resonance (NMR) studies of rodent and human brain using [1-13C]/[1,6-13C2]glucose as labeled substrate have consistently found a lower enrichment (~25% to 30%) of glutamine-C4 compared with glutamate-C4 at isotopic steady state. The source of this isotope dilution has not been established experimentally but may potentially arise either from blood/brain exchange of glutamine or from metabolism of unlabeled substrates in astrocytes, where glutamine synthesis occurs. In this study, the contribution of the former was evaluated ex vivo using 1H-[13C]-NMR spectroscopy together with intravenous infusion of [U-13C5]glutamine for 3, 15, 30, and 60 minutes in mice. 13C labeling of brain glutamine was found to be saturated at plasma glutamine levels > 1.0 mmol/L. Fitting a blood–astrocyte–neuron metabolic model to the 13C enrichment time courses of glutamate and glutamine yielded the value of glutamine influx, VGln(in), 0.036 ± 0.002 μmol/g per minute for plasma glutamine of 1.8 mmol/L. For physiologic plasma glutamine level (~0.6 mmol/L), VGln(in) would be ~0.010 μmol/g per minute, which corresponds to ~6% of the glutamine synthesis rate and rises to ~11% for saturating blood glutamine concentrations. Thus, glutamine influx from blood contributes at most ~20% to the dilution of astroglial glutamine-C4 consistently seen in metabolic studies using [1-13C]glucose.
APA, Harvard, Vancouver, ISO, and other styles
6

Jin, S. J., and K. Y. Tserng. "Biogenesis of dicarboxylic acids in rat liver homogenate studied by 13C labeling." American Journal of Physiology-Endocrinology and Metabolism 261, no. 6 (1991): E719—E724. http://dx.doi.org/10.1152/ajpendo.1991.261.6.e719.

Full text
Abstract:
The aim of this investigation is to assess whether long-chain fatty acids can be a substrate for omega-oxidation and the subsequent beta-oxidation to produce medium-chain dicarboxylic acids normally found in urine. Isolated rat liver 10,000 g supernatant and pellet fractions were used as the source of enzymes. The metabolism of palmitate was studied using [1,2,3,4-13C4]hexadecanoic acid as tracer. Selected ion monitoring mass spectrometry was utilized for the determination of isotope enrichments in precursor and products. Palmitate was found to be a good substrate for omega-oxidation; the rate was only slightly slower than decanoate. The beta-oxidation of [1,2,3,4-13C4]hexadecanedioic acid yielded labeled adipic, suberic, and sebacic acids. Isotope distribution in these dicarboxylic acids consisted mostly of unlabeled molecules (M + 0) and molecules labeled with four 13C (M + 4), in agreement with a beta-oxidation initiated equally from both carboxyl ends of the precursor. Significant enrichments (1-8%) with only two 13C labels (M + 2) indicate a partial bidirectional beta-oxidation. The direct metabolic conversion of hexadecanedioate to succinate was documented by the significant enrichment (1.40-1.90%) in M + 4 of succinate. These data indicate that long-chain fatty acids can be a substrate for the production of medium-chain dicarboxylates and the eventual direct conversion to succinate.
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Hee-Youn, Eun-Mi Hong, and Weon-Tae Lee. "Cost-effective isotope labeling technique developed for15N/13C-labeled proteins." Journal of the Korean Magnetic Resonance Society 15, no. 2 (2011): 115–27. http://dx.doi.org/10.6564/jkmrs.2011.15.2.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Robins, Richard, Katarzyna Romek, Mathilde Grand, et al. "Difficulties in Differentiating Natural from Synthetic Alkaloids by Isotope Ratio Monitoring using 13C Nuclear Magnetic Resonance Spectrometry." Planta Medica 84, no. 12/13 (2018): 935–40. http://dx.doi.org/10.1055/a-0601-7157.

Full text
Abstract:
AbstractWithin the food and pharmaceutical industries, there is an increasing legislative requirement for the accurate labeling of the productʼs origin. A key feature of this is to indicate whether the product is of natural or synthetic origin. With reference to this context, we have investigated three alkaloids commonly exploited for human use: nicotine, atropine, and caffeine. We have measured by 13C nuclear magnetic resonance spectrometry the position-specific distribution of 13C at natural abundance within several samples of each of these target molecules. This technique is well suited to distinguishing between origins, as the distribution of the 13C isotope reflects the primary source of the carbon atoms and the process by which the molecule was (bio)synthesized. Our findings indicate that labeling can be misleading, especially in relation to a supplied compound being labeled as “synthetic” even though its 13C profile indicates a natural origin.
APA, Harvard, Vancouver, ISO, and other styles
9

Novotny, Jessie Lanterman, and Karen Goodell. "Utility of carbon and nitrogen stable isotopes for inferring wild bee (Hymenoptera: Apoidea) use of adjacent foraging habitats." PLOS ONE 17, no. 7 (2022): e0271095. http://dx.doi.org/10.1371/journal.pone.0271095.

