Academic literature on the topic '16S rRNA gene amplification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '16S rRNA gene amplification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "16S rRNA gene amplification"
Suryani, Laksmi Ambarsari, and Efi Sanfitri Harahap. "AMPLIFIKASI GEN 16S-rRNA BAKTERI TERMOFILIK DARI SUMBER AIR PANAS, GUNUNG PANCAR BOGOR." Jurnal Riset Kimia 3, no. 1 (February 12, 2015): 83. http://dx.doi.org/10.25077/jrk.v3i1.97.
Full textHubu, Herlin S., Stenly Wullur, Veibe Warouw, Elvy L. Ginting, Robert A. Bara, and Adnan S. Wantasen. "FILOGENI MOLEKULER BAKTERI DARI MEDIA PEMELIHARAAN ROTIFER YANG DIBERI OLAHAN LIMBAH IKAN SEBAGAI SUMBER NUTRISI." JURNAL PESISIR DAN LAUT TROPIS 9, no. 1 (March 29, 2021): 38. http://dx.doi.org/10.35800/jplt.9.1.2021.33574.
Full textMarchesi, Julian R., Takuichi Sato, Andrew J. Weightman, Tracey A. Martin, John C. Fry, Sarah J. Hiom, and William G. Wade. "Design and Evaluation of Useful Bacterium-Specific PCR Primers That Amplify Genes Coding for Bacterial 16S rRNA." Applied and Environmental Microbiology 64, no. 2 (February 1, 1998): 795–99. http://dx.doi.org/10.1128/aem.64.2.795-799.1998.
Full textO’Farrell, Katrina A., and Peter H. Janssen. "Detection of Verrucomicrobia in a Pasture Soil by PCR-Mediated Amplification of 16S rRNA Genes." Applied and Environmental Microbiology 65, no. 9 (September 1, 1999): 4280–84. http://dx.doi.org/10.1128/aem.65.9.4280-4284.1999.
Full textFrank, Jeremy A., Claudia I. Reich, Shobha Sharma, Jon S. Weisbaum, Brenda A. Wilson, and Gary J. Olsen. "Critical Evaluation of Two Primers Commonly Used for Amplification of Bacterial 16S rRNA Genes." Applied and Environmental Microbiology 74, no. 8 (February 22, 2008): 2461–70. http://dx.doi.org/10.1128/aem.02272-07.
Full textKimura, Hiroyuki, Maki Sugihara, Kenji Kato, and Satoshi Hanada. "Selective Phylogenetic Analysis Targeted at 16S rRNA Genes of Thermophiles and Hyperthermophiles in Deep-Subsurface Geothermal Environments." Applied and Environmental Microbiology 72, no. 1 (January 2006): 21–27. http://dx.doi.org/10.1128/aem.72.1.21-27.2006.
Full textConville, Patricia S., Steven H. Fischer, Charles P. Cartwright, and Frank G. Witebsky. "Identification of Nocardia Species by Restriction Endonuclease Analysis of an Amplified Portion of the 16S rRNA Gene." Journal of Clinical Microbiology 38, no. 1 (January 2000): 158–64. http://dx.doi.org/10.1128/jcm.38.1.158-164.2000.
Full textKorczak, Bożena M., Regina Stieber, Stefan Emler, André P. Burnens, Joachim Frey, and Peter Kuhnert. "Genetic relatedness within the genus Campylobacter inferred from rpoB sequences." International Journal of Systematic and Evolutionary Microbiology 56, no. 5 (May 1, 2006): 937–45. http://dx.doi.org/10.1099/ijs.0.64109-0.
Full textTakeshi, Kouichi, Souichi Makino, Tetsuya Ikeda, Noriko Takada, Atsushi Nakashiro, Kazunori Nakanishi, Keiji Oguma, Yoshinobu Katoh, Hiroyuki Sunagawa, and Tohru Ohyama. "Direct and Rapid Detection by PCR ofErysipelothrix sp. DNAs Prepared from Bacterial Strains and Animal Tissues." Journal of Clinical Microbiology 37, no. 12 (1999): 4093–98. http://dx.doi.org/10.1128/jcm.37.12.4093-4098.1999.
