Journal articles on the topic '22-nm technology node'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic '22-nm technology node.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Li, Zongru, Christopher Jarrett Elash, Chen Jin, et al. "Comparison of Total Ionizing Dose Effects in 22-nm and 28-nm FD SOI Technologies." Electronics 11, no. 11 (2022): 1757. http://dx.doi.org/10.3390/electronics11111757.
Full textDas, Pankaj Kumar, Anurag Yadav, and Nidhi Chandra. "Analysis of Delay and Dynamic Crosstalk in Spatially Arranged Mixed CNT Bundle Interconnects at Different Technology Nodes." Key Engineering Materials 994 (November 5, 2024): 39–45. http://dx.doi.org/10.4028/p-vcvy4l.
Full textXu, Peng, Yinghua Piao, Liang Ge, et al. "Investigation of Novel Junctionless MOSFETs for Technology Node Beyond 22 nm." ECS Transactions 44, no. 1 (2019): 33–39. http://dx.doi.org/10.1149/1.3694293.
Full textHolmes, Steven. "22-nm-node technology active-layer patterning for planar transistor devices." Journal of Micro/Nanolithography, MEMS, and MOEMS 9, no. 1 (2010): 013001. http://dx.doi.org/10.1117/1.3302125.
Full textSaxena, Shubhangi, and Kamsali Manjunathachari. "Novel Nanoelectronic Materials and Devices: For Future Technology Node." ECS Transactions 107, no. 1 (2022): 15701–11. http://dx.doi.org/10.1149/10701.15701ecst.
Full textBaklanov, Mikhail R., Evgeny A. Smirnov, and Larry Zhao. "Ultra Low Dielectric Constant Materials for 22 nm Technology Node and Beyond." ECS Transactions 35, no. 4 (2019): 717–28. http://dx.doi.org/10.1149/1.3572315.
Full textMitrovic, Ivona Z., and Stephen Hall. "Rare Earth Silicate Formation: A Route Towards High-k for the 22 nm Node and Beyond." Journal of Telecommunications and Information Technology, no. 4 (June 26, 2023): 560. http://dx.doi.org/10.26636/jtit.2009.4.969.
Full textHuang, Zhengfeng, Yan Zhang, Wenhui Wu, et al. "A high-speed quadruple-node-upset-tolerant latch in 22 nm CMOS technology." Microelectronics Reliability 147 (August 2023): 115032. http://dx.doi.org/10.1016/j.microrel.2023.115032.
Full textLi, Zongru, Christopher Elash, Chen Jin, et al. "SEU performance of Schmitt-trigger-based flip-flops at the 22-nm FD SOI technology node." Microelectronics Reliability 146 (July 2023): 115033. http://dx.doi.org/10.1016/j.microrel.2023.115033.
Full textLu, Peng, Can Yang, Yifei Li, Bo Li, and Zhengsheng Han. "Three-Dimensional TID Hardening Design for 14 nm Node SOI FinFETs." Eng 2, no. 4 (2021): 620–31. http://dx.doi.org/10.3390/eng2040039.
Full textSingh, Karan, Shruti Kalra, and Jyoti Mahur. "Evaluating NBTI and HCI effects on device reliability for high-performance applications in advanced CMOS technologies." Facta universitatis - series: Electronics and Energetics 37, no. 4 (2024): 581–97. https://doi.org/10.2298/fuee2404581s.
Full textChanghwan Shin, Min Hee Cho, Yasumasa Tsukamoto, et al. "Performance and Area Scaling Benefits of FD-SOI Technology for 6-T SRAM Cells at the 22-nm Node." IEEE Transactions on Electron Devices 57, no. 6 (2010): 1301–9. http://dx.doi.org/10.1109/ted.2010.2046070.
Full textShin, Changhwan, Nattapol Damrongplasit, Xin Sun, Yasumasa Tsukamoto, Borivoje Nikolic, and Tsu-Jae King Liu. "Performance and Yield Benefits of Quasi-Planar Bulk CMOS Technology for 6-T SRAM at the 22-nm Node." IEEE Transactions on Electron Devices 58, no. 7 (2011): 1846–54. http://dx.doi.org/10.1109/ted.2011.2139213.
