Dissertations / Theses on the topic '17-bêta-hydroxystéroïde déshydrogénase type 5'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 22 dissertations / theses for your research on the topic '17-bêta-hydroxystéroïde déshydrogénase type 5.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Xu, Dan (Ph D). "Role of 17β-hydroxysteroid dehydrogenase type 5 in breast cancer studied by intracrinology." Doctoral thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/27239.
Full textHuman 17β-hydroxysteroid dehydrogenase type 5 (17β-HSD5) mainly synthesizes the activate androgen testosterone (T) from △4-androstenedione (4-dione), then 4-dione and T aromatazion to estrone (E1) and estradiol (E2) by the action of aromatase. 17β-HSD1 and 7 catalyze the formation of E2 from E1 and inactivate androgen dihydrotestosterone (DHT). In this thesis, I present the study of (1) the roles of 17β-HSD5 in the modulation of hormone levels and in the proliferation. and the proteomic study of the impact of the 17β-HSD5 knock down in BCC; (2) a comparative study of three enzymes (17β-HSD1,7 and 3α-HSD3) with the provision of DHEA and the direct substrates, E1 or DHT. The main results obtained in this study are as follow: (1) Using RNA interference of 17β-HSD5, enzyme immunoassays, and cell proliferation assays demonstrate that 17β-HSD5 expression is positively correlated with T and DHT levels in BCC, but negatively correlated with E2 levels, and BCC proliferation. (2) Quantitative real-time PCR analyzes and western blot showed that 17β-HSD5 knockdown up-regulates aromatase expression in MCF-7 cells. (3) Prostaglandin E2 ELISA assay verified that aromatase expression increase was modulated by elevated PGE2 levels after 17β-HSD5 knockdown. (4) Wound healing assay showed that with the knockdown of 17β-HSD5 expression, cell migration increased. (5)17β-HSD5 gene expression in clinical samples from ONCOMINE analysis showed its lower expression was correlated with HER-2 status and tumor metastasis. (6) The proteomic data also reveal that proteins involved in metabolic pathways are highly expressed in 17β-HSD5 knockdown MCF-7 cells. (7) Cell biology study showed no difference in biological function for 17β-HSD1 and 17β-HSD7 when cultured with different steroids cell proliferation and estradiol levels decreased, whereas DHT accumulated; cyclin D1, PCNA, and pS2 were down-regulated after knocking down these two enzymes. (8) The culture medium supplementation was found to have a marked impact on the study of 3α-HSD3. (9) We first proposed that using DHEA as hormone source may result in better mimicking of the physiological conditions of post-menopausal in cell culture according intracrinology.
Ferland, Alexandra. "Caractérisation des variants de séquence du gène encodant la 17β-hydroxystéroïde déshydrogénase de type 5 ches les femmes canadiennes-françaises atteintes d'un cancer du sein et provenant de familles à risque élevé." Master's thesis, Université Laval, 2009. http://hdl.handle.net/20.500.11794/20515.
Full textDjigoue, Guy Bertrand, and Guy Bertrand Djigoue. "Synthèse de dérivés stéroïdiens et non stéroïdiens comme inhibiteurs des 17b-hydroxystéroïdes déshydrogénases type 1 et type 3." Doctoral thesis, Université Laval, 2014. http://hdl.handle.net/20.500.11794/25004.