Full text
Abstract:
Isotope analysis has proven useful for understanding diets of animals that are difficult to track for extended periods. Bees are small yet highly mobile and often forage from multiple habitats. However, current methods of assessing diet are limited in scope. Efficient methods of tracking bee diets that integrate across life stages, distinguish habitat use, and are sensitive to taxonomic differences will inform conservation strategies. We evaluated the utility of stable isotope analysis for estimating contributions of adjacent habitats to bees’ diets. We also investigated taxonomic variation in bee and flower isotope composition. We measured natural abundance of carbon and nitrogen stable isotopes in two body regions from three wild bee genera, as well as in 25 species of flowers that likely comprised their diets. Bee ∂13C and ∂15N varied with habitat and taxonomic groups (conflated with month), but did not match spatial or seasonal trends in their food plants. Flower ∂13C was lowest in the forest and in April–June, as expected if driven by water availability. However, bee ∂13C was elevated in the spring, likely from overwintering nutritional stress or unpredictable food availability. Bumble bees (Bombus) were enriched in ∂15N compared to others, possibly reflecting differences in larval feeding. Bee diet mixing models had high variation and should be interpreted with caution. Models estimated similar habitat contributions to diets of spring Andrena and overwintered Bombus queens. Summer Bombus queens and workers were indistinguishable. Sweat bees (Halictus) were estimated to use comparatively more field flowers than others. Overall, taxon more strongly influenced isotope composition than either foraging habitat or month, likely because of associated differences in sociality and timing of annual activity. Future studies seeking to reveal bee diets by isotope analysis may gain better resolution in more isotopically distinct habitats, in conjunction with controlled feeding or isotope labeling experiments.
APA, Harvard, Vancouver, ISO, and other styles
10

Takeda, Mitsuhiro, Yohei Miyanoiri, Tsutomu Terauchi, and Masatsune Kainosho. "Conformational features and ionization states of Lys side chains in a protein studied using the stereo-array isotope labeling (SAIL) method." Magnetic Resonance 2, no. 1 (2021): 223–37. http://dx.doi.org/10.5194/mr-2-223-2021.

Full text
Abstract:
Abstract. Although both the hydrophobic aliphatic chain and hydrophilic ζ-amino group of the Lys side chain presumably contribute to the structures and functions of proteins, the dual nature of the Lys residue has not been fully investigated using NMR spectroscopy, due to the lack of appropriate methods to acquire comprehensive information on its long consecutive methylene chain. We describe herein a robust strategy to address the current situation, using various isotope-aided NMR technologies. The feasibility of our approach is demonstrated for the Δ+PHS/V66K variant of staphylococcal nuclease (SNase), which contains 21 Lys residues, including the engineered Lys-66 with an unusually low pKa of ∼ 5.6. All of the NMR signals for the 21 Lys residues were sequentially and stereospecifically assigned using the stereo-array isotope-labeled Lys (SAIL-Lys), [U-13C,15N; β2,γ2,δ2,ε3-D4]-Lys. The complete set of assigned 1H, 13C, and 15N NMR signals for the Lys side-chain moieties affords useful structural information. For example, the set includes the characteristic chemical shifts for the 13Cδ, 13Cε, and 15Nζ signals for Lys-66, which has the deprotonated ζ-amino group, and the large upfield shifts for the 1H and 13C signals for the Lys-9, Lys-28, Lys-84, Lys-110, and Lys-133 side chains, which are indicative of nearby aromatic rings. The 13Cε and 15Nζ chemical shifts of the SNase variant selectively labeled with either [ε-13C;ε,ε-D2]-Lys or SAIL-Lys, dissolved in H2O and D2O, showed that the deuterium-induced shifts for Lys-66 were substantially different from those of the other 20 Lys residues. Namely, the deuterium-induced shifts of the 13Cε and 15Nζ signals depend on the ionization states of the ζ-amino group, i.e., −0.32 ppm for Δδ13Cε [NζD3+-NζH3+] vs. −0.21 ppm for Δδ13Cε [NζD2-NζH2] and −1.1 ppm for Δδ15Nζ[NζD3+-NζH3+] vs. −1.8 ppm for Δδ15Nζ[NζD2-NζH2]. Since the 1D 13C NMR spectrum of a protein selectively labeled with [ε-13C;ε,ε-D2]-Lys shows narrow (> 2 Hz) and well-dispersed 13C signals, the deuterium-induced shift difference of 0.11 ppm for the protonated and deprotonated ζ-amino groups, which corresponds to 16.5 Hz at a field strength of 14 T (150 MHz for 13C), could be accurately measured. Although the isotope shift difference itself may not be absolutely decisive to distinguish the ionization state of the ζ-amino group, the 13Cδ, 13Cε, and 15Nζ signals for a Lys residue with a deprotonated ζ-amino group are likely to exhibit distinctive chemical shifts as compared to the normal residues with protonated ζ-amino groups. Therefore, the isotope shifts would provide a useful auxiliary index for identifying Lys residues with deprotonated ζ-amino groups at physiological pH levels.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "13C isotope labeling"