Full textMah, Siew Kien, Pin Jern Ker, Ibrahim Ahmad, Noor Faizah Zainul Abidin, and Mansur Mohammed Ali Gamel. "A Feasible Alternative to FDSOI and FinFET: Optimization of W/La2O3/Si Planar PMOS with 14 nm Gate-Length." Materials 14, no. 19 (2021): 5721. http://dx.doi.org/10.3390/ma14195721.
Full textDuari, Chusen, Shilpi Birla, and Amit Kumar Singh. "A Dual Port 8T SRAM Cell Using FinFET & CMOS Logic for Leakage Reduction and Enhanced Read & Write Stability." Journal of Integrated Circuits and Systems 15, no. 2 (2020): 1–7. http://dx.doi.org/10.29292/jics.v15i2.140.
Full textZhou, Jing, Jishan Zhang, and Chun Zheng. "STTSRL: Design of Triple-Node Upset Self-Recovery Latch Based on Schmidt Trigger." Journal of Physics: Conference Series 2658, no. 1 (2023): 012013. http://dx.doi.org/10.1088/1742-6596/2658/1/012013.
Full textMazurier, J., O. Weber, F. Andrieu, et al. "Ultra-Thin Body and Buried Oxide (UTBB) FDSOI Technology with Low Variability and Power Management Capability for 22 nm Node and Below." Journal of Low Power Electronics 8, no. 1 (2012): 125–32. http://dx.doi.org/10.1166/jolpe.2012.1173.
Full textKarthikeyan, A., and P. S. Mallick. "Optimization Techniques for CNT Based VLSI Interconnects — A Review." Journal of Circuits, Systems and Computers 26, no. 03 (2016): 1730002. http://dx.doi.org/10.1142/s0218126617300021.
Full textVerbitskiy, V. G., S. V. Voevodin, V. V. Fedulov, G. V. Kalistyi, and D. O. Verbitskiy. "Manifestation of the channeling effect when manufacturing JFET transistors." Semiconductor Physics, Quantum Electronics and Optoelectronics 23, no. 04 (2020): 379–84. http://dx.doi.org/10.15407/spqeo23.04.379.
Full textValasa, Sresta, Shubham Tayal, and Laxman Raju Thoutam. "Design Insights into Thermal Performance of Vertically Stacked JL-NSFET with High-k Gate Dielectric for Sub 5-nm Technology Node." ECS Journal of Solid State Science and Technology 11, no. 4 (2022): 041008. http://dx.doi.org/10.1149/2162-8777/ac6627.
Full textKwon, Ah-Young, Ju-Yeon Jeong, Hyun Park, et al. "miR-22-3p and miR-30e-5p Are Associated with Prognosis in Cervical Squamous Cell Carcinoma." International Journal of Molecular Sciences 23, no. 10 (2022): 5623. http://dx.doi.org/10.3390/ijms23105623.
Full textKumar Rai, Mayank, Rajesh Khanna, and Sankar Sarkar. "Control of tube parameters on SWCNT bundle interconnect delay and power dissipation." Microelectronics International 31, no. 1 (2013): 24–31. http://dx.doi.org/10.1108/mi-03-2013-0016.
Full textBoureau, Victor, Aurèle Durand, Patrice Gergaud, et al. "Dark-field electron holography as a recording of crystal diffraction in real space: a comparative study with high-resolution X-ray diffraction for strain analysis of MOSFETs." Journal of Applied Crystallography 53, no. 4 (2020): 885–95. http://dx.doi.org/10.1107/s1600576720006020.
Full textBertsias, Panagiotis, Andreas Tsimpos, and George Souliotis. "A Linear Multi-Band Voltage-Controlled Oscillator with Process Compensation for SerDes Applications." Electronics 13, no. 3 (2024): 581. http://dx.doi.org/10.3390/electronics13030581.
Full textFallnich, Daniel, Christian Lanius, Shutao Zhang, and Tobias Gemmeke. "Efficient ASIC Architecture for Low Latency Classic McEliece Decoding." IACR Transactions on Cryptographic Hardware and Embedded Systems 2024, no. 2 (2024): 403–25. http://dx.doi.org/10.46586/tches.v2024.i2.403-425.
