Academic literature on the topic '1D CNN'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '1D CNN.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "1D CNN"
Hsieh, Tien-Heng, and Jean-Fu Kiang. "Comparison of CNN Algorithms on Hyperspectral Image Classification in Agricultural Lands." Sensors 20, no. 6 (March 20, 2020): 1734. http://dx.doi.org/10.3390/s20061734.
Full textGhafoor, Karzan J., Karwan M. Hama Rawf, Ayub O. Abdulrahman, and Sarkhel H. Taher. "Kurdish Dialect Recognition using 1D CNN." ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY 9, no. 2 (October 15, 2021): 10–14. http://dx.doi.org/10.14500/aro.10837.
Full textKim, A. Ran, Ha Seon Kim, Chang Ho Kang, and Sun Young Kim. "The Design of the 1D CNN–GRU Network Based on the RCS for Classification of Multiclass Missiles." Remote Sensing 15, no. 3 (January 18, 2023): 577. http://dx.doi.org/10.3390/rs15030577.
Full textMa, Xiaotong, Qixia Man, Xinming Yang, Pinliang Dong, Zelong Yang, Jingru Wu, and Chunhui Liu. "Urban Feature Extraction within a Complex Urban Area with an Improved 3D-CNN Using Airborne Hyperspectral Data." Remote Sensing 15, no. 4 (February 10, 2023): 992. http://dx.doi.org/10.3390/rs15040992.
Full textHou, Wenguang, Shaojie Mei, Qiuling Gui, Yingcheng Zou, Yifan Wang, Xianbo Deng, and Qimin Cheng. "1D CNN-Based Intracranial Aneurysms Detection in 3D TOF-MRA." Complexity 2020 (November 12, 2020): 1–13. http://dx.doi.org/10.1155/2020/7023754.
Full textLi, Xingpeng, Hongzhe Jiang, Xuesong Jiang, and Minghong Shi. "Identification of Geographical Origin of Chinese Chestnuts Using Hyperspectral Imaging with 1D-CNN Algorithm." Agriculture 11, no. 12 (December 15, 2021): 1274. http://dx.doi.org/10.3390/agriculture11121274.
Full textYuan, Xinzhe, Dustin Tanksley, Liujun Li, Haibin Zhang, Genda Chen, and Donald Wunsch. "Faster Post-Earthquake Damage Assessment Based on 1D Convolutional Neural Networks." Applied Sciences 11, no. 21 (October 21, 2021): 9844. http://dx.doi.org/10.3390/app11219844.
Full textByun, Eunseok, and Jongsoo Lee. "Image-based Vibration Signal Measurement and Calibration Using 1D CNN." Transactions of the Korean Society of Mechanical Engineers - A 46, no. 8 (August 31, 2022): 765–72. http://dx.doi.org/10.3795/ksme-a.2022.46.8.765.
Full textLiu, Yan, Yue Shen, Li Li, and Hai Wang. "FPGA Implementation of a BPSK 1D-CNN Demodulator." Applied Sciences 8, no. 3 (March 15, 2018): 441. http://dx.doi.org/10.3390/app8030441.
Full textKim, Jung-Woo, Seung-Ho Park, Sock-Kyu Lee, and Kyoung-Su Park. "Artificial Intelligence Network with 1D-/2D-CNN and LSTM Predicting Flank Wear from Raw Vibration Signals." Transactions of the Korean Society for Noise and Vibration Engineering 32, no. 4 (August 31, 2022): 384–91. http://dx.doi.org/10.5050/ksnve.2022.32.4.384.
Full textDissertations / Theses on the topic "1D CNN"
Al-Kadhimi, Staffan, and Paul Löwenström. "Identification of machine-generated reviews : 1D CNN applied on the GPT-2 neural language model." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280335.
Full textI och med de senaste framstegen inom maskininlärning kan datorer skapa mer och mer övertygande text, vilket skapar en oro för ökad falsk information på internet. Samtidigt vägs detta upp genom att forskare skapar verktyg för att identifiera datorgenererad text. Forskare har kunnat utnyttja svagheter i neurala språkmodeller och använda dessa mot dem. Till exempel tillhandahåller GLTR användare en visuell representation av texter, som hjälp för att klassificera dessa som människo- skrivna eller maskingenererade. Genom att träna ett faltningsnätverk (convolutional neural network, eller CNN) på utdata från GLTR-analys av maskingenererade och människoskrivna filmrecensioner, tar vi GLTR ett steg längre och använder det för att genomföra klassifikationen automatiskt. Emellertid tycks det ej vara tillräckligt att använda en CNN med GLTR som huvuddatakälla för att klassificera på en nivå som är jämförbar med de bästa existerande metoderna.