Full textÀ cause de leur implication dans la biosynthèse des estrogènes et des androgènes, les enzymes de la famille des 17β-hydroxystéroïdes déshydrogénases (17β-HSDs) types 1, 3 et 5 sont des cibles thérapeutiques intéressantes pour le traitement des cancers estrogéno-dépendants et androgéno-dépendants. Malgré l’existence d’inhibiteurs de la 17β-HSD1, il n’y a pas encore de traitement du cancer du sein basé sur leur utilisation. Le CC-156 est un inhibiteur connu de la 17β-HSD1; cependant, à cause de son noyau stéroïdien, ce composé de type estrane stimule la prolifération des cellules cancéreuses sensibles aux estrogènes, limitant ainsi son utilisation thérapeutique. Afin de développer des inhibiteurs non estrogéniques de la 17β-HSD1, nous avons synthétisé trois mimiques non stéroïdiennes du CC-156 à partir du bromhydrate du tétrahydro-isoquinolinol. Bien que ces composés inhibent peu la 17β-HSD1, ils sont non estrogéniques. Nous avons aussi développé une voie de synthèse pour préparer deux chimiothèques possédant chacune 75 mimiques de l’estradiol. Ces derniers, plus flexibles que les dérivés précédents, ont été conçus et synthétisés comme potentiels inhibiteurs de la stéroïde sulfatase ou pour agir comme modulateurs sélectifs du récepteur des estrogènes. L’inhibition de la 17β-HSD3 ou de la 17β-HSD5 permettrait de diminuer le taux des androgènes circulants et tumorals. En partant de l’androstérone (ADT), nous avons préparé une nouvelle famille d’inhibiteurs de la 17β-HSD3: des 3-spiromorpholinone-ADT et des 3-spirocarbamate-ADT ayant divers groupements hydrophobes sur leur cycle E supplémentaire. Afin de poser un premier jalon pour la synthèse d’inhibiteurs hybrides des 17β-HSD3 et 17β-HSD5, une spiromorpholinone ou un spirocarbamate a été ajouté en position C-3 d’une 17-spiro-δ-lactone. Brièvement, trente-deux 3-spiromorpholinone-ADT, cinq 3-spirocarbamate-ADT, trois 17-monospiro-δ-lactone-ADT et deux 3,17-dispiroandrostane-ADT ont été synthétisés. Quatre spiromorpholinones non stéroïdiennes ont aussi été synthétisées afin d’étudier le rôle du noyau androstane sur l’efficacité des inhibiteurs de la 17β-HSD3. Tous les produits finaux et les intermédiaires ont été caractérisés par spectrométries de RMN 1H, RMN 13C, IR et SM. Le potentiel inhibiteur de tous ces composés sur la 17β-HSD3 et leur androgénicité ont été mesurés. L’analyse des relations structure-activité a permis d’obtenir deux inhibiteurs efficaces et non androgéniques de la 17β-HSD3.
Laplante, Yannick. "Évaluation in vitro d'inhibiteurs des 17β-hydroxystéroïdes déshydrogénases types 1, 3 et 12." Master's thesis, Université Laval, 2006. http://hdl.handle.net/20.500.11794/19336.
Full textBellemare, Véronique. "Caractérisation fonctionnelle de l'enzyme 17β-hydroxystéroïde déshydrogénase de type 12." Doctoral thesis, Université Laval, 2009. http://hdl.handle.net/20.500.11794/21222.
Full textTrottier, Alexandre. "Étude de l'action du PBRM, un inhibiteur de la 17β-hydroxystéroïde déshydrogénase (17β--HSD) type 1 : ...qui mena à la découverte fortuite d'un 1er activateur de la 17β-HSD type 12." Master's thesis, Université Laval, 2014. http://hdl.handle.net/20.500.11794/25503.
Full text17β-Hydroxysteroid dehydrogenases (17β-HSD) are a group of 15 enzymes known firstly for their involvement in sexual hornomes metabolism. 17β-HSD1 is responsible of the last step in the biosynthesis of potent estrogens. It is thus an interesting target to treat diseases stimulated by those hormones such as endometriosis and breast cancer. PBRM, a steroidal inhibitor developed in our laboratory, is one of the few molecules that shown a strong and specific inhibition of 17β-HSD1. The present works showed that the inhibitory effect is irreversible, selective and long-lasting while showing an interesting profil in mice. During that process, many other compounds were tested but didn’t have the required qualities. Among them, one seemed to stimulate the activity of 17β-HSD12, an essential enzyme for fatty acids elongation also involved in estrogen metabolism. It is the first reported activator for a member of 17β-HSD family.
Wang, Ruixuan. "Expression and role of 17BETA-hydroxysteroid dehydrogenase type 1, 5 and 7 in epithelial ovarian cancer." Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/29632.