Full textMerad, Faiza, and Ahlam Guen-Bouazza. "DC performance analysis of a 20nm gate lenght n-type silicon GAA junctionless (Si JL-GAA) transistor." International Journal of Electrical and Computer Engineering (IJECE) 10, no. 4 (2020): 4043. http://dx.doi.org/10.11591/ijece.v10i4.pp4043-4052.
Full textFaiza, Merad, and Guen-Bouazza Ahlam. "DC performance analysis of a 20nm gate length n-type Silicon GAA junctionless (Si JL-GAA) transistor." International Journal of Electrical and Computer Engineering (IJECE) 10, no. 4 (2020): 4043–52. https://doi.org/10.11591/ijece.v10i4.pp4043-4052.
Full textWu, Banqiu. "Next-generation lithography for 22 and 16 nm technology nodes and beyond." Science China Information Sciences 54, no. 5 (2011): 959–79. http://dx.doi.org/10.1007/s11432-011-4227-6.
Full textGanesh, Chokkakula, and Fazal Noorbasha. "Performance and Stability Analysis of Built-In Self-Read and Write Assist 10T SRAM Cell." Active and Passive Electronic Components 2023 (June 30, 2023): 1–17. http://dx.doi.org/10.1155/2023/3371599.
Full textMcCants, Carl E. "The IARPA Circuit Analysis Tools Program." EDFA Technical Articles 15, no. 4 (2013): 52–54. http://dx.doi.org/10.31399/asm.edfa.2013-4.p052.
Full textSharma, Himanshu, and Karmjit Singh Sandha. "Impact of Intercalation Doping on the Conductivity of Multi-Layer Graphene Nanoribbon (MLGNR) in On-Chip Interconnects." Journal of Circuits, Systems and Computers 29, no. 12 (2020): 2050185. http://dx.doi.org/10.1142/s0218126620501856.
Full textWang, Guilei, Qiang Xu, Tao Yang, et al. "Application of Atomic Layer Deposition Tungsten (ALD W) as Gate Filling Metal for 22 nm and Beyond Nodes CMOS Technology." ECS Journal of Solid State Science and Technology 3, no. 4 (2014): P82—P85. http://dx.doi.org/10.1149/2.015404jss.
Full textVeloso, Anabela, An De Keersgieter, Stephan Brus, Naoto Horiguchi, Philippe P. Absil, and Thomas Hoffmann. "Multi-Gate Fin Field-Effect Transistors Junctions Optimization by Conventional Ion Implantation for (Sub-)22 nm Technology Nodes Circuit Applications." Japanese Journal of Applied Physics 50, no. 4S (2011): 04DC16. http://dx.doi.org/10.7567/jjap.50.04dc16.
Full textWang, G., Q. Xu, T. Yang, et al. "Application of Atomic Layer Deposition Tungsten (ALD W) as Gate Filling Metal for 22 nm and Beyond Nodes CMOS Technology." ECS Transactions 58, no. 10 (2013): 317–24. http://dx.doi.org/10.1149/05810.0317ecst.
Full textVeloso, Anabela, An De Keersgieter, Stephan Brus, Naoto Horiguchi, Philippe P. Absil, and Thomas Hoffmann. "Multi-Gate Fin Field-Effect Transistors Junctions Optimization by Conventional Ion Implantation for (Sub-)22 nm Technology Nodes Circuit Applications." Japanese Journal of Applied Physics 50, no. 4 (2011): 04DC16. http://dx.doi.org/10.1143/jjap.50.04dc16.
Full textCui, Hushan, Jun Luo, Jing Xu, et al. "Investigation of TaN as the wet etch stop layer for HKMG-last integration in the 22 nm and beyond nodes CMOS technology." Vacuum 119 (September 2015): 185–88. http://dx.doi.org/10.1016/j.vacuum.2015.05.021.
Full textVijay N. Patil, Yuvraj V. Parkale, Ajjay S. Gaadhe,. "Investigating the Impact of Technology Scaling on Stability Performance of Sub-threshold Static Random Access Memory Bitcell Topologies." Journal of Electrical Systems 20, no. 2s (2024): 1034–43. http://dx.doi.org/10.52783/jes.1750.