Full textJensen, J. S., M. B. Borre, and B. Dohn. "Detection of Mycoplasma genitalium by PCR Amplification of the 16S rRNA Gene." Journal of Clinical Microbiology 41, no. 1 (January 1, 2003): 261–66. http://dx.doi.org/10.1128/jcm.41.1.261-266.2003.
Full textDissertations / Theses on the topic "16S rRNA gene amplification"
Mulheron, Rebecca. "Microbial Community Assembly found with Sponge Orange Band Disease in Xestospongia muta (Giant Barrel Sponge)." NSUWorks, 2014. http://nsuworks.nova.edu/occ_stuetd/18.
Full textSilveira, Érico Leandro da [UNESP]. "Identificação de comunidades bacterianas de solo por seqüenciamento do gene 16S rRNA." Universidade Estadual Paulista (UNESP), 2004. http://hdl.handle.net/11449/94868.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Métodos tradicionais de isolamento e cultivo limitam análises da diversidade microbiana no meio ambiente, pois acredita - se que aproximadamente 10% desses microrganismos possam ser cultivados. A ecologia microbiana molecular teve recentes progressos através da construção de bibliotecas metagenômicas, o que constitui uma poderosa abordagem para explorar a diversidade microbiana de solo fornecendo inclusive dados sobre os microrganismos não cultiváveis desse habitat. Este trabalho teve por objetivo comparar e estimar a diversidade de comunidades bacterianas, em solos de duas áreas, sendo solo de Floresta Nativa (SFN) e a outra sob arboreto com eucaliptos (SAE) de uma mesma região. Utilizando oligonucleotídeos iniciadores específicos, o gene 16S rRNA foi amplificado por PCR, os amplicons foram clonados em pGEMR-T e os clones obtidos seqüenciados parcialmente. No solo SFN foram analisados 231 clones e no solo SRE 248 clones. As seqüências obtidas foram submetidas à análise de similaridade de nucleotídeos com o banco de dados GenBank. Os filos bacterianos que mais se destacaram nos dois tipos de solo foram Acidobacteria e Proteobacteria. No solo SFN destacaram-se também as bactérias pertencentes ao filo Bacteroidetes e no solo SAE observou-se alta freqüência das bactérias Actinobacteria. Análises filogenéticas revelaram diferenças em ambos os solos, verificando através de índice de diversidade bacteriana observou-se que o solo sob eucalipto apresentou maior diversidade quando comparado ao solo sob de Floresta Nativa.
Traditional methods of isolation and culture limits the analyses of the microbian diversity in the environment, because it is believed - that approximately 10% of these microrganisms can be cultivated. The molecular microbian ecology have had recent progress through the construction of metagenomics Iibraries, what constitutes a powerful boarding to explore the microbian diversity of soil, also supplying information on the microrganisms that cannot be cultivated on this habitat. This work had the objective of stimate the diversity of bacterial communities, in two areas, an area of Native Forest (SFN) and the another one under eucalypts (SAE) of the same region. Using specific oligonucleotides starters, the gene 16S rRNA was amplified by PCR, amplicons had been cloned in pGEMR-T and the obtained clones were partial/y sequenced. In the soil SFN, 231 clones had been analyzed and 248 clones in the soil SAE. The sequences obtained were submitted to the nucleotides similarity analysis with the GenBank database. The bacterial phylum that was more evident in the two types de soil were Acidobacteria and Proteobacteria. In the soi! SFN the bacteria of the phylum Bacteroidetes were evident and in the soil SRE high frequency of the Actinobacteria bacteria was observed. Phylogenetic analyses reveled an extensive diversity in both soils, verified through diversity index differences in the bacterial communities in both areas, and that the area under eucalypt presented more diversity in relation to the area of Native Forest.