Full textOvarian cancer is one of the top five commonest causes of female cancer death in the developed world. About 90% of ovarian cancer have epithelial origins. Epithelial ovarian cancer (EOC) is a hormone-dependent cancer, in which the sex steroids play a crucial role in maintaining the cell proliferation and survival. The 17β-hydroxysteroid dehydrogenases (17β-HSDs) are important in the control of intracellular concentration of all active sex steroids. The function and expression of 17β-HSDs in EOC is not fully understood. Whether or not 17β-HSDs could be a therapeutic approach for the EOC treatment needs to be studied. Our results showed that 17β-HSD types 1, 5 and 7 are all expressed in EOC cells OVCAR-3 and type 1 is the highest one. The expression of 17β-HSD types 1 and 7 is higher in epithelial ovarian tumor tissues than in normal ovaries (type1, 2.2-fold; type7, 1.9-fold), but the expression of 17β-HSD type 5 is significantly lower in the tumor, following the EOC development (-5.2-fold). We found that cell proliferation was decreased after 17β-HSD type 1 or 7 knockdown by specific siRNAs in OVCAR-3 cells. While knocking down type 5 has the opposite effect. We suggest that 17β- HSD type 5 may be involved in steroid hormone signaling in EOC development. Moreover, 17β-HSD types 1 and 7 could be important biomarkers for early diagnosed EOC and novel targets for EOC treatment.
Thériault, Jean-François. "L'étude de la fonction biologique et de la cristallogenèse de la 17B-Hydroxystéroïde déshydrogénasetype 7." Master's thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/27634.
Full textThe most potent estrogen, estradiol (E2), stimulates proliferation, while the dihydrotestosterone (DHT) prevents it in estrogen dependent breast cancer cells. It brought reported that 17ß-HSD7 has two major reduction activities which can reduce E1 to E2 and inactivate the DHT to 3ß-diol. To this day, the detailed kinetic parameters and crystalline structure of the 17ß-HSD7 are unknown and theses knowledge allow a better understand of is implication in steroidogenesis. In this study, a purification protocol was developed to obtain pure 17ß-HSD7 in bacterial system to determine the steady state kinetic parameters of the 17ß-HSD7, and also its crystallization condition. Firstly, we were able to express and purify the 17ß-HSD7 in E. coli at purity over 95%. Secondly, the results of enzymatic kinetics demonstrated that the 17ß-HSD7 reduced both steroids at similar rates. Finally, the crystallization conditions were determined to growth some preliminary crystals of the 17ß-HSD7. Furthermore, we were able to confirm that the inhibition of the 17ß-HSD7 had a higher impact in to decrease the conversion of E1 in E2 than the inhibition of the 17ß-HSD1 in breast cancer cell lines. At the same time the 17ß-HSD7 demonstrates an effect on DHT reduction much more important than the 17ß-HSD1. These results highlight the role of the 17ß-HSD7 in the carcinogenesis of the breast cancer.
Blanchard, Pierre-Gilles. "Caractérisation de la 17β-hydroxystéroïde déshydrogénase de type 12 chez la souris et caenorhabditis elegans." Master's thesis, Université Laval, 2007. http://hdl.handle.net/20.500.11794/19278.
Full textLi, Tang. "Structure-biological function study of 17B-hydroxysteroid dehydrogenase type 1 and reductive steroid enzymes : inhibitor design targeting estrogen-dependent diseases." Doctoral thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/34398.
