Academic literature on the topic '157 nm photolithography'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '157 nm photolithography.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "157 nm photolithography"

1

Sarantopoulou, E., A. C. Cefalas, P. Argitis, and E. Gogolides. "Photoresist materials for 157-nm photolithography." Materials Science and Engineering: C 15, no. 1-2 (2001): 159–61. http://dx.doi.org/10.1016/s0928-4931(01)00307-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Waterland, Robert L., Kerwin D. Dobbs, Amy M. Rinehart, Andrew E. Feiring, Robert C. Wheland, and Bruce E. Smart. "Quantum chemical modeling for 157 nm photolithography." Journal of Fluorine Chemistry 122, no. 1 (2003): 37–46. http://dx.doi.org/10.1016/s0022-1139(03)00078-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sarantopoulou, E., Z. Kollia, and A. C. Cefalas. "LiCaAlF6:Nd3+ crystal as optical material for 157 nm photolithography." Optics Communications 177, no. 1-6 (2000): 377–82. http://dx.doi.org/10.1016/s0030-4018(00)00588-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Whitfield, Michael D., Stuart P. Lansley, Olivier Gaudin, Robert D. McKeag, Nadeem Rizvi, and Richard B. Jackman. "Diamond photodetectors for next generation 157-nm deep-UV photolithography tools." Diamond and Related Materials 10, no. 3-7 (2001): 693–97. http://dx.doi.org/10.1016/s0925-9635(00)00518-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cefalas, A. C., E. Sarantopoulou, P. Argitis, and E. Gogolides. "Mass spectroscopic and degassing characteristics of polymeric materials for 157 nm photolithography." Applied Physics A: Materials Science & Processing 69, no. 7 (1999): S929—S933. http://dx.doi.org/10.1007/s003390051561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cheng, W. C., and L. A. Wang. "Phase masks working in 157 nm wavelength fabricated by immersion interference photolithography." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21, no. 6 (2003): 3078. http://dx.doi.org/10.1116/1.1625958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Markley, T. J., J. A. Marsella, E. A. Robertson, et al. "Wetting and dissolution studies of fluoropolymers used in 157 nm photolithography applications." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 22, no. 1 (2004): 140. http://dx.doi.org/10.1116/1.1637914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sarantopoulou, E., Z. Kollia, and A. C. Cefalas. "YF3:Nd3+, Pr3+, Gd3+ wide band gap crystals as optical materials for 157-nm photolithography." Optical Materials 18, no. 1 (2001): 23–26. http://dx.doi.org/10.1016/s0925-3467(01)00124-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

French, Roger H., Robert C. Wheland, Weiming Qiu, et al. "Novel hydrofluorocarbon polymers for use as pellicles in 157 nm semiconductor photolithography: fundamentals of transparency." Journal of Fluorine Chemistry 122, no. 1 (2003): 63–80. http://dx.doi.org/10.1016/s0022-1139(03)00081-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Feiring, Andrew E., Michael K. Crawford, William B. Farnham, et al. "Bis(fluoroalcohol) Monomers and Polymers: Improved Transparency Fluoropolymer Photoresists for Semiconductor Photolithography at 157 nm." Macromolecules 39, no. 4 (2006): 1443–48. http://dx.doi.org/10.1021/ma051984l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "157 nm photolithography"

1

Pinnow, Matthew James. "Design and synthesis of materials for 157 nm photoresists applications." Thesis, 2005. http://repositories.lib.utexas.edu/bitstream/handle/2152/1689/pinnowm70635.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Trinque, Brian C. "Synthesis, copolymerization studies and 157 nm photolithography applications of 2-trifluoromethylacrylates." Thesis, 2003. http://wwwlib.umi.com/cr/utexas/fullcit?p3116210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chambers, Charles Ray. "Design, synthesis and testing of materials for 157 nm photolithography." Thesis, 2005. http://hdl.handle.net/2152/1522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chambers, Charles Ray Willson C. G. "Design, synthesis and testing of materials for 157 nm photolithography." 2005. http://repositories.lib.utexas.edu/bitstream/handle/2152/1522/chambersjrc51708.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Adams, Jacob Robert. "Organic materials development for advanced lithographic applications." Thesis, 2009. http://hdl.handle.net/2152/ETD-UT-2009-08-209.