Silveira, Érico Leandro da. "Identificação de comunidades bacterianas de solo por seqüenciamento do gene 16S rRNA /." Jaboticabal : [s.n.], 2004. http://hdl.handle.net/11449/94868.
Full textAbstract: Traditional methods of isolation and culture limits the analyses of the microbian diversity in the environment, because it is believed - that approximately 10% of these microrganisms can be cultivated. The molecular microbian ecology have had recent progress through the construction of metagenomics Iibraries, what constitutes a powerful boarding to explore the microbian diversity of soil, also supplying information on the microrganisms that cannot be cultivated on this habitat. This work had the objective of stimate the diversity of bacterial communities, in two areas, an area of Native Forest (SFN) and the another one under eucalypts (SAE) of the same region. Using specific oligonucleotides starters, the gene 16S rRNA was amplified by PCR, amplicons had been cloned in pGEMR-T and the obtained clones were partial/y sequenced. In the soil SFN, 231 clones had been analyzed and 248 clones in the soil SAE. The sequences obtained were submitted to the nucleotides similarity analysis with the GenBank database. The bacterial phylum that was more evident in the two types de soil were Acidobacteria and Proteobacteria. In the soi! SFN the bacteria of the phylum Bacteroidetes were evident and in the soil SRE high frequency of the Actinobacteria bacteria was observed. Phylogenetic analyses reveled an extensive diversity in both soils, verified through diversity index differences in the bacterial communities in both areas, and that the area under eucalypt presented more diversity in relation to the area of Native Forest.
Orientadora: Lúcia Maria Carareto Alves
Coorientadora: Eliana Gertrudes Macedo Lemos
Banca: Janete Apparecida Desiderio Sena
Banca: Uderlei Doniseti Silveira Covissi
Mestre
Grešová, Katarína. "Klasifikace bakterií do taxonomických kategorií na základě vlastností 16s rRNA." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2020. http://www.nusl.cz/ntk/nusl-417246.
Full textPereira, Juliana Vianna. "Comparação por análise molecular da diversidade bacteriana da saliva de pacientes com diferentes índices de higiene bucal." Universidade Federal do Amazonas, 2009. http://tede.ufam.edu.br/handle/tede/3064.
Full textThe complex microbiota of the oral cavity has been intensively studied and saliva is characterized by microorganisms which colonize different regions of mouth, such as tongue, supragengival and subgingival biofilm. Considering this, the purpose of this study was to evaluate the bacterial diversity of the saliva of patients with different levels of oral hygiene according to the Silness, Löe index. In this research, two genomic libraries of saliva source from 15 patients each were constructed. The pooled samples differ in the average index of Silness, Löe being considered as high or low index within the rate 1.0 to 3.0 and 0 to 0.5, respectively. The DNA saliva was extracted by phenol / chloroform method and 16S rRNA gene for the microorganisms of each sample were amplified and cloned. The sequences obtained were compared to those from sequences of the GenBank NCBI and RDP. The library resultant from saliva of patients with high level of dental biofilm showed 23 OTUs grouped as five known genus: Streptococcus, Granulicaella, Gemella, Peptostreptococcus and Veillonella besides 33.3% of uncultured bacteria. The Library made from saliva of patients with low level of dental biofilm, was significantly different from its counterpart (p = 0.000) and was composed by 42 OTUs, distributed among 11 known genus: Streptococcus, Granulicaella, Gemella, Veillonella, Oribacterium, Haemophilus, Escherichia, Neisseria, Prevotella, Capnocytophaga, Actinomyces, and 24.87% of uncultured bacteria. The genus Streptococcus was the more prevalent in the two libraries, constituting 79.08% of the first and 73.64% the second. In conclusion, patients with low dental biofilm index have saliva with higher bacterial diversity than patients with high dental biofilm index, and despite most uncultivated species aggregate with Steptococcus, they still are new and unknown microorganisms