Full textHuman 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the activation of the most potent estrogen estradiol as well as the deactivation of the most active androgen dihydrotestosterone, and is considered as a promising target for the treatment of estrogen-dependent diseases such as endometriosis, breast cancer, endometrial cancer and ovarian cancer. Despite decades of research, no inhibitor targeting 17β-HSD1 has yet reached the stage of clinical trials. Moreover, the structure-biological function of the substrate inhibition of 17β-HSD1, which can be used to facilitate the inhibitor design, is still not well demonstrated. Here we co-crystallized three different inhibitors, namely EM-139, 2-MeO-CC-156 and PBRM, with 17β-HSD1 and solved the structures of these complexes. The reversible inhibitor EM-139 showed high mobility in the steroid binding site with only its steroid core moiety could be defined in the electron density. The bulky 7α-alkyl moiety of the inhibitor, which guarantees its anti-estrogenic activity but unable to be defined in the electron density, may compromise the inhibitory effect of the inhibitor on the enzyme. As for the reversible inhibitor 2-MeO-CC-156, it interacts similarly to CC-156 with the enzyme. However, in the presence of the 2- MeO group, it shows much less inhibitory potency to 17β-HSD1 as compared to the CC-156. The analysis of the PBRM ternary complex with 17β-HSD1 clearly shows an unambiguous continuity of electron density from the side chain of His221 to the bound PBRM, demonstrating the formation of a covalent bond between the Nε of His221 and the C-31 (BrCH2) of the inhibitor. This result provides insight into beneficial molecular interactions that favor the binding and subsequent N-alkylation event in the enzyme catalytic site. Also, the bromoethyl group at position C-3 of the PBRM warrants its non-estrogenic profile, slows down its metabolism, and secures the specific action of 17β-HSD1 through the formation of a covalent bond with Nε of residue His221. Meanwhile, we co-crystallized 17β-HSD1 with estrone as well as with estrone and cofactor analog NADP+, revealed a reversely orientated binding mode of estrone in the enzyme, never found in reported estradiol complexes. Structural analysis demonstrated that His221 is the key residue responsible for the reorganization and stabilization of the reversely bound estrone, leading to the formation of a dead-end complex. Thus, based on the substrate inhibition mechanism and computational analysis, a chemical entity (SX7) is proposed that may inhibit 17β-HSD1 and form a dead-end complex. Furthermore, with large number clinical samples, we demonstrated the significant expression modulation and expression correlation of several key steroidconverting enzymes, supporting the reductive 17β-HSD1 and 17β-HSD7 as promising targets and the new combined therapy targeting 11β-HSD2 and 17β-HSD7.
Mansour, Mohamed. "Studies of the enzymes that convert steroid hormones in the human adipose tissue." Doctoral thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/27707.
Full textAdipose tissue has long been recognized as a significant site for steroid hormone transformation and action. These hormones include androgens and estrogens, which play a pivotal role in the regulation of many adipose tissue functions including triglyceride accumulation, lipolysis, preadipocyte differentiation and proliferation. The availability of these hormones is regulated through a group of steroid hormone-converting enzymes that have not been fully characterized in adipose tissue. Our objective was to characterize steroid hormone-converting enzymes 5α-reductase and 17β-hydroxysteroid dehydrogenase (17β-HSD) type 2 and their involvement in the regulation of androgen and estrogen availability in abdominal adipose tissues of men and/or women, and define their association with anthropometric measurements or other adiposity markers. Methods: Omental (OM) and subcutaneous (SC) adipose tissues were obtained from non-obese and/or obese men and/or women. The expression of 5α-reductase and 17β-HSD type 2 isoenzyme was measured in various OM and SC tissue models. Immunohistochemistry and confocal imaging techniques were used to localize 17β-HSD type 2 in adiposes tissues. We used specific enzyme inhibitors in our experiments. In addition, HEK-293 cell cultures were used to test the 5α-reductase isoenzymes inhibitors. We also measured glycerol-3-phosphate dehydrogenase (G3PDH) activity with or without 5α-reductase inhibitors to assess the extent of preadipocyte differentiation. Results: Dihydrotestosterone is formed mainly through 4-androst-4-ene-3,17-dione (4-dione) and it is responsible for the vast majority of the inhibitory effect of 4-dione and testosterone on adipogenesis. 5α-reductase isoenzymes play an important role in the regulation of preadipocyte differentiation through modulation of androgenic activity. Our results also indicated that the conversion of testosterone and estradiol into less active steroids such as 4-dione and estrone, respectively, is caused by 17β-HSD type 2, which is localized in the blood vessels of adipose tissue in both men and women. No sex difference was detected in HSD17B2 mRNA expression. However, opposite correlations were found between 17β-HSD type 2/HSD17B2 mRNA expression and/or activity with age or adiposity measurements in both sexes. Conclusion: 5α-reductases and 17β-HSD type 2 have opposite actions on the availability of active steroid hormones in human OM and SC adipose tissues. The activity and/or the expression of these enzymes is associated with adiposity measurements. This supports a possible role of these enzymes in altering fat deposition through the modulation of active steroid hormone availability in adipose tissue.
Wang, Xiao Qiang. "Function and regulation of 17B-hydroxysteroid dehydrogenase type7 (17B-HSD7) in sex hormone biosynthesis and breast cancer : in vitro, in vivo, proteomic and three dimensional co-culture studies." Doctoral thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/27483.