Full textZhao, Chun, C. Z. Zhao, M. Werner, S. Taylor, and P. R. Chalker. "Advanced CMOS Gate Stack: Present Research Progress." ISRN Nanotechnology 2012 (February 9, 2012): 1–35. http://dx.doi.org/10.5402/2012/689023.
Full textVeloso, Anabela, Soon Aik Chew, Tom Schram, et al. "W versus Co–Al as Gate Fill-Metal for Aggressively Scaled Replacement High-k/Metal Gate Devices for (Sub-)22 nm Technology Nodes." Japanese Journal of Applied Physics 52, no. 4S (2013): 04CA03. http://dx.doi.org/10.7567/jjap.52.04ca03.
Full textDAOUD, HOUDA, SAMIR BENSELEM, SONIA ZOUARI, and MOURAD LOULOU. "USE OF ROBUST PREDICTIVE METHOD FOR NANO-CMOS PROCESS: APPLICATION TO BASIC BLOCK ANALOG CIRCUIT DESIGN." Journal of Circuits, Systems and Computers 21, no. 07 (2012): 1250061. http://dx.doi.org/10.1142/s0218126612500612.
Full textChiu, H. Y., Y. K. Fang, T. H. Chou, Y. T. Chiang, and C. I. Lin. "A novel STI etching technology to mitigate an inverse narrow width effect, and improve device performances for 90 nm node and beyond CMOS technology." Semiconductor Science and Technology 22, no. 10 (2007): 1157–60. http://dx.doi.org/10.1088/0268-1242/22/10/013.
Full text"Ultra Low Dielectric Constant Materials for 22 nm Technology Node and beyond." ECS Meeting Abstracts, 2011. http://dx.doi.org/10.1149/ma2011-01/22/1407.
Full textLi, Zongru, Christopher Elash, Jiesi Xing, et al. "SEU Performance of RHBD Flip-Flops Using Guard-Gates at 22-nm FDSOI Technology Node." IEEE Transactions on Nuclear Science, 2023, 1. http://dx.doi.org/10.1109/tns.2023.3284758.
Full textWang, Hanbin, Jinshun Bi, Jianhui Bu, et al. "Characteristics of 22 nm UTBB-FDSOI technology with an ultra-wide temperature range." Semiconductor Science and Technology, August 4, 2022. http://dx.doi.org/10.1088/1361-6641/ac86ec.
Full textWang, Guilei, Jun Luo, Jinbiao Liu, et al. "pMOSFETs Featuring ALD W Filling Metal Using SiH4 and B2H6 Precursors in 22 nm Node CMOS Technology." Nanoscale Research Letters 12, no. 1 (2017). http://dx.doi.org/10.1186/s11671-017-2080-2.
Full textSharma, Vijay Kumar. "A Survey on Low Power Design Approaches in nanoscale regime." Micro and Nanosystems 12 (June 23, 2020). http://dx.doi.org/10.2174/1876402912999200623120558.
Full textBarik, Rasmita, Rudra Sankar Dhar, Falah Awwad, and Mousa I. Hussein. "Evolution of type-II hetero-strain cylindrical-gate-all-around nanowire FET for exploration and analysis of enriched performances." Scientific Reports 13, no. 1 (2023). http://dx.doi.org/10.1038/s41598-023-38239-x.
Full textTang, Chaowei, Yichen Zhang, Yanqi Zheng, and Xian Tang. "A Single‐Inductor Multiple‐Output DC‐DC Converter With 2.8 V–5 V Battery Voltage Supply for SoC Application in 22 nm CMOS Technology." International Journal of Circuit Theory and Applications, November 21, 2024. http://dx.doi.org/10.1002/cta.4374.
Full textYin, Zihan, Md Abdullah-Al Kaiser, Lamine Ousmane Camara, et al. "IRIS: Integrated Retinal Functionality in Image Sensors." Frontiers in Neuroscience 17 (September 1, 2023). http://dx.doi.org/10.3389/fnins.2023.1241691.
Full textPetropoulos, N., X. Wu, A. Sokolov, et al. "Nanoscale single-electron box with a floating lead for quantum sensing: Modeling and device characterization." Applied Physics Letters 124, no. 17 (2024). http://dx.doi.org/10.1063/5.0203421.
Full text