1

Ghirardo, Andrea [Verfasser]. "Studies of plant terpenoid biosynthesis using 13C stable isotope labeling techniques (KIT Scientific Reports ; 7583) / Andrea Ghirardo." Karlsruhe : KIT Scientific Publishing, 2011. http://d-nb.info/1185581405/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roy, Chowdhury Taniya. "Tracking Carbon Flow during Methane Oxidation into Methanotrophs using 13C-PLFA Labeling in Pulsing Freshwater Wetlands." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1339084813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Haynes, Christopher Allen. "Development of an assay for fatty acyl-CoAs using liquid chromatography-electrospray ionization-tandem mass spectrometry and its application to the stable isotope labeling and quantitation of sphingolipid metabolism." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/37171.

Full text
Abstract:
Fatty acyl-Coenzyme As are metabolites of lipid anabolism and catabolism. A method was developed for their quantitation in extracts of cultured mammalian cells using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Palmitoyl-CoA (C16:0-CoA) is utilized for de novo sphingolipid biosynthesis catalyzed by serine palmitoyltransferase (SPT), which condenses palmitoyl-CoA and serine to form 3-ketosphinganine. After reduction to form sphinganine (Sa), dihydroceramide synthase (CerS) can N-acylate the Sa using a second fatty acyl-CoA molecule, forming dihydroceramide (DHCer). The CerS enzyme family utilizes different acyl chain lengths of fatty acyl-CoAs in an isoform-specific manner, resulting in DHCer with N-acyl chains ranging from C16 to C26 [and even longer] in mammalian tissues. DHCer is trans-4,5-desaturated to yield ceramide, which is further metabolized by the addition of moieties at the 1-O-position, forming sphingomyelin (SM) and ceramide monohexose (CMH). The rates of fatty acyl-CoA and sphingolipid biosynthesis were determined using stable isotope-labeling and LC-ESI-MS/MS analysis of the analyte isotopologues and isotopomers. Isotopic labeling of palmitoyl-CoA with [U-13C]-palmitate in HEK293 and RAW264.7 cells was robust and rapid (~ 60% labeling of the metabolite pool in 3 hr). Isotopic labeling of sphingolipids indicated utilization of [M + 16]-palmitoyl-CoA by SPT and CerS isoforms in both cell types. Metabolic flux modeling was applied to the data for [U-13C]-palmitate activation to [M + 16]-palmitoyl-CoA and its subsequent utilization in de novo sphingolipid biosynthesis, and this analysis indicated rapid turn-over rates for palmitoyl-CoA and ceramide in both cell types. Palmitate treatment of cultured cells alters their metabolic status and gene expression, therefore labeling of palmitoyl-CoA by treatment with [1-13C]-acetate was employed. A distribution of mass-shifted palmitoyl-CoA species (isotopologues) is observed based on the number of incorporations of [1-13C]-acetate during de novo biosynthesis, requiring computational analysis to derive two parameters: the isotopic enrichment of the precursor pool, and the fraction of palmitoyl-CoA that was biosynthesized during the experiment. Previous reports by others describe mass isotopomer distribution analysis (MIDA) and isotopomer spectral analysis (ISA) for this purpose, and both calculation approaches indicated concurrent results. In summary, the quantitation of fatty acyl-CoAs and their isotopic enrichment during stable isotope-labeling studies of lipid metabolism can provide data that significantly change the interpretation of analyte quantitation in these experiments, as demonstrated here for investigations of de novo sphingolipid biosynthesis.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Wenxuan. "Stoichiometry and Crystal Structure of Poly (Lactic Acid) (PLA) Stereocomplex (SC) in Cold-crystallization and Solution-grown Crystals as Studied by Solid-state NMR and 13C Isotope Labeling." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1522239647112751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Campanholi, Diana Ruffato Resende. "Oxidação da galactose utilizando 13C em crianças saudáveis e galactosêmicas." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/17/17144/tde-22042014-101217/.

