To see the other types of publications on this topic, follow the link: 2D/3D Seismic Data Interpretation.

Dissertations / Theses on the topic '2D/3D Seismic Data Interpretation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 20 dissertations / theses for your research on the topic '2D/3D Seismic Data Interpretation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Afsar, Fatima. "ANALYSIS AND INTERPRETATION OF 2D/3D SEISMIC DATA OVER DHURNAL OIL FIELD, NORTHERN PAKISTAN." Thesis, Uppsala universitet, Geofysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-202565.

Full text
Abstract:
The study area, Dhurnal oil field, is located 74 km southwest of Islamabad in the Potwar basin of Pakistan. Discovered in March 1984, the field was developed with four producing wells and three water injection wells. Three main limestone reservoirs of Eocene and Paleocene ages are present in this field. These limestone reservoirs are tectonically fractured and all the production is derived from these fractures. The overlying claystone formation of Miocene age provides vertical and lateral seal to the Paleocene and Permian carbonates. The field started production in May 1984, reaching a maximum rate of 19370 BOPD in November 1989. Currently Dhurnal‐1 (D-1) and Dhurnal‐6 (D-6) wells are producing 135 BOPD and 0.65 MMCF/D gas. The field has depleted after producing over 50 million Bbls of oil and 130 BCF of gas from naturally fractured low energy shelf carbonates of the Eocene, Paleocene and Permian reservoirs. Preliminary geological and geophysical data evaluation of Dhurnal field revealed the presence of an up-dip anticlinal structure between D-1 and D-6 wells, seen on new 2003 reprocessed data. However, this structural impression is not observed on old 1987 processed data. The aim of this research is to compare and evaluate old and new reprocessed data in order to identify possible factors affecting the structural configuration. For this purpose, a detailed interpretation of old and new reprocessed data is carried out and results clearly demonstrate that structural compartmentalization exists in Dhurnal field (based on 2003 data). Therefore, to further analyse the available data sets, processing sequences pertaining to both vintages have been examined. After great effort and detailed investigation, it is concluded that the major parameter giving rise to this data discrepancy is the velocity analysis done with different gridding intervals. The detailed and dense velocity analysis carried out on the data in 2003 was able to image the subtle anticlinal feature, which was missed on the 1987 processed seismic data due to sparse gridding. In addition to this, about 105 sq.km 3D seismic data recently (2009) acquired by Ocean Pakistan Limited (OPL) is also interpreted in this project to gain greater confidence on the results. The 3D geophysical interpretation confirmed the findings and aided in accurately mapping the remaining hydrocarbon potential of Dhurnal field.
APA, Harvard, Vancouver, ISO, and other styles
2

Halvorsen, Hanne Sundgot. "Mapping of shallow Tunnel Valleys combining 2D and 3D Seismic Data." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for petroleumsteknologi og anvendt geofysikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18383.

Full text
Abstract:
In this study 19 tunnel valleys within block 2/4 in the central North Sea basin have been mapped. Furthermore, the possibility for these valleys to act as migration paths for leaked gas has been evaluated. In January 1989 a kick occurred while drilling well 2/4-14 in the area of study, hence the pertinence of evaluating this hypothesis at this locality is evident. The work has been performed using multichannel 2D lines and a conventional 3D seismic survey. The quality of the 2D and 3D data is clearly dissimilar at shallow burial depths, as the 2D data is considered to be high-resolution while the 3D data is low-resolution. However, both data sets have proved to give valuable information on the valley morphology. Great details about the extent and basal morphology have been retrieved from the conventional 3D volume; whereas seismic characteristics of the valley infill have been interpreted from the 2D lines. Tunnel valleys are major, elongated incisions carved into sediments or permeable bedrock during glaciations. They tend to be sinuous in planform, but might also appear as straight valleys. Tunnel valleys often consist of several cut- and fill-structures, both laterally and vertically, and thus form a network of interconnected valleys. This has also been observed in the area of study. No sedimentological logs have been available in the study. Hence, the interpretations of valley fill lithologies are based on the seismic characteristics, and thereby they are quite cautious. The typical fill sequence observed correlates fairly good with similar valleys mapped in the area previously. A lower part of chaotic reflectors, believed to be glaciofluvial sands and gravels, is overlain by sub-horizontal layers of glaciomarine mud. Moreover, velocity pull-up effects are seen in the underburden of some of the valleys. These indicate relatively high velocities of the infill sediments, and hence, it is likely to be clayey tills. Even so, the possibility of gas migration within the tunnel valley system is believed to be conspicuous.
APA, Harvard, Vancouver, ISO, and other styles
3

Rodriguez, Tablante Johiris Isabel. "Extracting 3D Information from 2D Crooked Line Seismic Data on Hardrock Environments." Doctoral thesis, Uppsala University, Department of Earth Sciences, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6510.

