Academic literature on the topic '180 nm CMOS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '180 nm CMOS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "180 nm CMOS"
Bin Wan Jusoh, Wan Mohammad Ehsan Aiman, Siti Hawa Ruslan, Nabihah Ahmad, Warsuzarina Mat Jubadi, and Rahmat Sanudin. "Comparative study of symmetrical OTA performance in 180 nm, 130 nm and 90 nm CMOS technology." Indonesian Journal of Electrical Engineering and Computer Science 14, no. 1 (April 1, 2019): 230. http://dx.doi.org/10.11591/ijeecs.v14.i1.pp230-240.
Full textHuang, R. G., D. Gnani, C. Grace, Yu G. Kolomensky, Y. Mei, and A. Papadopoulou. "Cryogenic characterization of 180 nm CMOS technology at 100 mK." Journal of Instrumentation 15, no. 06 (June 23, 2020): P06026. http://dx.doi.org/10.1088/1748-0221/15/06/p06026.
Full textO, K. K., S. SANKARAN, C. CAO, E. Y. SEOK, D. SHIM, C. MAO, and R. HAN. "MILLIMETER WAVE TO TERAHERTZ IN CMOS." International Journal of High Speed Electronics and Systems 19, no. 01 (March 2009): 55–67. http://dx.doi.org/10.1142/s0129156409006084.
Full textCaglar, Alican, and Mustafa Berke Yelten. "A 180-nm X-Band Cryogenic CMOS LNA." IEEE Microwave and Wireless Components Letters 30, no. 4 (April 2020): 395–98. http://dx.doi.org/10.1109/lmwc.2020.2979341.
Full textHao, Han, Lin Du, Andrew G. Richardson, Timothy H. Lucas, Mark G. Allen, Jan Van der Spiegel, and Firooz Aflatouni. "A Wireless Artificial Mechanoreceptor in 180-nm CMOS." IEEE Transactions on Microwave Theory and Techniques 69, no. 6 (June 2021): 2907–20. http://dx.doi.org/10.1109/tmtt.2021.3072398.
Full textti, Dip, Rajesh Mehra, and Deep Sehgal. "Efficient Pixel Architecture of CMOS Image Sensor using CMOS 180 nm technology." International Journal of Engineering Trends and Technology 37, no. 3 (July 25, 2016): 161–64. http://dx.doi.org/10.14445/22315381/ijett-v37p226.
Full textWang, Albert, and Alyosha Molnar. "A Light-Field Image Sensor in 180 nm CMOS." IEEE Journal of Solid-State Circuits 47, no. 1 (January 2012): 257–71. http://dx.doi.org/10.1109/jssc.2011.2164669.
Full textMeng, Xu, and Fujiang Lin. "Clock generator IP design in 180 nm CMOS technology." Analog Integrated Circuits and Signal Processing 87, no. 3 (April 11, 2016): 369–77. http://dx.doi.org/10.1007/s10470-016-0737-x.
Full textWakita, Kosuke, Eiichi Sano, Masayuki Ikebe, Stevanus Arnold, Taiichi Otsuji, Yuma Takida, and Hiroaki Minamide. "Design and Fabrication of Terahertz Detectors Based on 180-nm CMOS Process Technology." International Journal of High Speed Electronics and Systems 25, no. 03n04 (September 2016): 1640014. http://dx.doi.org/10.1142/s0129156416400140.
Full textMata-Hernandez, Diana, Daniel Fernández, Saoni Banerji, and Jordi Madrenas. "Resonant MEMS Pressure Sensor in 180 nm CMOS Technology Obtained by BEOL Isotropic Etching." Sensors 20, no. 21 (October 23, 2020): 6037. http://dx.doi.org/10.3390/s20216037.
Full textDissertations / Theses on the topic "180 nm CMOS"
Shah, Julin Mukeshkumar. "Compressive Sensing Analog Front End Design in 180 nm CMOS Technology." Wright State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=wright1440381988.