Full text
Abstract:
A Galactosemia é um erro inato do metabolismo da galactose que ocorre em consequência da deficiência de uma das três principais enzimas envolvidas em seu metabolismo. O tratamento da doença se faz por meio de intervenção dietética. Com a necessidade de melhorar nosso conhecimento acerca do metabolismo da galactose, isótopos estáveis estão sendo usados para mostrar o perfil de oxidação da mesma. O parâmetro bioquímico claramente correlacionado com os resultados clínicos e com o genótipo da GALT é o da oxidação da galactose em dióxido de carbono. A capacidade de determinar a oxidação com administração oral ou endovenosa de isótopos marcados (1-13C-galactose) de galactose fez deste um meio prático de se determinar a oxidação da galactose. Os objetivos do trabalho foram: 1. Avaliar a capacidade de oxidação de galactose em crianças brasileiras com o diagnóstico de galactosemia. 2 Avaliar a capacidade de oxidação da galactose em crianças brasileiras saudáveis. 3 Verificar a possibilidade de definir um ponto de corte para a detecção da galactosemia através do teste respiratório com a construção de uma curva ROC de maior sensibilidade e especificidade. A metodologia empregada foi a seguinte: Amostragem: 21 crianças saudáveis e 7 crianças com galactosemia com idade variando de 1 a 7 anos. Teste Respiratório: O teste respiratório de todas as crianças foi quantitativo para o enriquecimento de 13CO2 em ar expirado antes e depois da administração oral de 7mg/kg de uma solução aquosa de 1-13C-Galactose. As amostras foram colhidas antes da administração da solução e 30,60 e 120min após. Mensuração do 13CO2 no ar: Em cada amostra de ar duplicada a razão molar do 13CO2 e 12CO2 foi quantificado pela razão de massa/carga (m/z) dos isótopos gasosos através de um espectrômetro de massa. Análise estatística: Construção de uma curva ROC para determinar o melhor ponto de corte das diferenças em porcentagem da 1-13C-galactose recuperada em 13CO2 que forneça um teste respiratório positivo para detecção da galactosemia de maior sensibilidade e especificidade. As crianças doentes tiveram uma % acumulativa de 13C no ar expirado proveniente da galactose marcada (CUMPCD) variando em média de 0,03% no tempo de 30 minutos a 1,67% no tempo de 120 minutos. Em contrapartida, os indivíduos saudáveis apresentaram enriquecimentos e uma CUMPCD maiores, com valores de 0,4% no tempo de 30 minutos a 5,58% no tempo 120 minutos. Portanto, nesse estudo ficou evidente que há uma diferença marcante na oxidação da galactose em crianças com e sem galactosemia, logo teste respiratório é útil em discriminar crianças com deficiência na GALT.<br>Galactosemia is an inborn error of galactose metabolism that occurs as an outcome of an enzyme deficiency. The current treatment is based on dietary intervention. Stable isotopes have been used to assess galactoses oxidation profile due to an urgency to improve our knowledge on its metabolism. The biochemical parameter clearly correlated to clinical outcomes and to GALT genotype is the galactose oxidation process into carbon dioxide. The ability to assess galactoses oxidation after galactose labeled isotope administration (1-13C-galactose) has become a practical way of determining the metabolism of galactose. The aims of the study were: 1 Assess the galactose oxidation ability in Brazilian galactosemic children. 2 Assess the galactose oxidation ability in healthy Brazilian children. 3 Set a cut off point for detecting galactosemia through breath test by constructing a ROC curve. The methodology employed was: Sampling: 21 healthy children and 7 children with galactosemia with age ranging from 1 to 7 years. Breath test: the breath test of all the children was quantitative for 13CO2 enrichment in exhaled air before and after oral administration of 7mg/kg of 1-13C-Galactose aqueous solution. Samples were collected at baseline time, 30, 60 and 120 min after solution administration. Measurement of the 13CO2 in the air: molar ratio 13CO2 and 12CO2 were quantified by the mass/charge ratio (m/z) of stable isotopes through a mass spectrometer in every air sample. Statistical analysis: ROC curve construction in order to determine the best cutting point of differences in percentage of 1-13C-galactose recovered in 13CO2 that provides a positive breath test for galactosemia detection. Therefore, as a result, sick children had some percentage of cumulative 13C in the exhaled air from labeled galactose (CUMPCD) ranging from 0.03% in 30 minutes time to 1.67% in 120 minutes. In contrast, healthy subjects showed a CUMPCD much more expressive, with values ranging from 0.4% in 30 minutes to 5.58% in 120 minutes. Therefore, in this study has shown that there is a great difference in galactose oxidation in children with and without galactosemia, hence the breath test is useful in discriminating children with GALT deficiencies.
APA, Harvard, Vancouver, ISO, and other styles
6

Kheir, Beik Louay. "Dynamics of soil organic matter amino acids : a carbon isotope approach." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0098.