A complexa microbiota da cavidade bucal tem sido intensivamente estudada e a saliva destaca-se por apresentar microrganismos de diferentes regiões, como a língua, biofilme subgengival e supragengival. Diante disto, o objetivo do presente estudo foi avaliar a diversidade bacteriana da saliva de pacientes com diferentes índices de higiene bucal e para isto, foram construídas duas bibliotecas genômicas da saliva, que foram constituídas por amostras de 15 pacientes cada uma, com a média de índice de biofilme de Silness; Löe diferenciado, sendo a primeira com índice de 1,0 a 3,0 (denominada alto índice) e a segunda, entre 0 a 0,5 (denominada baixo índice). O DNA da saliva foi extraído pelo método fenol/clorofórmio e o gene 16S rRNA para cada biblioteca foi amplificado e clonado. As sequências obtidas foram comparadas com aquelas armazenadas no GenBank do NCBI e RDP. A biblioteca composta pela saliva de pacientes com Alto índice de biofilme dental apresentou cinco Gêneros conhecidos: Streptococcus, Granulicaella, Gemella, Veillonella e Peptostreptococcus e 33,3% de bactérias não-cultivadas, agrupados em 23 OTUs. A Biblioteca, composta pela saliva de pacientes com Baixo índice de biofilme dental, foi diferente siguinificativamente da primeira (p=0,000) e foi composta de 42 OTUs, distribuídas em 11 Gêneros conhecidos: Streptococcus, Granulicaella, Gemella, Veillonella, Oribacterium, Haemophilus, Escherichia, Neisseria, Prevotella, Capnocytophaga, Actinomyces, alem de 24,87% de bactérias não-cultivadas. O Gênero Streptococcus foi o mais prevalente nas duas bibliotecas, constituindo 79,08% da primeira e 73,63% da segunda. Conclui-se que existe maior diversidade bacteriana na saliva de pacientes com Baixo índice de biofilme dental em relação à pacientes com Alto índice de biofilme dental e que apesar da maioria das espécies não-cultivadas agruparem-se com os Streptococcus, ainda contituem-se de microrganismos novos e desconhecidos
Kim, Min Seok. "AN INTEGRATED INVESTIGATION OF RUMINAL MICROBIAL COMMUNITIES USING 16S rRNA GENE-BASED TECHNIQUES." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1316383870.
Full textOliveira, Rosangela Claret de. "Isolamento de ureaplasma e micoplasma do trato reprodutivo de ovinos e caprinos e tipificação genotípica por meio da PFGE e seqüenciamento do gene 16S rRNA." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/10/10134/tde-12012009-105144/.
Full textMycoplasmas and or ureaplasmas have been isolated from small ruminants but are few studied. Mycoplasma ovine/caprine serotype 11, known as 2D strain, has not been classified yet as specie. However, it has been associated to vulvovaginitis and reproductive disorder in caprine and ovine. Ureaplasmas may cause genital tract diseases. Experimental infections with isolates recovered from sick animals resulted in granularity and hyperemia of the vulva. These have not been designated as specie but are divide in nine serological characteristics types. The serotype IX is associated to infertility and abortion in sheep. The present study aims the isolation of mycoplasmas and ureaplasmas from reproductive tract of ovine and caprine, genotyping of isolates by PFGE, and sequencing of their 16S rRNA. Ureaplasma isolates were recovered from the reproductive tract of 20 ovine, being them, male and female. Mycoplasma was isolated alone in one sample. A mixture of mycoplasma and ureaplasma was obtained in seven samples. On the material obtained from female caprine, five isolations were performed. Four of them were ureaplasma and one was a mycoplasma. Eleven isolates from ovine showed eight distinct profiles at PFGE, confirm that the method can typify ovine origin ureaplasmas. Six isolates were grouped to the Ureaplasma diversum ATCC 49782, through the sequencing of their 16S rRNA using the UPGMA. However, when using a 97% cutoff, four isolates could not be grouped to none of the ureaplasma specie. The isolates from ovine and caprine grouped to U. diversum, do not allow conclude that they are all the same specie. The use of 16S rRNA sequencing showed many useful information to phylogenetic inference, and can be the first choice for when investigating new species. Phylogenetic techniques, as sequencing of the intergenic space 16S-23S rRNA and urease gene, can be used to help the classification of new ureaplasma isolates from ovine and caprine.