Full text
Abstract:

Seismic methods have been used in sedimentary environment for almost 80 years. During that time, exploration geophysicists have developed a number of techniques to handle specific aspects of working in sedimentary areas. This is not the case for studies in the hardrock environment, where significantly less time and money have been invested on seismic investigations. Therefore, there is still a need to develop the right techniques appropriate for working in hardrock environments. The research presented here, covers aspects of acquisition, processing and interpretation in hardrock environments. A cost-effective alternative for two-dimensional data acquisition is presented. Acquisition parameters are also discussed and recommendations for future work are given. The main effort of this thesis, however, was to find appropriate processing methods to address some of the different problems present in datasets acquired in the hardrock environment. Comparison of two computer programs for first arrival seismic tomography was performed in order to find the most suitable one for processing crooked line geometries. Three-dimensional pre-stack depth migration was also tested to find a detailed near-surface image. A processing method geared to enhance the signal-to-noise ratio was applied to the dataset with the lowest signal amplitudes to improve the quality of the stack. Finally, cross-dip analysis and corrections were performed on two of the three datasets included in this thesis. Cross-dip analysis was also applied as an interpretation tool to provide the information needed for estimation of the true dip of some of the reflectors related to geological structures. The results presented in this thesis indicate that cross-dip analysis and corrections are one of the most powerful tools for processing and interpretation in the presence of complex geology. Therefore, it is recommended to include this method as a standard step in the processing and interpretation sequence of data acquired in hardrock environments.

APA, Harvard, Vancouver, ISO, and other styles
4

ROY, NILANJAN. "ANALYSIS AND INTERPRETATION OF 2D SEISMIC DATA OVER THE ANCONA GAS STORAGE FACILITY, ILLINOIS, USING PETREL VISUALIZATION SOFTWARE." Wright State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=wright1229924769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lamb, Rachel. "Quaternary environments of the central North Sea from basin-wide 3D seismic data." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/quaternary-environments-of-the-central-north-sea-from-basinwide-3d-seismic-data(e7b26bab-8e0f-4403-b4c5-aee201ac6843).html.

Full text
Abstract:
Climate change during the last 2.5 million years is characterised by glacial-interglacial cycles of fluctuating sea level and temperature increasing in magnitude and duration towards the present day. The central North Sea preserves these glacial-interglacial cycles in an expanded sedimentary sequence creating a high resolution palaeo-climatic record. Basin-wide, low-resolution 3D seismic data, covering more than 80,000 km2 of the central North Sea, is combined with high-resolution, broadband 3D seismic, regional 2D seismic and local ultra-high resolution seismic from the Dogger Bank windfarm development zone in order to investigate in full the sedimentary sequence. The evolution of the basin is analysed along with the preserved geomorphological landforms in order to build a framework for the development of the North Sea and its changing palaeo-environments from the inception of the Quaternary (2.58 Ma) until the extensive glacial unconformity formed during the Elsterian (0.48 Ma).At the onset of the Quaternary the structure of the North Sea was that of an elongate marine basin, rapidly infilled from the south by continued progradation of the large clinoformal deposits of the southern North Sea deltaic system. The basin rapidly decreased in extent and depth however it was not until around 1.1 Ma that the broad, shallow shelf of the present day was fully established. A revision of the current seismic stratigraphy is proposed, identifying four new Members within the Aberdeen Ground Formation taking into account the development of the basin through time. Powerful downslope gravity currents dominated the basin during much of the early Quaternary, although a well-established, anti-clockwise tidal gyre acted to gently modify the gravity currents. Iceberg scouring was nearly continual from the onset of the Quaternary until grounded ice sheets began to penetrate into the basin from 1.7 Ma, more than half a million years before any previous estimates. Effects of confluence of the British and Fennoscandian ice sheets are observed from 1.3 Ma. The tunnel valleys of the Dogger Bank represent a continuation of the North Sea tunnel valley network, interacting with both older glaciotectonic thrusting and younger glaciotectonic folded deformation.
APA, Harvard, Vancouver, ISO, and other styles
6