Full textLacerda, Fábio de, and Instituto de Engenharia Nuclear. "Conversor DSB-SSB a capacitores chaveados por Transformador de Hilbert em tecnologia CMOS de 180 nm/." Instituto de Engenharia Nuclear, 2017. http://carpedien.ien.gov.br:8080/handle/ien/1907.
Full textMade available in DSpace on 2017-09-11T18:04:32Z (GMT). No. of bitstreams: 1 FABIO DE LACERDA D.pdf: 4651972 bytes, checksum: 40eb0d71a79f39e524da9bb7fc917c63 (MD5) Previous issue date: 2017-03
Este trabalho trata da realização de um circuito integrado analógico para a conversão de sinais com modulação em amplitude de banda dupla (Double Sideband ou DSB) para modulação de banda simples (Single Sideband ou SSB). Implementado por circuitos de tempo discreto a capacitores chaveados, utiliza-se de um filtro com resposta infinita ao impulso (Infinite Input Response ou IIR) para compor um transformador de Hilbert como alternativa a implementações digitais, que se aproveitam da grande capacidade de processamento paralelo dos circuitos digitais para a obtenção do transformador de Hilbert por meio de filtros com resposta finita ao impulso (Finite Impulse Response ou FIR) de ordem elevada. Fabricado em tecnologia CMOS de 180 nm com capacitores do tipo metal-metal (MiM), a adoção de filtros estruturalmente passa-tudo reduz significativamente a sensibilidade do conversor ao descasamento de capacitores. Para alimentação de 1,8 V e sinais diferenciais de até 1 V, resultados experimentais mostram que o conversor atinge taxa de rejeição de imagem (Image Rejection Ratio ou IRR) maior que 39,5 dB para modulação Lower Sideband (LSB) e 38,0 dB para modulação Upper Sideband (USB) para sinais de entrada na faixa de 25% a 75% da frequência da portadora, valores estes superiores a propostas analógicas anteriores e comparáveis a propostas digitais do estado da arte em circuitos integrados. Com área de silício de 1,09 mm2, o conversor consome apenas 17,7 mW para frequência de amostragem de 1 MHz enquanto sua IRR apresentou desvio padrão de apenas 0,5 dB dentre 20 amostras avaliadas.
The realization of an analog integrated circuit for conversion of Double-Sideband (DSB) amplitude-modulated signals into Single-Sideband (SSB) is presented. Implemented by discrete-time switched-capacitor circuits, it adopts an Infinite Impulse Response (IIR) filter to realize a Hilbert transformer as alternative to digital implementations which take advantage of high processing capacity from parallel digital circuits to obtain the Hilbert transformer by means of high-order Finite Impulse Response (FIR) filters. Fabricated in a 180 nm CMOS technology with metal-metal (MiM) capacitors, the use of structurally all-pass filters greatly reduces the converter’s sensitivity to capacitor mismatch. For 1.8 V power supply and 1 V differential input/output signals, experimental results show the converter achieves Image Rejection Ratio (IRR) greater than 39.5 dB for Lower-Sideband (LSB) modulation and 38.0 dB for Upper-Sideband (USB) modulation for input signals ranging from 25% to 75% of the carrier frequency. These figures are higher than previous analog circuit proposals and comparable to digital implementations of state-of-the-art integrated circuits. Its silicon area is 1.09 mm2 and the converter consumes only 17.7 mW for 1 MHz sampling frequency while its IRR presents standard deviation of only 0.5 dB among 20 chip samples.
Puech, Gabriel. "Conception d'un ADC de résolution 8 bits basse consommation et 2 GHz de fréquence d'échantillonnage en technologie CMOS 180 nm." Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC094/document.