Ghibellini, Alessandro. "Trend prediction in financial time series: a model and a software framework." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24708/.
Full textBosello, Michael. "Integrating BDI and Reinforcement Learning: the Case Study of Autonomous Driving." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21467/.
Full textBouillonnec, Jonathan. "Elaboration et étude des propriétés mécaniques et thermiques de matériaux constitués de nanotubes de carbone verticalement alignés." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30228/document.
Full textVertically aligned carbon nanotube carpets are potential candidates for applications such as interconnections or thermal interface materials (TIMs). This research work deals with the synthesis of aligned carbon nanotube carpets from the aerosol assisted chemical vapour deposition (CVD) technique, with the elaboration of nanocomposites made of different grades of epoxy matrix infiltrated within these carpets, as well as the study of both longitudinal and transverse mechanical and thermal properties of dry carpets themselves and 1D-nanocomposites separately. The synthesis conditions notably enable to vary characteristics of the differents carpets such as their thickness, their density, the mean external diameter of the carbon nanotubes (CNT), the intertube space and the CNT volume fraction, whereas their crystalline structure can be modified with a high temperature thermal treatment. The main goal of this work is to prove and quantify the effect of some of the characteristics of the carbon nanotubes carpets on both mechanical and thermal properties of the different kinds of CNT carpets and resulting composite materials. The two impregnation methods used, liquid way and infusion, lead to dense CNT carpets with a preserved alignment of the CNT and an homogeneous distribution of these latest within the epoxy system. The CNT volume content is evidenced as the key-parameter exacerbating the mechanical and thermal properties mainly in the longitudinal direction compared with the alignment axis of the CNTs. Moreover the mechanical and thermal conduction properties of the CNT carpets and the 1D-nanocomposites are clearly increased when the crystalline structure of the CNT is improved. The significant increasing of the properties brought by the vertically aligned CNT within these anisotropic 1D-nanocomposites compared with the only organic matrixes is promising and opens new pathways aiming to meet the latest specifications related to multifunctionnality in fields such as aeronautics and aerospace
Books on the topic "1D CNN"
Nechaev, Vladimir, Andrey Shuba, Stanislav Gridnev, and Vitaliy Topolov. Dimensional effects in phase transitions and physical properties of ferroics. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1898400.
Full textDaghero, D., G. A. Ummarino, and R. S. Gonnelli. Andreev Reflection and Related Studies in Low-Dimensional Superconducting Systems. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.5.
Full textLin, Nian, and Sebastian Stepanow. Designing low-dimensional nanostructures at surfaces by supramolecular chemistry. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.10.
Full textStamenova, M., and S. Sanvito. Atomistic spin-dynamics. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.7.
Full textBook chapters on the topic "1D CNN"
Jacob, Jemia Anna, Jestin P. Cherian, Joseph George, Christo Daniel Reji, and Divya Mohan. "Heart Diseases Classification Using 1D CNN." In Advances in Intelligent Systems and Computing, 755–65. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4367-2_72.
Full textTong, Li, Haiwei Liang, and Xudong Zou. "Distribution Grid Topology Estimation Using 1D-CNN." In Lecture Notes in Electrical Engineering, 607–18. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1922-0_51.
Full textGhosh, Sourodip, Aunkit Chaki, and Ankit Kudeshia. "Cyberbully Detection Using 1D-CNN and LSTM." In Lecture Notes in Electrical Engineering, 295–301. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4866-0_37.
Full textBaghel, Shikha, Mrinmoy Bhattacharjee, S. R. M. Prasanna, and Prithwijit Guha. "Shouted and Normal Speech Classification Using 1D CNN." In Lecture Notes in Computer Science, 472–80. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34872-4_52.
Full textJi, Luping, Xiaorong Pu, and Guisong Liu. "Chinese Text Similarity Computation via the 1D-PW CNN." In Proceedings in Adaptation, Learning and Optimization, 237–46. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13359-1_19.
Full textLang, Christian, Florian Steinborn, Oliver Steffens, and Elmar W. Lang. "Applying a 1D-CNN Network to Electricity Load Forecasting." In Contributions to Statistics, 205–18. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56219-9_14.
Full textShivhare, Neha, Shanti Rathod, and M. R. Khan. "Dementia Detection Using Bi-LSTM and 1D CNN Model." In Algorithms for Intelligent Systems, 407–21. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9650-3_32.
Full textGogoi, Parismita, Sishir Kalita, Wendy Lalhminghlui, Priyankoo Sarmah, and S. R. M. Prasanna. "Learning Mizo Tones from F0 Contours Using 1D-CNN." In Speech and Computer, 214–25. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87802-3_20.