Rowe, Craig A. "A novel 3D transition zone seismic survey, Shoal Point, Port au Port Peninsula, Newfoundland : seismic data processing and interpretation /." Internet access available to MUN users only, 2003. http://collections.mun.ca/u?/theses,59416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Singh, Paritosh. "Processing, inversion, and interpretation of 9C-3D seismic data for characterizing the Morrow A sandstone, Postle Field, Oklahoma." Thesis, Colorado School of Mines, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3559234.

Full text
Abstract:

Detection of Morrow A sandstones is a major problem in the exploration of new fields and the characterization of existing fields because they are very thin and laterally discontinuous. The present research shows the advantages of S-wave data in detecting and characterizing the Morrow A sandstone. Full-waveform modeling is done to understand the sandstone signature in P-, PS- and S-wave gathers. The sandstone shows a distinct high-amplitude event in pure S-wave reflections as compared to the weaker P- and PS-wave events. Modeling also helps in understanding the effect of changing sandstone thickness, interbed multiples (generated by shallow high-velocity anhydrite layers) and sidelobe interference effect (due to Morrow shale) at the Morrow A level.

Multicomponent data need proper care while processing, especially the S-wave data which are aected by the near-surface complexity. Cross-spread geometry and 3D FK filtering are effective in removing the low-velocity noise trends. The S-wave data obtained after stripping the S-wave splitting in the overburden show improvement for imaging and reservoir property determination. Individual P- and S-wave attributes as well as their combinations have been analyzed to predict the A sandstone thickness. A multi-attribute map and collocated cokriging procedure is used to derive the seismic-guided isopach of the A sandstone.

Postle Field is undergoing CO2 flooding and it is important to understand the characteristics of the reservoir for successful flood management. Density can play an important role in finding and monitoring high-quality reservoirs, and to predict reservoir porosity. prestack P- and S-wave AVO inversion and joint P- and S-wave inversion provide density estimates along with the P- and S-impedance for better characterization of the Morrow A sandstone. The research provides a detailed multicomponent processing, inversion and interpretation work flow for reservoir characterization, which can be used for exploration in other parts of the world as well.

APA, Harvard, Vancouver, ISO, and other styles
8

Russ, Keith David. "An investigation into the application of computers for the processing of survey and planning data for 2D and 3D interpretation." Thesis, University of Exeter, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Huang, Fei. "3D Time-lapse Analysis of Seismic Reflection Data to Characterize the Reservoir at the Ketzin CO2 Storage Pilot Site." Doctoral thesis, Uppsala universitet, Geofysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-301003.

Full text
Abstract:
3D time-lapse seismics, also known as 4D seismics, have great potential for monitoring the migration of CO2 at underground storage sites. This thesis focuses on time-lapse analysis of 3D seismic reflection data acquired at the Ketzin CO2 geological storage site in order to improve understanding of the reservoir and how CO2 migrates within it. Four 3D seismic surveys have been acquired to date at the site, one baseline survey in 2005 prior to injection, two repeat surveys in 2009 and 2012 during the injection period, and one post-injection survey in 2015. To accurately simulate time-lapse seismic signatures in the subsurface, detailed 3D seismic property models for the baseline and repeat surveys were constructed by integrating borehole data and the 3D seismic data. Pseudo-boreholes between and beyond well control were built. A zero-offset convolution seismic modeling approach was used to generate synthetic time-lapse seismograms. This allowed simulations to be performed quickly and limited the introduction of artifacts in the seismic responses. Conventional seismic data have two limitations, uncertainty in detecting the CO2 plume in the reservoir and limited temporal resolution. In order to overcome these limitations, complex spectral decomposition was applied to the 3D time-lapse seismic data. Monochromatic wavelet phase and reflectivity amplitude components were decomposed from the 3D time-lapse seismic data. Wavelet phase anomalies associated with the CO2 plume were observed in the time-lapse data and verified by a series of seismic modeling studies. Tuning frequencies were determined from the balanced amplitude spectra in an attempt to discriminate between pressure effects and CO2 saturation. Quantitative assessment of the reservoir thickness and CO2 mass were performed. Time-lapse analysis on the post-injection survey was carried out and the results showed a consistent tendency with the previous repeat surveys in the CO2 migration, but with a decrease in the size of the amplitude anomaly. No systematic anomalies above the caprock were detected. Analysis of the signal to noise ratio and seismic simulations using the detailed 3D property models were performed to explain the observations. Estimation of the CO2 mass and uncertainties in it were investigated using two different approaches based on different velocity-saturation models.
APA, Harvard, Vancouver, ISO, and other styles
10