Full text
Abstract:
Cette thèse aborde un point clé du couplage entre ces cycles: la dynamique des molécules azotées (AAs) des matières organiques du sol (MOS). Par des expériences d'incubation, nous avons estimé que les flux de biosynthèse des AAs par les micro-organismes du sol lors du processus de décomposition sont de l'ordre de 25% de la biomasse nouvellement formée. Le profil des AAs individuels biosynthétisés de novo est plus dépendant du type de sol que de la nature du substrat. Dans chaque sol, il est très similaire à celui des AAs des MOS. La biodégradation de matériaux végétaux marqués en 13C a révélé la transformation rapide des protéines végétales en matériaux microbiens. Ces résultats montrent que les AAs des MOS sont d'origine microbienne. Nous avons mesuré le renouvellement du C des AAs à long terme dans les horizons de surface de neuf sites présentant des végétations, climats et types de sol variés, en utilisant la technique de traçage par les abondances naturelles en 13C. L'âge moyen du carbone des AAs varie de 50 à 200 ans. Un modèle simple permet de discuter les hypothèses du recyclage des AAs des MOS par les micro-organismes. Les rapports isotopiques stables des AAs individuels ont été mesurés par chromatographie en phase gazeuse couplée à la spectrométrie de masse isotopique. À cette fin, nous avons développé une méthode d'étalonnage générique pour la détermination du rapport isotopique des composés spécifiques, par analyse de cultures microbiennes uniformément marquées. Au-delà des résultats présentés, l'étude apporte un large ensemble de données des AAs et examine les variations de l'abondance naturelle en 13C entre les AAs individuels<br>We analyzed the coupled dynamics of C and N in Soil Organic Matter (SOM) through the dynamics of N-containing soil organic compounds (amino acids (AAs)) by tracing their carbon atoms. Stable isotope ratios of individual amino acids were measured by gas chromatography coupled with isotope ratio mass spectrometry. For this purpose, we developed a generic calibration method for compound-specific stable isotope ratio analysis, based on the analysis of uniformly labelled microbial cultures. We quantified the biosynthesis of AAs associated with the biodegradation process in four contrasted topsoils through short-term incubation experiments of 13C-labelled substrates. Amino acids-C accounts for ca. 25% of the newly-formed microbial biomass-C. The composition of the de novo biosynthesized individual amino acids was dependent on the soil type, and in each soil was similar to that of SOM amino acids. Biodegradation of 13C-labelled plant materials revealed the rapid conversion of plant proteins into microbial materials. These results together demonstrate that SOM amino acids are of microbial origin. We measured the dynamics of amino acids-C on the long term (decades to centuries) in nine sites using the natural 13C-labelling technique. On average, the age of AAs was equal or slightly inferior to that of bulk soil organic carbon, with mean ages ranging from 50 to 200 years. We built a conceptual model of AAs dynamics to discuss various hypotheses of AAs stabilization. Beyond these perspectives on C and N coupling in soil processes, the overall study brings a broad dataset of amino acids, as well as discuses variations of 13C natural abundance (δ13C) in-between individual amino acids
APA, Harvard, Vancouver, ISO, and other styles
7

Olsson, Ulrika. "Structural Studies of O-antigen polysaccharides, Synthesis of 13C-labelled Oligosaccharides and Conformational Analysis thereof, using NMR Spectroscopy." Doctoral thesis, Stockholm University, Department of Organic Chemistry, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7283.