Full textHuman 17β-hydroxysteroid dehydrogenase type 7 (17β-HSD7) displays a dual function in cholesterogenesis and steroidogenesis. In steroidogenesis, it is both involved in the formation of the estradiol (E2) from estrone (E1) and in the degradation of dihydroterstosterone (DHT) into weak estrogen 5α-androstane-3β, 17β-diol (3β-diol). However, its function in estrogen dependent breast cancer (estrogen receptor positive, ER+) has been unclear for many years. E2 stimulates breast cancer cells (BCCs, MCF-7 cells) growth via estrogen receptor (ER) whereas DHT displays anti-proliferative effects via androgen receptor (AR). In the present thesis, the function of 17β-HSD7 in ER+ breast cancer was studied with in vitro, in vivo, proteomics and three dimensional (3D) co-culture model and results were described: (1) Inhibition of 17β-HSD7 by its selective inhibitor (INH7) in BCCs induced significant lower E2, higher DHT, cell cycle arresting and negative regulating of the same enzyme. Such inhibition induced significant shrinkage of xenograft tumors accompanied by decreased E2 and elevated DHT in plasma. (2) Inhibition of 17β-HSD7modulated 104 proteins involved in different biological processes. INH7 especially suppresses the expression of glucose regulated protein 78 (GRP78) and consequently enhanced apoptosis of MCF-7 towards aromatase inhibitor. (3) The interactions between BCCs and tumor fibroblast modulate steroidogenic enzymes. 17β-HSD7 was the most modulated enzyme in MCF-7 cells whereas aromatase was the most regulated enzyme in fibroblast (Hs578Bst). Such regulations led to an increasing of E2 conversion from precursors and promoted MCF-7 cells’ proliferation. The increased cell proliferation was blocked by aromatase inhibitor in 3D co-culture system, but more significant results were observed with INH7 which blocked DHT degradation. (4) Integrative data analysis with The Cancer Genome Atlas (TCGA) confirmed the significant amplification of 17β-HSD7 in various breast cancers compared to normal breast tissue. Thus, in the present thesis, 17β-HSD7 was characterized as a novel therapeutic target for estrogen dependent breast cancer in postmenopausal women.
Faucher, Frédérick. "Identification des facteurs moléculaires responsables de l'activité particulière de la 17α-hydroxystéroïde déshydrogénase de souris et de la 5β-réductase humaine et étude structurale du domaine de liaison du ligand du récepteur humain des androgènes en complexe avec le EM5744." Doctoral thesis, Université Laval, 2008. http://hdl.handle.net/20.500.11794/20130.
Full textHan, Hui. "Substrate inhibition of 17 beta-hydroxysteroid dehydrogenase type 1 in living cells and regulation among the steroid-converting enzymes in breast cancers." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/32545.
Full textHuman 17beta-hydroxysteroid dehydrogenase type 1 (17β-HSD1), 17betahydroxysteroid dehydrogenase type 7 (17β-HSD7) and steroid sulfatase (STS) play a crucial role in regulating estrogen synthesis for breast cancer (BC). However, mutual regulation of enzymes and the interaction of these steroids (estrogens, androgens and their precursor dehydroepiandrosterone (DHEA)) are not clear. This study demonstrated the functions and mechanisms including kinetics at molecular level and in cells, ligand binding using fluorescence titration, regulation of steroids and mutual regulation between steroid enzymes in BC cells: 1) Substrate inhibition of 17β-HSD1 was shown for the first time by enzyme kinetics at the cell level, supporting the biological function of substrate inhibition. 2) As an inhibitor, dihydrotestosterone (DHT) did not affect the estrone (E1) substrate concentration at which the enzyme activity started to decrease, but some increases in velocity were observed, suggesting a corresponding decrease in substrate inhibition 3) The mRNA modulation results demonstrated that 17β-HSD7 transcription decreased in response to 17β-HSD1 inhibition or knockdown in BC cells due to estradiol (E2) concentration decrease. 4) The expression of STS is stimulated by E2 in a positive-feedback manner which finally promotes E2 biosynthesis within BC cells. 5) The joint inhibition of STS and 17β-HSD7 could block the activities of these enzymes, thus decreasing E2 formation but restoring DHT formation, to synergistically reduce cell proliferation and induce G0/G1 cell cycle arrest. 6) 17β-HSD7 and STS can synthesize E2 and are all regulated by E2. Thus, they form a functional group of enzymes mutually positively correlated, inhibition of one can reduce the expression of the other, thereby potentially amplifying the inhibitory effects. 7) Estrogen Receptor α (ERα) is not only down-regulated by E2, but also reduced by DHT though androgen receptor (AR) activation. In conclusion, 17β-HSD1 and 17β-HSD7 play essential roles in sex-hormone conversion and regulation, and the joint inhibition of STS and 17β-HSD7 constitutes a novel strategy for hormonal treatment of estrogen-receptor positive BC
Mazumdar, Mausumi. "Reductive 17beta-hydroxysteroid dehydrogenase types 1, 5 and 7 involved in hormone-dependent cancers : 3D-structure, function and inhibition." Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/26794/26794.pdf.