De, Moors Anick. "Comparison of gene organization in the region that surrounds the 16S rRNA gene in seven different Sulfolobales." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ32533.pdf.
Full textKam, Sin-yee. "Application of 16S rRNA gene sequencing in laboratory diagnosis of mycobacteria other than tuberculosis." Click to view the E-thesis via HKUTO, 2003. http://sunzi.lib.hku.hk/hkuto/record/B31971052.
Full textAiemsum-ang, Porntipa. "Isolation, Systematics and Screening of Members of the Streptomyces violaceusniger 16S rRNA Gene Clade." Thesis, University of Newcastle Upon Tyne, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.506611.
Full textBooks on the topic "16S rRNA gene amplification"
Kirchman, David L. Community structure of microbes in natural environments. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0004.
Full textKirchman, David L. Predation and protists. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0009.
Full textKirchman, David L. Processes in anoxic environments. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0011.
Full textBook chapters on the topic "16S rRNA gene amplification"
Kawasaki, Akitomo, and Peter R. Ryan. "Peptide Nucleic Acid (PNA) Clamps to Reduce Co-amplification of Plant DNA During PCR Amplification of 16S rRNA Genes from Endophytic Bacteria." In The Plant Microbiome, 123–34. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-1040-4_11.
Full textRochelle, P. A., J. A. K. Will, J. C. Fry, G. J. S. Jenkins, R. J. Parkes, C. M. Turley, and A. J. Weightman. "Extraction and Amplification of 16S rRNA Genes from Deep Marine Sediments and Seawater to Assess Bacterial Community Diversity." In Nucleic Acids in the Environment, 219–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79050-8_11.
Full textBenlloch, Susana, Francisco Rodríguez-Valera, Silvia G. Acinas, and Antonio J. Martínez-Murcia. "Heterotrophic bacteria, activity and bacterial diversity in two coastal lagoons as detected by culture and 16S rRNA genes PCR amplification and partial sequencing." In Coastal Lagoon Eutrophication and ANaerobic Processes (C.L.E.AN.), 3–17. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1744-6_1.
Full textHall, Michael, and Robert G. Beiko. "16S rRNA Gene Analysis with QIIME2." In Methods in Molecular Biology, 113–29. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8728-3_8.
Full textEinarsson, Gisli G., and Sébastien Boutin. "Techniques: culture, identification and 16S rRNA gene sequencing." In The Lung Microbiome, 18–34. Sheffield, United Kingdom: European Respiratory Society, 2019. http://dx.doi.org/10.1183/2312508x.10000819.
Full textBally, René, Jacqueline Haurat, and Philippe Normand. "Azospirillum Phylogeny Based on rrs (16S rRNA Gene) Sequences." In Azospirillum VI and Related Microorganisms, 129–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79906-8_12.
Full textFantini, Elio, Giulio Gianese, Giovanni Giuliano, and Alessia Fiore. "Bacterial Metabarcoding by 16S rRNA Gene Ion Torrent Amplicon Sequencing." In Methods in Molecular Biology, 77–90. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-1720-4_5.
Full textHuang, Yu-An, Zhi-An Huang, Zhu-Hong You, Pengwei Hu, Li-Ping Li, Zheng-Wei Li, and Lei Wang. "Precise Prediction of Pathogenic Microorganisms Using 16S rRNA Gene Sequences." In Intelligent Computing Theories and Application, 138–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26969-2_13.
Full textSingleton, David R., Steven L. Rathbun, Glen E. Dyszynski, and William B. Whitman. "Section 7 update: LIBSHUFF Comparisons of 16S rRNA Gene Clone Libraries." In Molecular Microbial Ecology Manual, 3263–74. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-2177-0_703.