Full text
Abstract:
<p>In order to understand biological processes, to treat and diagnose diseases, find appropriate vaccines and to prevent the outbreak of epidemics, it is essential to obtain more knowledge about carbohydrate structures. This thesis deals with structure and conformation of carbohydrates, analysed by NMR spectroscopy and MD simulations.In the first two papers, the structures of O-antigen polysaccharides (PS) from two different <i>E. coli</i> bacteria were determined using NMR spectroscopy. The O-antigenic PS from <i>E. coli</i> O152 (paper I) consists of branched pentasaccharide repeating units, built up of three different carbohydrate residues and a phosphodiester, whilst the repeating unit of the O-antigen from <i>E. coli</i> O176 (paper II) is built up of a linear tetrasaccharide consisting of two different monosaccharides.</p><p>In papers III and IV, the conformational analysis of different disaccharides is described. Conformational analysis was performed using NMR spectroscopy and MD simulations (paper IV). In paper III four different glucobiosides were studied using coupling constants and Karplus-type relationships. By use of specific <sup>13</sup>C isotopically labelled derivatives, additional coupling constants were obtained and the number of possible torsion angles was reduced by half. In paper IV, we examine the conformations of two disaccharides that are part of an epitope of malignant cells. From NOE and T-ROE experiments, short proton-proton distances around the glycosidic linkage were estimated. Furthermore, interpretation of the extracted coupling constants using Kaplus relationships gave the values of the torsion angles. As in paper III, isotopically labelled compounds were synthesised in order to enhance the sensitivity of the analysis. Finally, MD simulations were performed and the results were compared with results from NMR data.</p>
APA, Harvard, Vancouver, ISO, and other styles
8

Åberg, Ola. "Design and Synthesis of 11C-Labelled Compound Libraries for the Molecular Imaging of EGFr, VEGFr-2, AT1 and AT2 Receptors : Transition-Metal Mediated Carbonylations Using [11C]Carbon Monoxide." Doctoral thesis, Uppsala universitet, Institutionen för biokemi och organisk kemi, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-98599.

Full text
Abstract:
This work deals with radiochemistry and new approaches to develop novel PET tracers labelled with the radionuclide 11C. Two methods for the synthesis of 11C-labelled acrylamides have been explored. First, [1-11C]-acrylic acid was obtained from a palladium(0)-mediated 11C-carboxylation of acetylene with [11C]carbon monoxide; this could be converted to the corresponding acyl chloride and then combined with benzylamine to form N-benzyl[carbonyl-11C]acrylamide. In the second method, the palladium(0)-mediated carbonylation of vinyl halides with [11C]carbon monoxide was explored. This latter method, yielded labelled acrylamides in a single step with retention of configuration at the C=C double bond, and required less amine compared to the acetylene method. The vinyl halide method was used to synthesize a library of 11C-labelled EGFr-inhibitors in 7-61% decay corrected radiochemical yield via a combinatorial approach. The compounds were designed to target either the active or the inactive form of EGFr, following computational docking studies. The rhodium(I)-mediated carbonylative cross-coupling of an azide and an amine was shown to be a very general reaction and was used to synthesize a library of dual VEGFr-2/PDGFrβ inhibitors that were 11C-labelled at the urea position in 38-78% dc rcy. The angiotensin II AT1 receptor antagonist eprosartan was 11C-labelled at one of the carboxyl groups in one step using a palladium(0)-mediated carboxylation. Autoradiography shows specific binding in rat kidney, lung and adrenal cortex, and organ distribution shows a high accumulation in the intestines, kidneys and liver. Specific binding in frozen sections of human adrenal incidentalomas warrants further investigations of this tracer. Three angiotensin II AT2 ligands were 11C-labelled at the amide group in a palladium(0)-mediated aminocarbonylation in 16-36% dc rcy. One of the compounds was evaluated using in vitro using autoradiography, and in vivo using organ distribution and animal PET. The compound was metabolized fast and excreted via urine. High radioactivity was also found in the liver, meaning that more metabolically stable compounds are desirable for future development.
APA, Harvard, Vancouver, ISO, and other styles
9

Eriksson, Jonas. "Synthesis of 11C-labelled Alkyl Iodides : Using Non-thermal Plasma and Palladium-mediated Carbonylation Methods." Doctoral thesis, Uppsala universitet, Avdelningen för organisk kemi, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7171.