Full textAka, Juliette Adjo. "Étude de la contribution des enzymes 17β-hydroxystéroïdes déshydrogénases types 1 et 5 au développment du cancer du sein hormono-dépendant : approches moléculaires, cellulaires et protéomiques." Doctoral thesis, Université Laval, 2010. http://hdl.handle.net/20.500.11794/22307.
Full textCormier, Geneviève. "Les niveaux d'expression pulmonaire et placentaire de la 17-Beta hydroxystéroïde déshydrogénase de type 2 en relation avec les niveaux d'estradiol maternels et foetaux dans le modèle murin au jour de gestation 17.5." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/29511/29511.pdf.
Full textEstradiol (E2) exerts a positive effect on fetal lung maturation. The 17 beta-hydroxysteroid dehydrogenase type 2 (17ßHSD2) inactivates estrogens and androgens. 17ßHSD2 also presents a peak and an inter-litter variation of expression at gestational day 17.5 in the murine fetal lung. The variability of the pulmonary 17ßHSD2 mRNA levels could be explained by variations in fetal E2 levels. The placental 17ßHSD2 could regulate fetal and maternal E2. This study determined if a correlation exists between fetal E2 levels and pulmonary 17βHSD2 mRNA levels. A comparison was also made between E2 ratios (fetal / maternal) and the placental 17βHSD2 mRNA levels. E2 was measured by gas chromatography-mass spectrometry and 17βHSD2 was determined by quantitative PCR. There is no correlation between levels of fetal E2 and pulmonary 17ßHSD2 mRNA. Ratios of E2 levels do not correlate with placental 17ßHSD2 mRNA. These results suggest a local control of 17ßHSD2 mRNA levels in fetal lungs. Ratios of E2 could be regulated by the placental 17βHSD1.
Zerradi, Mouna. "L'implication de la 17Beta-Hydroxysteroide deshydrogenase type 1 et de la tropomyosine-1 alpha dans la progression et l'invasion des cellules cancéreuses du sein." Doctoral thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/27290.
Full textPlante, Julie. "Localisation des sites d'expression de la 17 beta hydroxystéroïde déshydrogénase type 2 et du récepteur des andorgènes dans les poumons fœtaux de souris aux jours 15.5 à 17.5 de la gestation." Master's thesis, Université Laval, 2008. http://hdl.handle.net/20.500.11794/20177.
Full textLespérance, Maxime. "Synthèse chimique et évaluation biologique de dérivés stéroïdiens pour lutter contre les maladies sensibles aux estrogènes." Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/28376.