Full textDuduk, Bojan, Samanta Paltrinieri, Ing-Ming Lee, and Assunta Bertaccini. "Nested PCR and RFLP Analysis Based on the 16S rRNA Gene." In Methods in Molecular Biology, 159–71. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-089-2_14.
Full textConference papers on the topic "16S rRNA gene amplification"
Kazarina, Alisa, Ilva Pole, Viktorija Leonova, Viktorija Igumnova, Janis Kimsis, Valentina Capligina, Renate Ranka, Guntis Gerhards, and Elina Petersone-Gordina. "Insights into archaeological human sample microbiome using 16S rRNA gene sequencing." In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2017. http://dx.doi.org/10.1109/bibm.2017.8218018.
Full textSilva, M. L. R. Bastos, M. C. C. Pereira Lyra, J. Paula Oliveira, H. Almeida Burity, and G. M. Campos-Takaki. "Microbial diversity in Chromobacterium violaceum determined by 16S rRNA gene analysis." In Proceedings of the II International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2007). WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837554_0063.
Full textChawla, Archit, and Anthony Byrne. "16S rRNA gene sequencing improves microbial diagnosis of culture-negative pleural effusions." In ERS International Congress 2019 abstracts. European Respiratory Society, 2019. http://dx.doi.org/10.1183/13993003.congress-2019.oa5140.
Full textBrill, Simon, Phillip James, Leah Cuthbertson, Michael Cox, William Cookson, Jadwiga Wedzicha, and Miriam Moffatt. "Profiling the COPD airway microbiome using quantitative culture and 16S rRNA gene sequencing." In ERS International Congress 2016 abstracts. European Respiratory Society, 2016. http://dx.doi.org/10.1183/13993003.congress-2016.oa1787.
Full textDeljou, A., K. Mousavi, A. Ghasemi, and H. Rahimian. "Identification of Mycobacterium sp. as Alfalfa endophytes using 16s rRNA gene sequence analysis." In Proceedings of the II International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2007). WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837554_0013.
Full textYamasaki, Kei, Kazuhiro Yatera, Toshinori Kawanami, Kazumasa Fukuda, Shingo Noguchi, Shuya Nagata, Chinatsu Nishida, et al. "The Bacteriological Incidence Of Community-Acquired Pneumonia Using Clone Analysis Of 16S RRNA Gene." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a5243.
Full textVasileva, E. N., A. M. Afonin, G. A. Akhtemova, V. A. Zhukov, and I. A. Tikhonovich. "Endophytic bacteria isolated from garden pea (Pisum sativum L.)." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.265.
Full textNorashirene, M. J., A. Ahmad Amin, D. Norhidayah, and M. A. Nurul Fithriah. "Identification of cellulolytic thermophiles based on 16S rDNA gene amplification analysis." In 2012 IEEE Colloquium on Humanities, Science and Engineering Research (CHUSER). IEEE, 2012. http://dx.doi.org/10.1109/chuser.2012.6504349.
Full textPertiwi, Melati Putri, Patricia Karin Himawan Praseptin, Ika Diana Werdani, Dwi Listyorini, and Sitoresmi Prabaningtyas. "Identification and phylogenetic study of bioluminescent bacteria from squid (Loligo duvaucelii) based on 16S rRNA gene." In INVENTING PROSPEROUS FUTURE THROUGH BIOLOGICAL RESEARCH AND TROPICAL BIODIVERSITY MANAGEMENT: Proceedings of the 5th International Conference on Biological Science. Author(s), 2018. http://dx.doi.org/10.1063/1.5050134.
Full textShelton, Jenna L., Elliott Barnhart, Leslie F. Ruppert, Aaron Jubb, Madalyn S. Blondes, and Christina DeVera. "REPETITIVE SAMPLING AND CONTROL THRESHOLD IMPROVE 16S RRNA GENE SEQUENCING RESULTS FROM NIOBRARA SHALE PRODUCED WATER." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-351340.
Full text