Full text
Abstract:
The microelectronics industry strives for continued reduction in feature sizes to allow increased computing speed and power. This calls for continuous development of new materials. During the shift to 157 nm photolithography, it was discovered that fluorinated materials were necessary to provide sufficient transparency. Material design and synthesis to incorporate fluorine bearing norbornane based materials through an alternate means of polymerization to those used in traditional lithographic materials will be presented. Step and Flash Imprint Lithography represents a low cost alternative t
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "157 nm photolithography"

1

Chambers, Charles R., Shiro Kusumoto, Guen Su Lee, et al. "Dissolution inhibitors for 157-nm photolithography." In Microlithography 2003, edited by Theodore H. Fedynyshyn. SPIE, 2003. http://dx.doi.org/10.1117/12.485191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kiba, Yukio, Shinya Hori, Osamu Miyahara, et al. "Defect analysis in 157-nm photolithography process." In SPIE's 27th Annual International Symposium on Microlithography, edited by Daniel J. C. Herr. SPIE, 2002. http://dx.doi.org/10.1117/12.473505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lauth, Hans. "193/157 nm UV coatings for next generation photolithography – All aspects." In Optical Interference Coatings. OSA, 2001. http://dx.doi.org/10.1364/oic.2001.thb2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

French, Roger H., Joseph S. Gordon, David J. Jones, et al. "Materials design and development of fluoropolymers for use as pellicles in 157-nm photolithography." In 26th Annual International Symposium on Microlithography, edited by Christopher J. Progler. SPIE, 2001. http://dx.doi.org/10.1117/12.435710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Kwangjoo, Steffen Jockusch, Nicholas J. Turro, et al. "157-nm pellicles for photolithography: mechanistic investigation of the deep-UV photolysis of fluorocarbons." In Microlithography 2004, edited by Bruce W. Smith. SPIE, 2004. http://dx.doi.org/10.1117/12.534381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cefalas, Alkiviadis C., Evangelia Sarantopoulou, Z. Kollia, et al. "VUV spectroscopy of nominally pure and rare-earth ions doped LiCaAIF 6 single crystals as promising materials for 157 nm photolithography." In XI Feofilov Symposium on Spectropscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, edited by Alexander A. Kaplyanskii, Boris Z. Malkin, and Sergey I. Nikitin. SPIE, 2002. http://dx.doi.org/10.1117/12.475332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Morton, Richard G., Todd J. Embree, Zsolt Bor, and Chris K. Van Peski. "Optical damage testing of materials for use in 157-nm photolithographic systems." In 26th Annual International Symposium on Microlithography, edited by Christopher J. Progler. SPIE, 2001. http://dx.doi.org/10.1117/12.435648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ballarotto, Vincent, Karen Siegrist, Ellen Williams, and William Vanderlinde. "A Study of Photoelectron Emission Microscopy Contrast Mechanisms Relevant to Microelectronics." In ISTFA 2002. ASM International, 2002. http://dx.doi.org/10.31399/asm.cp.istfa2002p0047.

Full text
Abstract:
Abstract We report on a quantitative investigation of doping-induced contrast and topography-induced contrast in photoelectron emission microscopy (PEEM). Calibration samples were fabricated using standard photolithography and focused ion beam writing to test both types of contrast. Using a near-threshold light source, we find that the doping-induced contrast increases monotonically with B concentration over the measured range of 1017 – 2x1020 cm-3. The variation in doping-induced contrast as incident photon energy is varied was also investigated. Optimal doping-induced contrast and PEEM sensi
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!