Full textFor the last few years, there has been an increase in the number of people who receives a diagnosis of estrogenic proliferation induced disease. Among them, there are breast cancers and endometriosis. Although commonly used therapies are effective, several problems persist, including the development of drug resistance, adverse effects associated with the lack of efficacy and destructiveness of these therapies. It is therefore essential to develop alternative treatments to provide more selective and effective therapies. Hormone therapy is an interesting avenue because it could slow down or block the progression of diseases by limiting some of the side effects associated with the current treatments. In fact, the enzyme 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) is a key target for this purpose, since it regulates the formation of the more potent estrogen, estradiol. Thus, inhibition of this enzyme would decrease the levels of intracrine estrogens that bind and activate the estrogen receptors. Based on several studies in this field, several steroidal derivatives have been synthesized in order to provide a potent inhibitor for 17β- HSD1. First of all, numerous functionalized C16-benzyl estrane derivatives were synthesized. These modifications allowed obtaining a series of analogs of our leading 17β-HSD1 inhibitor (PBRM). Then, an oxirane group was added in position 3 of the steroid backbone to evaluate its activity compare to the inhibitor PBRM. The work achieved allowed to increase and discover crucial information on the enzyme. Some synthesized compounds have revealed interesting inhibitory activity, which will serve as a starting point for future work. All the discoveries will provide a better targeting of certains functionalizations in the development of estrogen-sensitive disease treatment.
Ouellet, Étienne. "Synthèse de dérivés lactoniques de l'estradiol comme inhibiteurs de la 17ß-hydroxystéroïde déshydrogénase de type 1 et synthèse de dérivés non-stéroïdiens comme inhibiteurs à double action de la stéroïde sulfatase." Master's thesis, Université Laval, 2012. http://hdl.handle.net/20.500.11794/24176.
Full textMohamed, Bassim. "Role of the 17-beta-hydroxysteroid dehydrogenase type 12 (HSD17B12) in hepatitis C and related flaviviruses replication." Thèse, 2019. http://hdl.handle.net/1866/23512.
Full textInfections with viruses are major recurrent socio-economical and health problems worldwide. These include infections by viruses of the Flaviviridae family, which present a substantial global health burden and are among the priority areas of medical virology according to the Global Virus Network 2016 report. While the current treatment regimens for hepatitis C virus (HCV) infection have cure rates of more than 98%, other important members of Flaviviridae like dengue virus (DENV) and zika virus (ZIKV) have no specific licensed treatments. By taking advantage of the most-studied HCV, which our lab has developed a vast expertise in the last 20 years, we used proteomics data of an HCV interactome study, combining viral protein immunoprecipitation (IP) coupled to tandem mass spectrometry identification (IP-MS/MS) and functional genomics RNAi screening. The study uncovered the 17-beta-hydroxysteroid dehydrogenase type 12 (HSD17B12, also named DHB12), as a specific host interactor of core that promotes HCV replication. HSD17B12 catalytic activity is involved in the synthesis of very-long-chain fatty acids (VLCFA) upon the second step of the elongation cycle. In this study, taking HCV as a virus model, we elucidated the dependency of HCV, dengue virus (DENV) and zika virus (ZIKV) replication on expression and metabolic capacity of the host factor HSD17B12. We investigated the effects of the inhibition of gene expression by RNAi and of its pharmacological enzymatic inhibition on flavivirus replication in a broad-spectrum antiviral approach. We showed that silencing expression of HSD17B12 decreases viral replication, viral proteins and iv infectious particle production of the JFH1 strain of HCV in Huh7.5 cells. The cellular localization analysis of HSD17B12 showed a co-staining with double-stranded RNA (dsRNA) at viral replication sites and with core protein (and lipid droplets) at virus assembly sites. Furthermore, HSD17B12 gene silencing drastically reduced the number and size of lipid droplets. In association, the reduced expression of HSD17B12 by RNAi decreases oleic acid levels and lipids such as triglycerides (TG) and phosphatidylethanolamine (PE) in whole-cell extract. The data suggested the requirement of the metabolic capacity of HSD17B12 for HCV replication. Similarly, we provide evidence that HSD17B12 silencing significantly reduces DENV and ZIKV infectious particles. The studies support a role of HSD17B12 for effective viral RNA replication and particle assembly processes. Moreover, the specific HSD17B12 inhibitor, INH-12, reduces HCV replication at concentrations for which no appreciable cytotoxicity is observed. The treatment of DENV- and ZIKV-infected Huh- 7.5 cells with 20 μM of INH-12 dramatically reduces production of infectious particles by up to 3-log10 in infection assays, and completely block viral protein expression. In conclusion, these studies extends our understanding of the role of HSD17B12 in VLCFA synthesis required for the replication of HCV, allowing to explore the inhibition of HSD17B12 and elongation of VLCFA as a novel therapeutic approach for the treatment of a broad-spectrum of viruses of the Flaviviridae family.