Full text
Abstract:
Compounds labelled with 11C (β+, t1/2 = 20.4 min) are used in positron emission tomography (PET), which is a quantitative non-invasive molecular imaging technique. It utilizes computerized reconstruction methods to produce time-resolved images of the radioactivity distribution in living subjects. The feasibility of preparing [11C]methyl iodide from [11C]methane and iodine via a single pass through a non-thermal plasma reactor was explored. [11C]Methyl iodide with a specific radioactivity of 412 ± 32 GBq/µmol was obtained in 13 ± 3% decay-corrected radiochemical yield within 6 min via catalytic hydrogenation of [11C]carbon dioxide (24 GBq) and subsequent iodination, induced by electron impact. Labelled ethyl-, propyl- and butyl iodide was synthesized, within 15 min, via palladium-mediated carbonylation using [11C]carbon monoxide. The carbonylation products, labelled carboxylic acids, esters and aldehydes, were reduced to their corresponding alcohols and converted to alkyl iodides. [1-11C]Ethyl iodide was obtained via palladium-mediated carbonylation of methyl iodide with a decay-corrected radiochemical yield of 55 ± 5%. [1-11C]Propyl iodide and [1-11C]butyl iodide were synthesized via the hydroformylation of ethene and propene with decay-corrected radiochemical yields of 58 ± 4% and 34 ± 2%, respectively. [1-11C]Ethyl iodide was obtained with a specific radioactivity of 84 GBq/mmol from 10 GBq of [11C]carbon monoxide. [1-11C]Propyl iodide was synthesized with a specific radioactivity of 270 GBq/mmol from 12 GBq and [1-11C]butyl iodide with 146 GBq/mmol from 8 GBq. Palladium-mediated hydroxycarbonylation of acetylene was used in the synthesis of [1-11C]acrylic acid. The labelled carboxylic acid was converted to its acid chloride and subsequently treated with amine to yield N-[carbonyl-11C]benzylacrylamide. In an alternative method, [carbonyl-11C]acrylamides were synthesized in decay-corrected radiochemical yields up to 81% via palladium-mediated carbonylative cross-coupling of vinyl halides and amines. Starting from 10 ± 0.5 GBq of [11C]carbon monoxide, N-[carbonyl-11C]benzylacrylamide was obtained in 4 min with a specific radioactivity of 330 ± 4 GBq/µmol.
APA, Harvard, Vancouver, ISO, and other styles
10

Nugue, Guillaume. "Développement de méthodes systémiques pour l'amélioration de la connaissance et du traitement des gliomes." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENS012/document.

Full text
Abstract:
Es gliomes sont des tumeurs cérébrales associées à une mortalité élevée. Le glioblastome multiforme (GBM) est la forme la plus fréquente des tumeurs cérébrales primaires. Malgré une prise en charge thérapeutique optimale constituée d'une chirurgie, d'une radiochimiothérapie concomitante et d'une chimiothérapie adjuvante, la survie médiane est de 15 mois. Ceci s'explique surtout par le potentiel infiltratif de ces tumeurs. Il est donc difficile de réaliser une exérèse chirurgicale totale, ce qui entraine une récidive quasi-systématique avec l'apparition de chimiorésistance. Ces phénomènes de résistances associés à une importante toxicité des molécules cytotoxiques mettent en évidence l'importance de rechercher de nouvelles stratégies thérapeutiques. Parmi ces dernières, les anticorps monoclonaux thérapeutiques sont très prometteurs, leurs actions ciblées limitent la toxicité au niveau du tissu sain. Cependant ces nouvelles thérapies manquent cruellement de suivi. L'apparition d'effets secondaires graves remet en cause leur intérêt. C'est pourquoi ces nouvelles thérapies, bien qu'efficaces, doivent être contrôlées par l'intermédiaire de biomarqueurs compagnons ce qui permettrait une meilleure efficience de la molécule. Le bevacizumab en est un bon exemple, de par une pharmacocinétique interindividuelle variable (de 11 à 50 jours) et une absence d'adaptation de la posologie on constate l'apparition d'effets secondaires (phlébite, hémorragie) qui entrainent l'arrêt du traitement. Or, ces effets secondaires pourraient être limités par un simple suivi de la concentration sérique de bevacizumab. De plus, dans le cas particulier des GBM, la présence de la barrière hémato-encéphalique (BHE) nécessite de développer de nouvelles stratégies pour favoriser une meilleure biodistrubution de molécules au niveau de la tumeur cérébrale. De ce fait, nous avons étudié l'efficacité d'un contournement de la BHE mécanique par une administration localisée directement dans la tumeur. Et dans cette étude préclinique, une amélioration significative de la médiane de survie des animaux ayant eu un traitement par CED (Convection Enhanced Delivery) par rapport à une administration intrapéritonéale. Enfin, dans le but de proposer une technique innovante de criblage de biomarqueurs compagnons, nous avons mis en place une stratégie innovante de marquage isotopique in vivo afin d'étudier la dynamique du protéome tumoral en réponse au traitement. Cette stratégie, déjà validée, est en cours de transfert chez l'homme dans l'étude du métabolisme des GBM<br>Gliomas are brain tumors associated with important mortality. Glioblastoma multiforme (GBM) is the most frequent of primary brain tumors. Despite an optimal therapeutic management consists that includes surgery, radiotherapy plus concomitant and adjuvant chemotherapy, the median survival is 15 months. This, is mainly due to the presence of infiltrative tumor cells that hamper total surgical excision, and leads to relapse with the emergence of drug resistance. This highlights the importance of seeking new therapeutic strategies.Of these, therapeutic monoclonal antibodies are very promising. Their targeted actions limit the toxicity to healthy tissue. However, these new therapies are desperately short of monitoring. The appearance of serious side effects is a present challenge to their use. In consequences, these targeted therapies, even effective, have to be controlled via companion’s biomarkers that would provide better monitoring of the molecule. Bevacizumab is a good illustration for the existence of interindividual pharmacokinetic variability (11 to 50 days). In addition to its effect on the therapy efficiency, this inte variability must be also considered for side effects (phlebitis, hemorrhage) that lead to failure of treatment. However, these side effects could be limited by a simple monitoring of serum concentration of bevacizumab.Moreover, in the specific case of GBM, the action to the blood-brain barrier (BBB) requires the development of new strategies to promote a better bio-distribution of molecules in the brain tumor. Therefore, we investigated the effectiveness of a mechanical bypass of BBB in experimental brain tumors by a localized administration directly in the tumor. In this preclinical study, a significant improvement in median survival of animals treated with convection-enhanced delivery (CED) versus intraperitoneal administration was demonstrated.Finally, in order to offer an innovative technique of companion’s biomarkers screening, we have implemented an isotope labeling in vivo in order to study the dynamics of the proteome in tumor response to treatment. This strategy has already been released and is being transferred in humans in the study of the metabolism of GBM
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "13C isotope labeling"