Moraes, Dione Cherpinsky. "Interpolação e regularização de dados sismicos usando a transformada de Radon linear (tau-up) 2D e 3D." [s.n.], 2004. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265528.

Full text
Abstract:
Orientadores: Rodrigo de Souza Portugal, Carlos Alves da Cunha Filho
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica, Instituto de Geociencias
Made available in DSpace on 2018-08-12T03:43:20Z (GMT). No. of bitstreams: 1 Moraes_DioneCherpinsky_M.pdf: 4463877 bytes, checksum: 6418a90fbf3389f9233ef9eb721da563 (MD5) Previous issue date: 2004
Resumo: Os levantamentos sísmicos são parametrizados para que os dados sejam adquiridos segundo uma malha regular. Tal regularidade quase nunca é possível, pois durante a aquisição dos dados ocorrem obstáculos operacionais como cidades, estradas, plataformas e áreas de preservação ambiental, dentre muitos outros. Em dados marítimos sempre ocorre outro tipo de irregularidade, que é a deriva do cabo de hidrofones devido a correntes oceânicas. Tenta-se então regularizar esses dados no início do processamento sísmico, para que processos cruciais como análise de velocidades e migração tenham melhores desempenhos. Neste trabalho, a interpolação e regularização dos dados são feitas com auxílio da transformada T - p. Os algoritmos desenvolvidos utilizam a técnica do empilhamento oblíquo. Para os casos 2D e 3D, os parâmetros ideais são discutidos para que o dado retome do domínio T - P com a menor quantidade de artefatos possível. A regularização dos dados é realizada quando há deriva de cabos de hidrofones. A forma e a amplitude do sinal são preservadas quando realizam-se as transformadas T - P direta e invesa. Para o caso 2D, também são estudadas a interpolação de dados e a regularização quando ocorre um longo trecho sem informação sísmica.
Abstract: Seismic surveys are designed on the purpose that all samples collected during the seismic experiment fall on a specific regular grid. Nevertheless, this data regularity is almost impossible to achieve due to different obstacles during seismic acquisition such as constructions (cities, pipelines or other facilities), roads, platforms, preservation areas and so on. A very important non-cultural irregularity which occurs during marine seismic surveys and shall be part of our main concern is hydrophone cable drift caused by ocean currents (cable feathering). These irregularities shall be treated in the first steps of seismic data processing and data regularization can be the right tool to be used. Regularization may improve the overall performance of important steps in seismic processing like velocity analysis and migration. Data interpolation and regularization are performed using the T - P transform, with slant stack 2D and 3D algorithms. We discuss different issues in 2D and 3D data regularization using T - p transforms such as ideal parameterization to avoid artifacts and the 2D experiments related to interpolation and regularization of gaps in seismic information and cable feathering. Requirements for amplitude and phase preservation when the pair of T - P transforms is performed are also discussed.
Mestrado
Mestre em Ciências e Engenharia de Petróleo
APA, Harvard, Vancouver, ISO, and other styles
11

Kardell, Dominik Alexander, and Dominik Alexander Kardell. "Volume Estimation of Rift-Related Magmatic Features using Seismic Interpretation and 3D Inversion of Gravity Data on the Guinea Plateau, West Africa." Thesis, The University of Arizona, 2016. http://hdl.handle.net/10150/621182.