Full textAfter a a brief recall of the context this research work have been carried, the 1st chapter present the common analog to digital converters (ADC) characteristics with their figures of merit (FoM). A relevant state of the art on realized ADC architectures is presented. A particular emphasis has been done on 180 nm CMOS process node. This preliminary work gives a pertinent overview of the faced challenge. Multi step analog sampling architectures have been avoided from the study because of the transistors limited frequency performances. Chapter 2 presents the different implementations of the Flash digital sampling ADC family architecture. The TIQ architecture embedding in the 180 nm CMOS process are detailed in this chapter. Chapter 3 details the study and the design of an other digital sampling ADC family architecture on 180 nm CMOS process i.e. the signal folding architecture. This 1st part of the document conclude with the choice of the Flash ADC architecture. The building bloc design for this ADC are detailed in the following chapters constituting the part II. Chapter 4 is dedicated to the study and the design on 180 nm CMOS process of the latch comparator responsible of the 2 GHz sampling constraint of the overall ADC. As the retained comparator architecture input refereed non linearity defined the gain constraints of the preamplifier stage, the preamplifier is presented in the next chapter. Chapter 5 present the different characteristics and techniques of the quantifier stage. The comparator preamplifier stage with its different actives loads, its passive full differential transposition and the retained architecture are detailed. The QV technique and its embedding in the retained preamplifier architecture are presented. The thermometric 1 to binary encoder tree is presented in chapter 6. Two implementations of this encoding are studied and design on the Front-End (FE) level. The 1st one is a pipelined Wallace tree realized with a register transfer level (RTL) code on VHDL hardware description language. The synthesis flow on CMOS pull-up pull-down 2 combinatorial logic and rising edge flip flops are used for this architecture. The other architecture is designed using 1 bits multiplexers combinatorial pipelined with pass gated D latches with a full custom schematic implementation. Chapter 7 presents the limitations and the embedding of the interpolation with the retained preamplifier and comparator latch. The study of common drain source follower (CDSF) pairs insertion, mandatory for the biasing of the preamplifier input stage to reach the 8 bits resolution is studied with details. Finally, Monte Carlo sampling mismatch 3 analysis on the resistor references are studied by comparing different topologies and sizing. The overall ADC synoptic is presented with the retained cells and techniques. The bottom-up design approach, mandatory for analog and full-custom design, exposed in this 2nd part conclude on the choice to design a proof of concept ASIC (BuBlC1) including all the critical piece of circuits of the overall ADC with added value and potentially critical for signal conversion. The top-down approach for this ASIC design is detailed in the IIIrd part with the overall ASIC synoptic of the BuBlC1 ASIC sent to multi project wafer (MPW) foundry run integrating all the critical cells.The FE design of this ASIC with its clock tree and its input/output PAD are presented in chapter 8. The Back-End design with the retained cells layout in part II with the cells integration in clusters are presented in chapter 9 with the pad-ring and final integration in digital and analog macro-cells cores
Truyen, David. "Etude par simulation composant 3D des effets singuliers SEU et SET induits par ions lourds sur le noeud technologique CMOS bulk 180 nm." Montpellier 2, 2007. http://www.theses.fr/2007MON20139.
Full textJohansson, Jimmy. "Power-Efficient Settling Time Reduction Techniques for a Folded-Cascode Amplifier in 1.8 V, 0.18 um CMOS." Thesis, Linköpings universitet, Elektroniska Kretsar och System, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138446.
Full textArnim, Klaus von [Verfasser]. "Digitale Schaltungstechniken für Sub-100-nm-CMOS-Technologien / Klaus von Arnim." Kiel : Universitätsbibliothek Kiel, 2009. http://d-nb.info/1019813423/34.
Full textMehdi, Ghulam. "Highly Linear Mixer for On-chip RF Test in 130 nm CMOS." Thesis, Linköping University, Department of Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8001.
Full textThe complexity of wireless communication integrated circuits is increasing day by day due to the trend of multifunction and multistandard support. This has not only increased the production cost of these RFICs but the testing cost is also increased significantly, as much advanced test equipments and instruments are needed to carry out the sophisticated performance tests. To avoid this higher cost and to reduce the test time, the alternative is to perform on-chip test. .In RF transceivers, loopback is an on-chip test technique in which Tx signal, instead of radiating through antenna is fed to the Rx chain through a test attenuator (TA) during the test mode. A highly linear offset mixer is needed to implement this on-chip loopback test for these transceivers. The aim of this thesis work is to design a highly linear upconversion offset mixer for loopback test in CMOS technology. This mixer is designed for Bluetooth and GSM/EDGE standards.