Full textLiu, Xinyu, Gaole Sai, and Shengyu Duan. "Hardware Acceleration for 1D-CNN Based Real-Time Edge Computing." In Lecture Notes in Computer Science, 192–204. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-21395-3_18.
Full textBeer Singh, Youddha, and Shivani Goel. "1D CNN based approach for speech emotion recognition using MFCC features." In Artificial Intelligence and Speech Technology, 347–54. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003150664-38.
Full textConference papers on the topic "1D CNN"
Allamy, Safaa, and Alessandro Lameiras Koerich. "1D CNN Architectures for Music Genre Classification." In 2021 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2021. http://dx.doi.org/10.1109/ssci50451.2021.9659979.
Full textMatsunaga, Yuto, Naofumi Aoki, Yoshinori Dobashi, and Tetsuya Kojima. "Distortion based Watermark Extraction Technique Using 1D CNN." In 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). IEEE, 2021. http://dx.doi.org/10.1109/icaiic51459.2021.9415200.
Full textJose, Avin, S. Ullas, and B. Uma Maheswari. "Collusion Detection in Electricity Markets Using 1D CNN." In 2022 International Conference on Intelligent Technologies (CONIT). IEEE, 2022. http://dx.doi.org/10.1109/conit55038.2022.9847862.
Full textJouny, Ismail I. "Stepped frequency radar target recognition using 1D-CNN." In Automatic Target Recognition XXXII, edited by Kristen Jaskie, Timothy L. Overman, Riad I. Hammoud, and Abhijit Mahalanobis. SPIE, 2022. http://dx.doi.org/10.1117/12.2618613.
Full textSong, Yang, Zhifei Zhang, Razieh Kaviani Baghbaderani, Fanqi Wang, Ying Qu, Craig Stuttsy, and Hairong Qi. "Land Cover Classification for Satellite Images Through 1D CNN." In 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, 2019. http://dx.doi.org/10.1109/whispers.2019.8921180.
Full textXU, Yanping, Xia ZHANG, Tingcong YE, Zhenliang QIU, Lingjun ZHANG, Hua ZHANG, and Yifan WU. "1D CNN for Feature Reconstruction on Network Threat Detection." In ICMLC 2021: 2021 13th International Conference on Machine Learning and Computing. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3457682.3457701.
Full textKhan, Arshiya, and Chase Cotton. "Detecting Attacks on IoT Devices using Featureless 1D-CNN." In 2021 IEEE International Conference on Cyber Security and Resilience (CSR). IEEE, 2021. http://dx.doi.org/10.1109/csr51186.2021.9527910.
Full textLi, Yulan, Charlesetta Baidoo, Ting Cai, and Goodlet A. Kusi. "Speech Emotion Recognition Using 1D CNN with No Attention." In 2019 23rd International Computer Science and Engineering Conference (ICSEC). IEEE, 2019. http://dx.doi.org/10.1109/icsec47112.2019.8974716.
Full textIleri, Ramis, Fatma Latifoglu, and Esra Demirci. "New Method to Diagnosis of Dyslexia Using 1D-CNN." In 2020 Medical Technologies Congress (TIPTEKNO). IEEE, 2020. http://dx.doi.org/10.1109/tiptekno50054.2020.9299241.
Full textLiu, Pengda, Julong Pan, Hailiang Zhu, and Yanli Li. "A Wearable Fall Detection System Based on 1D CNN." In 2021 2nd International Conference on Artificial Intelligence and Computer Engineering (ICAICE). IEEE, 2021. http://dx.doi.org/10.1109/icaice54393.2021.00046.
Full textReports on the topic "1D CNN"
Bozza, F., A. Gimelli, S. Fontanesi, and E. Severi. 1D and 3D CFD Investigation of Burning Process and Knock Occurrence in a Gasoline or CNG fuelled Two-Stroke SI Engine. Warrendale, PA: SAE International, November 2011. http://dx.doi.org/10.4271/2011-32-0526.
Full textGlushko, E. Ya, and A. N. Stepanyuk. New perspectives to improve accuracy of the molar gas constant using pneumatic photonic structures. [б. в.], December 2018. http://dx.doi.org/10.31812/123456789/2873.
Full textNelson, Alex, Stanford A. Gibson, and Alex Sanchez. Development of a two-dimensional HEC-RAS sediment model for the Chippewa River, Wisconsin, for software development and sediment trend analysis. U.S. Army Engineer Research and Development Center, June 2022. http://dx.doi.org/10.21079/11681/44561.
Full textGlushko, E. Ya, and A. N. Stepanyuk. Optopneumatic medium for precise indication of pressure over time inside the fluid flow. Астропринт, 2018. http://dx.doi.org/10.31812/123456789/2874.
Full text