Full text
Abstract:
The two end-member concept of mantle plume-driven versus far field stress-driven continental rifting anticipates high volumes of magma emplaced close to the rift-initiating plume, whereas relatively low magmatic volumes are predicted at large distances from the plume where the rifting is thought to be driven by far field stresses. We test this concept at the Guinea Plateau, which represents the last area of separation between Africa and South America, by investigating for rift-related volumes of magmatism using borehole, 3D seismic, and gravity data to run structural 3D inversions in two different data areas. Despite our interpretation of igneous rocks spanning large areas of continental shelf covered by the available seismic surveys, the calculated volumes in the Guinea Plateau barely match the magmatic volumes of other magma-poor margins and thus endorse the aforementioned concept. While the volcanic units on the shelf seem to be characterized more dominantly by horizontally deposited extrusive volcanic flows distributed over larger areas, numerous paleo-seamounts pierce complexly deformed pre and syn-rift sedimentary units on the slope. As non-uniqueness is an omnipresent issue when using potential field data to model geologic features, our method faced some challenges in the areas exhibiting complicated geology. In this situation less rigid constraints were applied in the modeling process. The misfit issues were successfully addressed by filtering the frequency content of the gravity data according to the depth of the investigated geology. In this work, we classify and compare our volume estimates for rift-related magmatism between the Guinea Fracture Zone (FZ) and the Saint Paul's FZ while presenting the refinements applied to our modeling technique.
APA, Harvard, Vancouver, ISO, and other styles
12

Mejias, Mariela. "A Geological Interpretation of 3D Seismic Data of a Salt Structure and Subsalt Horizons in the Mississippi Canyon Subdivision of the Gulf of Mexico." ScholarWorks@UNO, 2006. http://scholarworks.uno.edu/td/438.

Full text
Abstract:
The Gulf of Mexico (GOM) represents a challenge for exploration and production. Most of the sediments coming from North America has bypassed the shelf margin into Deep Water. In an Attempt to attack this challenge this thesis pretends to break the GOM's false bottom, mainly comprised by diverse salt structures and growth fault families. In this attempt, geological and geophysical data are integrated to find clues to potential hydrocarbons indicator (PHI) that could be of Reservoir Quality (RQ). 3D Pre stack depth migrated data comprised of Mississippi Canyon blocks, were interpreted: Top and base of salt, leading to the identification of a PHI represented by a consistent Amplitude Anomaly (AA) below and towards a salt structure. This AA may be of RQ and feasibility evaluation for further decisions may be taken. Following the structural sequences that Govern central GOM during Oligocene through out Miocene was important to support the results.
APA, Harvard, Vancouver, ISO, and other styles
13

Cindi, Brian Msizi. "3-D Seismic structural interpretation : insights to thrust faulting and paleo-stress field distribution in the deep offshore Orange Basin, South Africa." University of the Western Cape, 2016. http://hdl.handle.net/11394/5548.

Full text
Abstract:
>Magister Scientiae - MSc
The Orange Basin provides exceptional 3-D structures of folds and faults generated during soft-sediment slumping and deformation which is progressive in nature. 3-D seismic and structural evaluation techniques have been used to understand the geometric architecture of the gravity collapse structures. The location of the seismic surveyed area is approximately 370 km northwest of the Port of Saldanha. The interpretation of gravitational tectonics indicate significant amount of deformation that is not accounted for in the imaged thrust belt structure. The Study area covers 8200 square kilometre (km²) of the total 130 000 km² area of the Orange Basin offshore South Africa. The south parts of the Study area are largely featureless towards the shelf area. The north has chaotic seismic facies as the result of an increase in thrust faults in seismic facies 2. Episodic gravitational collapse system of the Orange Basin margin characterizes the late Cretaceous post-rift evolution. This Study area shows that implications of stress field and thrust faulting to the thickness change by gravity collapse systems are not only the result of geological processes such as rapid sedimentation, margin uplift and subsidence, but also could have occurred as the result of the possible meteorite impact. These processes caused gravitational potential energy contrast and created gravity collapse features that are observed between 3000-4500ms TWT intervals in the seismic data.
Shell Exploration & Production Company
APA, Harvard, Vancouver, ISO, and other styles
14

Hennenfent, Gilles, and Felix J. Herrmann. "Sparseness-constrained data continuation with frames: Applications to missing traces and aliased signals in 2/3-D." Society of Exploration Geophysicists, 2005. http://hdl.handle.net/2429/524.