1

Motori, Elisa, and Patrick Giavalisco. "13C Isotope Labeling and Mass Spectrometric Isotope Enrichment Analysis in Acute Brain Slices." In Methods in Molecular Biology. Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3247-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Feng, Xueyang, Wei-Qin Zhuang, Peter Colletti, and Yinjie J. Tang. "Metabolic Pathway Determination and Flux Analysis in Nonmodel Microorganisms Through 13C-Isotope Labeling." In Microbial Systems Biology. Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-827-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhong, Qi-ding, Guo-hui Li, Dong-dong Zhao, Dao-bing Wang, Shi-gang Shen, and Zheng-he Xiong. "Low Labeling 13C Metabolic Flux Analysis of Saccharomyces cerevisiae Using Gas Chromatography–Combustion–Isotope Ratio Mass Spectrometry." In Lecture Notes in Electrical Engineering. Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46318-5_45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Boschker, H. T. S. "Section 8 update: Linking microbial community structure and functioning: stable isotope (13C) labeling in combination with PLFA analysis." In Molecular Microbial Ecology Manual. Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-2177-0_807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nogués, Salvador. "Relationship Between Photosynthesis and Respiration in Leaves Using 13C/12C Isotope Labelling." In Advanced Topics in Science and Technology in China. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32034-7_63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stevenel, Pierre, E. Frossard, S. Abiven, I. M. Rao, F. Tamburini, and A. Oberson. "Using a Tri-Isotope (13C, 15N, 33P) Labelling Method to Quantify Rhizodeposition." In Methods in Rhizosphere Biology Research. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5767-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saunders, Eleanor C., David P. de Souza, Jennifer M. Chambers, Milica Ng, James Pyke, and Malcolm J. McConville. "Use of 13C Stable Isotope Labelling for Pathway and Metabolic Flux Analysis in Leishmania Parasites." In Methods in Molecular Biology. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1438-8_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chandra, Rohitash, Mengjie Zhang, and Lifeng Peng. "Application of Cooperative Convolution Optimization for 13C Metabolic Flux Analysis: Simulation of Isotopic Labeling Patterns Based on Tandem Mass Spectrometry Measurements." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34859-4_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Priego-Capote, Feliciano, Maria Ramírez-Boo, Denis Hochstrasser, and Jean-Charles Sanchez. "Qualitative and Quantitative Analysis of Glycated Proteins in Human Plasma by Glucose Isotopic Labeling with 13C6-Reducing Sugars." In Methods in Molecular Biology. Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-068-3_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cotrufo, M. Francesca, and Yamina Pressler. "Heavy Isotope Enrichments." In A Primer on Stable Isotopes in Ecology. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780198854494.003.0005.

Full text
Abstract:
Abstract “Heavy Isotope Enrichments” reviews concepts for developing and interpreting heavy isotope labeling studies in ecology. The chapter compares continuous- and pulse-labeling approaches for the 13C labeling of plant material. Methods for the application of isotope-labeled substrates and their use in stable isotope probing of biological markers are presented. Calculations of the heavy isotope excess and the quantification of the recovery of heavy isotope additions in isotope tracing studies are provided. Principles and equations for the application of the isotope dilution method are illustrated, and its limitations are discussed. Examples of applications for carbon, nitrogen, and water stable isotopes are presented.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!