Few highly linear mixer architectures were simulated in 0.35um AMS process using Cadence SpectreRF software. When compared with active mixers, passive mixer consumes no dc power and there is significant reduction in silicon area overhead. The thesis presents a highly linear passive mixer with very low conversion loss and noise figure. The mixer is designed in 0.13um AMS CMOS process for higher cut off frequency and improved conversion loss. Pre and Post layout simulation results of the designed mixer are presented.
Arora, Rajan. "Trade-offs between performance and reliability of sub 100-nm RF-CMOS technologies." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/50140.
Full textStrzelecki, Joseph Benito. "Wideband Automatic Gain Control Design in 130 nm CMOS Process for Wireless Receiver Applications." Wright State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=wright1440773805.
Full textPavageau, Christophe. "Utilisation des technologies CMOS SOI 130 nm pour des applications en gamme de fréquences millimétriques." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2005. http://tel.archives-ouvertes.fr/tel-00011744.
Full textLes travaux effectués lors de cette thèse portaient sur l'étude des aptitudes de la technologie CMOS SOI 130 nm de ST-Microelectronics pour des applications hyperfréquences au-delà de 20 GHz. Ils consistaient plus précisément à concevoir des circuits de démonstration pouvant entrer dans la composition d'une chaîne d'émission/réception. Trois amplificateurs distribués en bande K ont d'abord été conçus et mesurés. Malgré des pertes élevées dans les lignes de transmission limitant ainsi la bande passante et le gain, les performances mesurées montrent l'intérêt de cette technologie pour les hyperfréquences. Ensuite, une nouvelle série de démonstrateurs – amplificateurs distribués, amplificateurs faible bruit et mélangeurs actifs – a été conçue en employant des lignes à plus faibles pertes que celles utilisées précédemment. Les résultats de simulation montrent que le produit gain-bande des amplificateurs distribués a doublé en conservant la même architecture. Les simulations des amplificateurs faible bruit et des mélangeurs actifs montrent des performances à l'état de l'art en CMOS.
Book chapters on the topic "180 nm CMOS"
Parvathy, P., and N. Saraswathi. "Design and Analysis of a CMOS 180-nm Fractional-N Frequency Synthesizer." In Nanoelectronic Materials and Devices, 37–49. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7191-1_5.
Full textKrishna Reddy, K., and P. Sreehari Rao. "A High Efficiency Six Phase Voltage Doubler Cell Using 180 nm CMOS Process." In Communications in Computer and Information Science, 29–36. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7219-7_3.
Full textSimariya, Dipika, R. C. Gurjar, and D. K. Mishra. "Pulse Start-up Technique Based Class C VCO Using 180 nm CMOS Technology." In Lecture Notes in Electrical Engineering, 755–65. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0275-7_62.
Full textJuhi Faridi, Mohd Samar Ansari, and Syed Atiqur Rahman. "A Neuromorphic Majority Function Circuit with O(n) Area Complexity in 180 nm CMOS." In Proceedings of the International Conference on Data Engineering and Communication Technology, 473–80. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1675-2_47.
Full textSoman, Vanitha, and Sudhakar S. Mande. "Design of a Two-Stage Folded Cascode Amplifier Using SCL 180 nm CMOS Technology." In Lecture Notes in Electrical Engineering, 423–30. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2612-1_41.
Full textSiddamal, Saroja V., Suhas B. Shirol, Shraddha B. Hiremath, Jayashree Mallidu, and Nalini C. Iyer. "Design and Implementation of ASIC for Time Recorder in TSMC 180 nm CMOS Technology." In Communications in Computer and Information Science, 281–87. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5048-2_22.
Full textDipu, P., B. Saidulu, K. Aravind, Johny S. Raj, and K. Sivasankaran. "A 4-bit 9 KS/s Distortionless Successive Approximation ADC in 180-nm CMOS Technology." In Advances in Intelligent Systems and Computing, 55–63. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2126-5_7.
Full textShraddha, B. H., and Nalini C. Iyer. "An Active Mixer Design For Down Conversion in 180 nm CMOS Technology for RFIC Applications." In Emerging Research in Computing, Information, Communication and Applications, 605–19. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5953-8_50.
Full textSaldanha, Alan, Vijil Gupta, and Vinod Kumar Joshi. "Comparison of Low Current Mismatch CMOS Charge Pumps for Analog PLLs Using 180 nm Technology." In Advances in Intelligent Systems and Computing, 683–92. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3600-3_65.
Full textRahali, Ahmed, Karim El Khadiri, Zakia Lakhliai, Hassan Qjidaa, and Ahmed Tahiri. "Design of a CMOS Bandgap Reference Voltage Using the OP AMP in 180 nm Process." In Digital Technologies and Applications, 1655–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73882-2_150.
Full textConference papers on the topic "180 nm CMOS"
Raut, Ketan J., R. V. Kshirsagar, and A. C. Bhagali. "A 180 nm low power CMOS operational amplifier." In 2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH). IEEE, 2014. http://dx.doi.org/10.1109/cipech.2014.7019049.
Full textArnold, William H. "Lithography strategies for 180-nm CMOS device fabrication." In Photomask Japan '97, edited by Naoaki Aizaki. SPIE, 1997. http://dx.doi.org/10.1117/12.277248.
Full textUdupa, Sharanya S., P. S. Sushma, and Chaithra. "ECG analog front-end in 180 nm CMOS technology." In 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). IEEE, 2017. http://dx.doi.org/10.1109/icicict1.2017.8342583.
Full textEnomoto, Tadayoshi, Suguru Nagayama, and Nobuaki Kobayashi. "Low-Power High-Speed 180-nm CMOS Clock Drivers." In 2007 Asia and South Pacific Design Automation Conference. IEEE, 2007. http://dx.doi.org/10.1109/aspdac.2007.357973.
Full textTadayoshi Enomoto and Yuki Higuchi. "A low-leakage current power 180-nm CMOS SRAM." In 2008 Asia and South Pacific Design Automation Conference (ASPDAC). IEEE, 2008. http://dx.doi.org/10.1109/aspdac.2008.4483914.
Full textSuna, Ahmet, Ismail Cevik, and Mustafa Berke Yelten. "A High Speed 180 NM CMOS Cryogenic SAR ADC." In 2018 18th Mediterranean Microwave Symposium (MMS). IEEE, 2018. http://dx.doi.org/10.1109/mms.2018.8611968.
Full textTomic, Dubravko, Josip Mikulic, Gregor Schatzberger, Johannes Fellner, and Adrijan Baric. "Programmable low-frequency divider in 180-nm CMOS technology." In 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). IEEE, 2020. http://dx.doi.org/10.23919/mipro48935.2020.9245285.
Full textTolic, Ivan Porin, Josip Mikulic, Gregor Schatzberger, and Adrijan Baric. "Design of CMOS Temperature Sensors Based on Ring Oscillators in 180-nm and 110-nm technology." In 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). IEEE, 2020. http://dx.doi.org/10.23919/mipro48935.2020.9245244.
Full textWang, Tianyang, Marlon Barbero, Pierre Barrillon, Ivan Berdalović, Christian Bespin, Siddharth Bhat, Patrick Breugnon, et al. "Depleted Monolithic Active Pixel Sensors in the LFoundry 150 nm and TowerJazz 180 nm CMOS Technologies." In The 28th International Workshop on Vertex Detectors. Trieste, Italy: Sissa Medialab, 2020. http://dx.doi.org/10.22323/1.373.0026.
Full textJianhong Xiao, Weinan Gao, Xiaojing Xu, Dave Chang, Jiang Cao, Runhua Sun, Vijay Periasamy, et al. "A 180 mW multistandard TV tuner in 28 nm CMOS." In 2016 IEEE Symposium on VLSI Circuits. IEEE, 2016. http://dx.doi.org/10.1109/vlsic.2016.7573502.
Full text