Full text
Abstract:
We present a robust iterative sparseness-constrained interpolation algorithm using 2/3D curvelet frames and Fourier-like transforms that exploits continuity along reflectors in seismic data. By choosing generic transforms, we circumvent the necessity to make parametric assumptions (e.g. through linear/parabolic Radon or demigration) regarding the shape of events in seismic data. Simulation and real data examples for data with moderately sized gaps demonstrate that our algorithm provides interpolated traces that accurately reproduce the wavelet shape as well as the AVO behavior. Our method also shows good results for de-aliasing judged by the behavior of the (f-k)-spectrum before and after regularization.
APA, Harvard, Vancouver, ISO, and other styles
15

Belde, Johannes Verfasser], Stefan [Akademischer Betreuer] [Back, Gösta Akademischer Betreuer] Hoffmann, and Sven [Akademischer Betreuer] [Sindern. "Controls on depositional processes on the Australian Northwest Shelf: the Oligocene to recent carbonate succession analyzed on 2D/3D seismic reflection and borehole data / Johannes Belde ; Stefan Back, Gösta Hoffmann, Sven Sindern." Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1162499532/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

van, Heteren S., J. A. C. Meekes, M. A. J. Bakker, Vincent L. Gaffney, Simon Fitch, B. R. Gearey, and B. F. Paap. "Reconstructing North Sea palaeolandscapes from 3D and high-density 2D seismic data: An overview." 2014. http://hdl.handle.net/10454/10898.

Full text
Abstract:
No
The North Sea subsurface shows the marks of long-term tectonic subsidence. Much of it contains a thick record of glacial and interglacial deposits and landscapes, formed during multiple glacial cycles and the associated regressions and transgressions during the past two million years. At times of lower sea level than today, areas that are presently submerged were fertile lowlands more favourable for hunting and gathering than the surrounding upland. These drowned lowlands are not captured by traditional 1:250,000 geological maps of the North Sea subsurface because the underlying seismic and core data are commonly too widely spaced to achieve this. Palaeolandscape mapping requires identification of building blocks with spatial scales in the order of 1 km or less. As high-density 2D and high-quality 3D seismics are becoming available for an increasing part of the North Sea, glacial and interglacial palaeolandscapes can be reconstructed for more and more areas. An overview of published palaeolandscape reconstructions shows that shallow time slices through 3D data provide map views that are very suitable for the identification of landscape elements. For optimal results, each time slice needs to be validated and ground-truthed with 2D seismics and with descriptions and analyses of cores and borehole samples. Interpretations should be made by teams of geoscientists with a sufficiently broad range of expertise to recognise and classify even subtle or unfamiliar patterns and features. The resulting reconstructions will provide a context and an environmental setting for Palaeolithic, Mesolithic, and Neolithic societies and finds.
APA, Harvard, Vancouver, ISO, and other styles
17

Hager, Christine Robin. "Seismic interpretation of Pennsylvanian Atokan strata using 3D seismic inversion data, Wilburton Gas Field, Arkoma Basin, Southeastern Oklahoma." 2009. http://digital.library.okstate.edu/etd/Hager_okstate_0664M_10296.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Voroňáková, Jana. "Komplexní seismické atributy a jejich aplikace na data z Mistlbašské kry." Master's thesis, 2014. http://www.nusl.cz/ntk/nusl-332411.

Full text
Abstract:
The purpose of this diploma thesis is to apply complex seismic attributes on 3D seismic data from Mistelbach block area and trying to figure out whether they are useful by seismic interpretation process. The geology of Vienna basin and the characteristics of Complex seismic attributes will be discussed. The thesis also includes analysis of the Lednice 11 gas reservoir and a new potential hydrocarbon reservoir identification, both using complex seismic attributes.
APA, Harvard, Vancouver, ISO, and other styles
19

Al-Waily, Mustafa Badieh. "Depth-registration of 9-component 3-dimensional seismic data in Stephens County, Oklahoma." Thesis, 2014. http://hdl.handle.net/2152/25745.

Full text
Abstract:
Multicomponent seismic imaging techniques improve geological interpretation by providing crucial information about subsurface characteristics. These techniques deliver different images of the same subsurface using multiple waveforms. Compressional (P) and shear (S) waves respond to lithology and fluid variations differently, providing independent measurements of rock and fluid properties. Joint interpretation of multicomponent images requires P-wave and S-wave events to be aligned in depth. The process of identifying P and S events from the same reflector is called depth-registration. The purpose of this investigation is to illustrate procedures for depth-registering P and S seismic data when the most fundamental information needed for depth-registration – reliable velocity data – are not available. This work will focus on the depth-registration of a 9-component 3-dimensional seismic dataset targeting the Sycamore formation in Stephens County, Oklahoma. The survey area – 16 square miles – is located in Sho-Vel-Tum oilfield. Processed P-P, SV-SV, and SH-SH wave data are available for post-stack analysis. However, the SV-data volume will not be interpreted because of its inferior data-quality compared to the SH-data volume. Velocity data are essential in most depth-registration techniques: they can be used to convert the seismic data from the time domain to the depth domain. However, velocity data are not available within the boundaries of the 9C/3D seismic survey. The data are located in a complex area that is folded and faulted in the northwest part of the Ardmore basin, between the eastern Arbuckle Mountains and the western Wichita Mountains. Large hydrocarbon volumes are produced from stratigraphic traps, fault closures, anticlines, and combination traps. Sho-Vel-Tum was ranked 31st in terms of proved oil reserves among U.S. oil fields by a 2009 survey. I will interpret different depth-registered horizons on the P-wave and S-wave seismic data volumes. Then, I will present several methods to verify the accuracy of event-registration. Seven depth-registered horizons are mapped through the P-P and SH-SH seismic data. These horizons show the structural complexity that imposes serious challenges on well drilling within the Sho-Vel-Tum oil field. Interval Vp/Vs – a seismic attribute often used as lithological indicator – was mapped to constrain horizon picking and to characterize lateral stratigraphic variations.
text
APA, Harvard, Vancouver, ISO, and other styles
20

Mkhabela, Mbali. "Integrated interpretation of 3D seismic data using seismic attributes to understand the structural control of methane occurrences at deep gold mining levels: West Wits Line Goldfield, South Africa." Thesis, 2017. https://hdl.handle.net/10539/25123.

Full text
Abstract:
A thesis submitted to the Faculty of Science, University of the Witwatersrand in fulfilment of the requirements for the degree of Master of Science, School of Geosciences University of the Witwatersrand. 08 November 2017.
At a number of gold mines in South Africa, the presence of methane gases has been encountered when drilling into faults and/or dyke structures extending to depths beyond 4.5 km. Methane gas has been reported to have migrated through structures from within the basin to the mine working environments (~3.0 km depths) and caused explosions. The Booysens Shale is considered one of the possible source rocks for hydrocarbons and it forms the footwall to the gold-bearing Ventersdorp Contact Reef (VCR, ~ 1.5 m thick). The Booysens Shale lies at depths between 3.5 km and 4.5 km below land surface and can be best described as the base of the divergent clastic wedge which thickens westward, hosting the quartzite and conglomerate units that sub-crop against the VCR towards the east of the gold mining areas. Geometric attributes (dip and dip azimuth) and instantaneous attributes (phase, frequency and envelope) computed for the Booysens Shale and Ventersdorp Contact Reef horizons (interpreted from 3D prestack time migrated data acquired in the Witwatersrand goldfields) provide insight into structures that extend from the Booysens Shale into the overlying mining level, the Ventersdorp Contact Reef. These attributes provide high-resolution mapping of the structures (faults, dykes, and joints) that have intersected both the Ventersdorp Contact Reef and Booysens Shale horizons. Volumetric fault analysis using the ant-tracking attribute incorporated with methane gas data also show the continuity and connections of the faults and fracture zones possibly linked to methane gas and fluid migration. Correlation between the known occurrence of fissure water and methane with geologically- and seismically-mapped faults show that steeply dipping structures (dip>60°) are most likely to channel fracture water and methane. δ13C and δ2H isotope results suggest that the methane gas (and associated H2 and alkanes) from the goldfields, particularly along seismically delineated faults and dykes, have an abiogenic origin produced by water-rock reactions. Isotopic data derived from adjacent goldfields also suggests the possibility of mixing between microbial hydrocarbons (characterized by highly depleted 2HCH4 values) and abiogenic gases. It is, therefore, possible that the propagation of these structures, as mapped by 3D seismics and enhanced volumetric attributes, between Booysens Shale and Ventersdorp Supergroup provide conduits for mixing of fluids and gases encountered at mining levels. The study may provide new evidence for the notion of hydrocarbons, particularly CH4, having migrated via faults and dykes from depth, within the Witwatersrand Basin, to where they are intersected at mining levels. The research gives new insight into mixing between microbial and abiogenic end-members within hydrogeologically isolated water pockets.
LG2018
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography