To see the other types of publications on this topic, follow the link: 2D non-linear wave equation.

Dissertations / Theses on the topic '2D non-linear wave equation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 19 dissertations / theses for your research on the topic '2D non-linear wave equation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Scheidt, Torsten. "Non-linear optical diagnostics of non-centrosymmetric opto-electronic semiconductor materials." Thesis, Stellenbosch : University of Stellenbosch, 2006. http://hdl.handle.net/10019.1/17332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hoq, Qazi Enamul. "Quantization Of Spin Direction For Solitary Waves in a Uniform Magnetic Field." Thesis, University of North Texas, 2003. https://digital.library.unt.edu/ark:/67531/metadc4210/.

Full text
Abstract:
It is known that there are nonlinear wave equations with localized solitary wave solutions. Some of these solitary waves are stable (with respect to a small perturbation of initial data)and have nonzero spin (nonzero intrinsic angular momentum in the centre of momentum frame). In this paper we consider vector-valued solitary wave solutions to a nonlinear Klein-Gordon equation and investigate the behavior of these spinning solitary waves under the influence of an externally imposed uniform magnetic field. We find that the only stationary spinning solitary wave solutions have spin parallel or antiparallel to the magnetic field direction.
APA, Harvard, Vancouver, ISO, and other styles
3

Talib, Ahmed Abedelhussain. "Optimal system of subalgebras and invariant solutions for a nonlinear wave equation." Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2675.

Full text
Abstract:
This thesis is devoted to use Lie group analysis to obtain all invariant solutions by constructing optimal system of one-dimensional subalgebras of the Lie algebra L5 for a nonlinear wave equation. I will show how the given symmetries ( Eq.2) are admitted by using partial differential equation (Eq.1), In addition to obtain the commutator table by using the same given symmetries. Subsequently, I calculate the transformations of the generators with the Lie algebra L5, which provide the 5-parameter group of linear transformations for the operators. Finally, I construct the invariant solutions for each member of the optimal system.
APA, Harvard, Vancouver, ISO, and other styles
4

Nascimento, Wanderley Nunes do. "Klein-Gordon models with non-effective time-dependent potential." Universidade Federal de São Carlos, 2016. https://repositorio.ufscar.br/handle/ufscar/7453.

Full text
Abstract:
Submitted by Livia Mello (liviacmello@yahoo.com.br) on 2016-09-23T20:38:51Z No. of bitstreams: 1 TeseWNN.pdf: 1247691 bytes, checksum: 63f743255181169a9bb4ca1dfd2312c2 (MD5)<br>Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-26T20:35:27Z (GMT) No. of bitstreams: 1 TeseWNN.pdf: 1247691 bytes, checksum: 63f743255181169a9bb4ca1dfd2312c2 (MD5)<br>Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-26T20:35:33Z (GMT) No. of bitstreams: 1 TeseWNN.pdf: 1247691 bytes, checksum: 63f743255181169a9bb4ca1dfd2312c2 (MD5)<br>Made available in DSpace on 2016-09-26T20:35:40Z (GMT). No. of bitstreams: 1 TeseWNN.pdf: 1247691 bytes, checksum: 63f743255181169a9bb4ca1dfd2312c2 (MD5) Previous issue date: 2016-02-19<br>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)<br>In this thesis we study the asymptotic properties for the solution of the Cauchy problem for the Klein-Gordon equation with non-effective time-dependent potential. The main goal was define a suitable energy related to the Cauchy problem and derive decay estimates for such energy. Strichartz’ estimates and results of scattering and modified scattering was established. The C m theory and the stabilization condition was applied to treat the case where the coefficient of the potential term has very fast oscillations. Moreover, we consider a semi-linear wave model scale-invariant time- dependent with mass and dissipation, in this step we used linear estimates related with the semi-linear model to prove global existence (in time) of energy solutions for small data and we show a blow-up result for a suitable choice of the coefficients.<br>Nesta tese estudamos as propriedades assintóticas para a solução do problema de Cauchy para a equação de Klein-Gordon com potencial não efetivo dependente do tempo. O principal objetivo foi definir uma energia adequada relacionada ao problema de Cauchy e derivar estimativas para tal energia. Estimativas de Strichartz e resultados de scatering e scatering modificados também foram estabelecidos. A teoria C m e a condição de estabilização foram aplicados para tratar o caso em que o coeficiente da massa oscila muito rápido. Além disso, consideramos um mod- elo de onda semi-linear scale-invariante com massa e dissipação dependentes do tempo, nesta etapa usamos as estimativas lineares de tal modelo para provar ex- istência global (no tempo) de solução de energia para dados iniciais suficientemente pequenos e demonstramos um resultado de blow-up para uma escolha adequada dos coeficientes.
APA, Harvard, Vancouver, ISO, and other styles
5

Civin, Damon. "Stability of charged rotating black holes for linear scalar perturbations." Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/247397.

Full text
Abstract:
In this thesis, the stability of the family of subextremal Kerr-Newman space- times is studied in the case of linear scalar perturbations. That is, nondegenerate energy bounds (NEB) and integrated local energy decay (ILED) results are proved for solutions of the wave equation on the domain of outer communications. The main obstacles to the proof of these results are superradiance, trapping and their interaction. These difficulties are surmounted by localising solutions of the wave equation in phase space and applying the vector field method. Miraculously, as in the Kerr case, superradiance and trapping occur in disjoint regions of phase space and can be dealt with individually. Trapping is a high frequency obstruction to the proof whereas superradiance occurs at both high and low frequencies. The construction of energy currents for superradiant frequencies gives rise to an unfavourable boundary term. In the high frequency regime, this boundary term is controlled by exploiting the presence of a large parameter. For low superradiant frequencies, no such parameter is available. This difficulty is overcome by proving quantitative versions of mode stability type results. The mode stability result on the real axis is then applied to prove integrated local energy decay for solutions of the wave equation restricted to a bounded frequency regime. The (ILED) statement is necessarily degenerate due to the trapping effect. This implies that a nondegenerate (ILED) statement must lose differentiability. If one uses an (ILED) result that loses differentiability to prove (NEB), this loss is passed onto the (NEB) statement as well. Here, the geometry of the subextremal Kerr-Newman background is exploited to obtain the (NEB) statement directly from the degenerate (ILED) with no loss of differentiability.
APA, Harvard, Vancouver, ISO, and other styles
6

Sun, Ruoci. "Comportement en grand temps et intégrabilité de certaines équations dispersives sur l'espace de Hardy Long time behavior of the NLS-Szegö equation Traveling waves of the quintic focusing NLS-Szegö equation Complete integrability of the Benjamin-Ono equation on the multi-soliton manifolds." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS111.

Full text
Abstract:
On s'intéresse dans cette thèse à trois modèles d'équations hamiltoniennes dispersives non linéaires : l'équation de Schrödinger cubique défocalisante sur le cercle, filtrée par le projecteur de Szegö, qui enlève tous les modes de Fourier strictement négatifs (NLS--Szegö cubique), l'équation de Schrödinger quintique focalisante filtrée par le projecteur de Szegö sur la droite (NLS--Szegö quintique) et l'équation de Benjamin--Ono (BO) sur la droite. Comme pour les deux modèles précédents, l'équation de BO peut encore s'écrire sous la forme d'une équation de Schrödinger quadratique filtrée par le projecteur de Szegö. Ces trois modèles nous donnent l'occasion d'étudier les propriétés qualitatives de certaines ondes progressives, le phénomène de croissance des normes de Sobolev, le phénomène de diffusion non linéaire et certaines propriétés d'intégrabilité de systèmes dynamiques hamiltoniens. Le but de cette thèse est de comprendre l'influence des opérateurs de Szegö (non locaux) sur les équations de type Schrödinger, et d'adapter les outils liés à l'espace de Hardy sur le cercle et sur la droite. On applique aussi la méthode de forme normale de Birkhoff, l'argument de concentration--compacité, qui est précisé à travers le théorème de d'ecomposition en profils, et la transformée spectrale inverse pour résoudre ces problèmes. Dans le troisième modèle, la théorie de l'intégrabilité permet de faire le lien avec certains aspects algébriques et géométriques<br>We are interested in three non linear dispersive Hamiltonian equations: the defocusing cubic Schrödinger equation filtered by the Szegö projector on the torus that cancels every negative Fourier modes, leading to the cubic NLS--Szegö equation on the torus; the focusing quintic Schrödinger equation, which is filtered by the Szegö projector on the line, leading to the quintic NLS--Szegö equation on the line and the Benjamin--Ono (BO) equation on the line. Similarly to the other two models, the BO equation on the line can be written as a quadratic Schrödinger-type equation that is filtered by the Szegö projector on the line. These three models allow us to study their qualitative properties of some traveling waves, the phenomenon of the growth of Sobolev norms, the phenomenon of non linear scattering and some properties about the complete integrability of Hamiltonian dynamical systems. The goal of this thesis is to investigate the influence of the Szegö projector on some one-dimensional Schrödinger-type equations and to adapt the tools of the Hardy space on the torus and on the line. We also use the Birkhoff normal form transform, the concentration--compactness argument, refined as the profile decomposition theorem, and the inverse spectral transform in order to solve these problems. In the third model, the integrability theory allows to establish the connection with some algebraic and geometric aspects
APA, Harvard, Vancouver, ISO, and other styles
7

Pocovnicu, Oana. "Etude d'une équation non linéaire, non dispersive et complètement integrable et de ses perturbations." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00834518.

Full text
Abstract:
On étudie dans cette thèse l'équation de Szegö sur la droite réelle ainsi que ses perturbations. Cette équation a été introduite il y a quelques années par Gérard et Grellier comme modèle mathématique d'une équation non linéaire totalement non dispersive.L'équation de Szegöapparait naturellement dans l'étude de l'équation de Schrödinger non linéaire (NLS) danscertaines situations sur-critiques où l'on constate un manque de dispersion, par exemplelorsque l'on considère NLS sur le groupe de Heisenberg. Par conséquent, une des motivationsde cette thèse est d'établir des résultats concernant l'équation de Szegö qui pourrontéventuellement être utilisés dans le contexte de l'équation de Schrödinger non linéaire.Le premier résultat de cette thèse est la classification des solitons de l'équation de Szegö.On montre que ce sont tous des fonctions rationnelles ayant un unique pôle qui est simple.De plus, on prouve que les solitons sont orbitalement stables.La propriété la plus remarquable de l'équation de Szegö est le fait qu'elle est complètement intégrable, ce qui permet notamment d'établir une formule explicite de sa solution.Comme applications de cette formule, on obtient les trois résultats suivants. (A) On montreque les solutions fonctions rationnelles génériques se décomposent en une somme de solitonset d'un reste qui est petit lorsque le temps tend vers l'infini. (B) On met en évidence unexemple de solution non générique dont les grandes normes de Sobolev tendent vers l'infiniavec le temps. (C) On détermine des coordonnées action-angle généralisées lorsque l'on restreintl'équation de Szegö à une sous-variété de dimension finie. En particulier, on en déduitqu'une grande partie des trajectoires de cette équation sont des spirales autour de cylindrestoroïdaux.Comme l'équation de Szegö est complètement intégrable, il est ensuite naturel d'étudierses perturbations et d'établir de nouvelles propriétés pour celles-ci à partir des résultatsconnus pour l'équation de Szegö. Une des perturbations de l'équation de Szegö est une équation desondes non linéaire (NLW) de donnée bien préparée.On prouve que si la donnée initiale de NLW est petite et à support dans l'ensemble desfréquences positives, la solution de NLW est alors approximée pour un temps long par lasolution de l'équation de Szegö. Autrement dit, on démontre ainsi que l'équation de Szegöest la première approximation de NLW. On construit ensuite une solution de NLW dont lesgrandes normes de Sobolev augmentent (relativement à la norme de la donnée initiale).Sur le tore T, Gérard et Grellier ont démontré un résultat analogue d'approximation deNLW. On améliore ce résultat en trouvant une approximation plus fine, de deuxième ordre.Dans une dernière partie, on s'intéresse à l'équation de Szegö perturbée par un potentielmultiplicatif petit. On étudie l'interaction de ce potentiel avec les solitons. Plus précisément,on montre que, si la donnée initiale est celle d'un soliton pour l'équation non perturbée, lasolution de l'équation perturbée garde la forme d'un soliton sur un long temps. De plus, ondéduit la dynamique effective, i.e. les équations différentielles satisfaites par les paramètresdu soliton.
APA, Harvard, Vancouver, ISO, and other styles
8

Colin, Thierry. "Problème de Cauchy et effets régularisants pour des équations aux dérivées partielles dispersives." Cachan, Ecole normale supérieure, 1993. http://www.theses.fr/1993DENS0003.

Full text
Abstract:
Dans la première partie, on traite une équation de Schrödinger non linéaire et non locale qui intervient en physique des plasmas: problème de Cauchy local et global, ondes stationnaires et leur stabilité. Dans la deuxième partie, on étudie le problème de Cauchy local pour une classe d'équations dispersives en utilisant des effets régularisant globaux. Dans la troisième partie, on démontre des effets régularisant pour des équations dispersives grâce a une transformée de Wigner généralisée. Ceci fournit de nouvelles estimations
APA, Harvard, Vancouver, ISO, and other styles
9

Kian, Yavar. "Equations des ondes avec des perturbations dépendantes du temps." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14101/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Meunier, Claude. "Quelques problèmes non-linéaires en hydrodynamique et en physique des plasmas : théorèmes de moyennisation et théorèmes adiabatiques." Paris 6, 1986. http://www.theses.fr/1986PA066126.

Full text
Abstract:
Etude de l'intermittence, un type de transition vers la turbulence rencontre en convection et dans la réaction de Belousov-Zhabotinsky. La mesure invariante dépend continument du paramètre de bifurcation. Etude d'un modèle de couplage résonnant d'ondes de dérivé dans une limite de dissipation forte par des méthodes perturbatives et l'utilisation du théorème de la variété stable. Etude de la génération périodique de solitons dans l'équation de Schrödinger cubique avec source. Travail de synthèse sur les méthodes de moyennisation et les théorèmes adiabatiques.
APA, Harvard, Vancouver, ISO, and other styles
11

Lavoué, François. "Inversion des formes d'ondes électromagnétiques en 2D pour le géoradar : vers une imagerie multi-paramètre à partir des données de surface." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENU050/document.

Full text
Abstract:
Les premiers mètres à centaines de mètres de la proche surface terrestre sont le siège de processus naturels dont la compréhension requiert une caractérisation fine de la subsurface, via une estimation quantifiée de ses paramètres. Le géoradar est un outil de prospection indirecte à même d'ausculter les milieux naturels et d'en estimer les propriétés électriques (permittivité et conductivité). Basé sur la propagation d'ondes électromagnétiques à des fréquences allant du MHz à quelques GHz, le géoradar est utilisé à des échelles et pour des applications variées concernant la géologie, l'hydrologie ou le génie civil. Dans ce travail de thèse, je propose une méthode d'imagerie quantitative des propriétés électriques sur des sections 2D de la subsurface, à partir de données radar acquises à la surface du sol. La technique mise en oeuvre est l'inversion des formes d'ondes, qui utilise l'intégralité du champ d'ondes enregistré.Dans une première partie, je présente les principes physiques et l'outil de modélisation numérique utilisés pour simuler la propagation des ondes électromagnétiques dans les milieux hétérogènes à deux dimensions. Pour cela, un algorithme de différences finies en domaine fréquentiel développé dans le cadre des ondes visco-acoustiques est adapté au problème électromagnétique 2D grâce à une analogie mathématique.Dans une deuxième partie, le problème d'imagerie est formulé sous la forme d'une optimisation multi-paramètre puis résolu avec l'algorithme de quasi-Newton L-BFGS. Cet algorithme permet d'estimer l'effet de la matrice Hessienne, dont le rôle est crucial pour la reconstruction de paramètres de différents types comme la permittivité et la conductivité. Des tests numériques montrent toutefois que l'algorithme reste sensible aux échelles utilisées pour définir ces paramètres. Dans un exemple synthétique représentatif de la proche surface, il est cependant possible d'obtenir des cartes 2D de permittivité et de conductivité à partir de données de surface, en faisant intervenir des facteurs d'échelle et de régularisation visant à contraindre les paramètres auxquelles l'inversion est la moins sensible. Ces facteurs peuvent être déterminés en analysant la qualité de l'ajustement aux données, sans hypothèse a priori autre que la contrainte de lissage introduite par la régularisation.Dans une dernière partie, la méthode d'imagerie est confrontée à deux jeux de données réelles. Dans un premier temps, l'examen de données expérimentales permet de tester la précision des simulations numériques vis-à-vis de mesures effectuées en environnement contrôlé. La connaissance des cibles à imager permet en outre de valider la méthodologie proposée pour l'imagerie multiparamètre dans des conditions très favorables puisqu'il est possible de calibrer le signal source et de considérer l'espace libre environnant les cibles comme modèle initial pour l'inversion.Dans un deuxième temps, j'envisage le traitement d'un jeu de données radar multi-offsets acquises au sein d'un massif calcaire. L'interprétation de ces données est rendue beaucoup plus difficile par la complexité du milieu géologique environnant, ainsi que par la méconnaissance des caractéristiques précises des antennes utilisées. L'application de la méthode d'inversion des formes d'ondes à ces données requiert donc une étape préliminaire impliquant une analyse de vitesse plus classique, basée sur les arrivées directes et réfléchies, et des simulations numériques dans des modèles hypothétiques à même d'expliquer une partie des données. L'estimation du signal source est effectuée à partir d'arrivées sélectionnées, simultanément avec des valeurs moyennes de conductivité et de hauteur d'antennes de façon à reproduire au mieux les amplitudes observées. Un premier essai d'inversion montre que l'algorithme est capable d'expliquer les données dans la gamme de fréquences considérée et de reconstruire une ébauche des principaux réflecteurs<br>The quantitative characterization of the shallow subsurface of the Earth is a critical issue for many environmental and societal challenges. Ground penetrating radar (GPR) is a geophysical method based on the propagation of electromagnetic waves for the prospection of the near subsurface. With central frequencies between 10~MHz and a few GHz, GPR covers a wide range of applications in geology, hydrology and civil engineering. GPR data are sensitive to variations in the electrical properties of the medium which can be related, for instance, to its water content and bring valuable information on hydrological processes. In this work, I develop a quantitative imaging method for the reconstruction of 2D distributions of permittivity and conductivity from GPR data acquired from the ground surface. The method makes use of the full waveform inversion technique (FWI), originating from seismic exploration, which exploits the entire recorded radargrams and has been proved successful in crosshole GPR applications.In a first time, I present the numerical forward modelling used to simulate the propagation of electromagnetic waves in 2D heterogeneous media and generate the synthetic GPR data that are compared to the recorded radargrams in the inversion process. A frequency-domain finite-difference algorithm originally developed in the visco-acoustic approximation is adapted to the electromagnetic problem in 2D via an acoustic-electromagnetic mathematical analogy.In a second time, the inversion scheme is formulated as a fully multiparameter optimization problem which is solved with the quasi-Newton L-BFGS algorithm. In this formulation, the effect of an approximate inverse Hessian is expected to mitigate the trade-off between the impact of permittivity and conductivity on the data. However, numerical tests on a synthetic benchmark of the literature display a large sensitivity of the method with respect to parameter scaling, showing the limits of the L-BFGS approximation. On a realistic subsurface benchmark with surface-to-surface configuration, it has been shown possible to ally parameter scaling and regularization to reconstruct 2D images of permittivity and conductivity without a priori assumptions.Finally, the imaging method is confronted to two real data sets. The consideration of laboratory-controlled data validates the proposed workflow for multiparameter imaging, as well as the accuracy of the numerical forward solutions. The application to on-ground GPR data acquired in a limestone massif is more challenging and necessitates a thorough investigation involving classical processing techniques and forward simulations. Starting permittivity models are derived from the velocity analysis of the direct arrivals and of the reflected events. The estimation of the source signature is performed together with an evaluation of an average conductivity value and of the unknown antenna height. In spite of this procedure, synthetic data do not reproduce the observed amplitudes, suggesting an effect of the radiation pattern of the shielded antennae. In preliminary tests, the inversion succeeds in fitting the data in the considered frequency range and can reconstruct reflectors from a smooth starting model
APA, Harvard, Vancouver, ISO, and other styles
12

Douçot, Benoît. "Effets cohérents dans les systèmes désordonnés : oscillations de magnétorésistance dans des réseaux de métaux normaux, influence d'une non linéarité du milieu." Grenoble 1, 1986. http://www.theses.fr/1986GRE10101.

Full text
Abstract:
Influence du desordre sur la propagation d'une particule ou d'une onde. Methode de calcul des corrections quantiques de la conductivite electrique dans la geometrie de reseau, dans le cadre de la theorie de la localisation faible. Etude de la periode des oscillations de magnetoresistance dans un systeme desordonne. Etude de systemes de boucles en serie. Transmission d'une onde dans un milieu unidimmensionnel desordonne et non lineaire
APA, Harvard, Vancouver, ISO, and other styles
13

Clamond, Didier. "Amplitudes et phases dans la théorie des ondes de gravité." Université Joseph Fourier (Grenoble), 1994. http://www.theses.fr/1994GRE10152.

Full text
Abstract:
Dans cette these, la propagation d'une onde courte sur une onde solitaire est etudiee d'un point de vue theorique et experimental. Les equations des ondes de gravite sont non lineaires et la solution generale est inconnue. Alors, des methodes de perturbations sont utilisees pour obtenir une approximation de la solution et une description qualitative des phenomenes. Il y a principalement deux theories de ce type: la theorie de stokes et la theorie de l'eau peu profonde. La theorie de stokes decrit les ondes courtes, et la theorie de l'eau peu profonde les ondes longues. Ces deux theories ne sont jamais valides dans pour les memes valeurs des parametres caracteristiques. Nous etudions l'interaction entre une onde courte et une onde longue, choisir l'une de ces theories est donc impossible: il est necessaire d'en developper une nouvelle. Une methode de perturbation de type wkb, adaptee aux equations non lineaires, donne une theorie capable de decrire des ondes courtes et longues simultanement. Les principaux resultats sont des dephasages et des variations de frequences (effets doppler). La partie experimentale donne des mesures du dephasage subit par l'onde courte. L'accord entre theorie et experience est excellent
APA, Harvard, Vancouver, ISO, and other styles
14

Watson, Francis Maurice. "Better imaging for landmine detection : an exploration of 3D full-wave inversion for ground-penetrating radar." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/better-imaging-for-landmine-detection-an-exploration-of-3d-fullwave-inversion-for-groundpenetrating-radar(720bab5f-03a7-4531-9a56-7121609b3ef0).html.

Full text
Abstract:
Humanitarian clearance of minefields is most often carried out by hand, conventionally using a a metal detector and a probe. Detection is a very slow process, as every piece of detected metal must treated as if it were a landmine and carefully probed and excavated, while many of them are not. The process can be safely sped up by use of Ground-Penetrating Radar (GPR) to image the subsurface, to verify metal detection results and safely ignore any objects which could not possibly be a landmine. In this thesis, we explore the possibility of using Full Wave Inversion (FWI) to improve GPR imaging for landmine detection. Posing the imaging task as FWI means solving the large-scale, non-linear and ill-posed optimisation problem of determining the physical parameters of the subsurface (such as electrical permittivity) which would best reproduce the data. This thesis begins by giving an overview of all the mathematical and implementational aspects of FWI, so as to provide an informative text for both mathematicians (perhaps already familiar with other inverse problems) wanting to contribute to the mine detection problem, as well as a wider engineering audience (perhaps already working on GPR or mine detection) interested in the mathematical study of inverse problems and FWI.We present the first numerical 3D FWI results for GPR, and consider only surface measurements from small-scale arrays as these are suitable for our application. The FWI problem requires an accurate forward model to simulate GPR data, for which we use a hybrid finite-element boundary-integral solver utilising first order curl-conforming N\'d\'{e}lec (edge) elements. We present a novel `line search' type algorithm which prioritises inversion of some target parameters in a region of interest (ROI), with the update outside of the area defined implicitly as a function of the target parameters. This is particularly applicable to the mine detection problem, in which we wish to know more about some detected metallic objects, but are not interested in the surrounding medium. We may need to resolve the surrounding area though, in order to account for the target being obscured and multiple scattering in a highly cluttered subsurface. We focus particularly on spatial sensitivity of the inverse problem, using both a singular value decomposition to analyse the Jacobian matrix, as well as an asymptotic expansion involving polarization tensors describing the perturbation of electric field due to small objects. The latter allows us to extend the current theory of sensitivity in for acoustic FWI, based on the Born approximation, to better understand how polarization plays a role in the 3D electromagnetic inverse problem. Based on this asymptotic approximation, we derive a novel approximation to the diagonals of the Hessian matrix which can be used to pre-condition the GPR FWI problem.
APA, Harvard, Vancouver, ISO, and other styles
15

Gaudillat, Valentine. "Étude du mélange à quatre ondes sensible à la phase dans les fibres faiblement multimodes." Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS028.

Full text
Abstract:
Au cours des dernières années, le besoin en débit des télécommunications a considérablement augmenté. Pour maintenir une avance significative, il est essentiel d’améliorer les réseaux existants et de développer de nouvelles infrastructures plus performantes. Ainsi, les réseaux du futur pourraient être constitués de fibre faiblement multimode afin d’augmenter le nombre de canaux indépendants dans une même fibre. Il faudrait alors transférer les fonctions optiques déjà démontrées dans les réseaux actuels telles que la conversion de fréquence ou la régénération de phase. Cette thèse étudie numériquement et expérimentalement le mélange à quatre ondes sensible et insensible à la phase dans les fibres faiblement multimodes. Les simulations présentées dans cette thèse sont basées sur l’équation non-linéaire de Schrödinger multimode implémentée par une méthode de split-step Fourier. Les simulations ont démontré que la régénération de phase intra- ou inter-modale serait possible. Expérimentalement, la fibre utilisée n’a pas permis de mettre en œuvre du mélange à quatre ondes suffisamment efficace pour réaliser cette fonction optique. Cependant, pour la première fois à notre connaissance, nous avons démontré expérimentalement du mélange à quatre ondes sensible à la phase dans les modes LP01 et LP11 d’une fibre faiblement multimode<br>In recent years, the demand for bandwidth in telecommunications has significantly increased. To maintain a considerable lead, it is essential to improve existing networks and develop more efficient new infrastructures. Consequently, the networks of the future could be composed of few-mode fibers to increase the number of independent channels within the same fiber. It would then be necessary transferring optical functions, already demonstrated in current networks such as frequency conversion or phase regeneration. This thesis studies both numerically and experimentally phase-sensitive and phase-insensitive four-wave mixing in few-mode fibers. The simulations presented in this thesis are based on the multimode nonlinear Schrödinger equation implemented by a split-step Fourier method. The simulations have shown that intra- or inter-modal phase regeneration could be possible. Experimentally, the fiber used did not allow efficient implementation of four-wave mixing to perform this optical function. However, for the first time to our knowledge, we have experimentally demonstrated phase-sensitive four-wave mixing in the LP01 and LP11 modes of a few-mode fiber
APA, Harvard, Vancouver, ISO, and other styles
16

Pham, Truong Xuan. "Peeling et scattering conforme dans les espaces-temps de la relativité générale." Thesis, Brest, 2017. http://www.theses.fr/2017BRES0034/document.

Full text
Abstract:
Nous étudions l’analyse asymptotique en relativité générale sous deux aspects: le peeling et le scattering (diffusion) conforme. Le peeling est construit pour les champs scalaires linéaire et non-linéaires et pour les champs de Dirac en espace-temps de Kerr (qui est non-stationnaire et à symétrie simplement axiale), généralisant les travaux de L. Mason et J-P. Nicolas (2009, 2012). La méthode des champs de vecteurs (estimations d’énergie géométriques) et la technique de compactification conforme sont développées. Elles nous permettent de formuler les définitions du peeling à tous ordres et d’obtenir les données initiales optimales qui assurent ces comportements. Une théorie de la diffusion conforme pour les équations de champs sans masse de spîn n/2 dans l’espace-temps de Minkowski est construite.En effectuant les compactifications conformes (complète et partielle), l’espace-temps est complété en ajoutant une frontière constituée de deux hypersurfaces isotropes représentant respectivement les points limites passés et futurs des géodésiques de type lumière. Le comportement asymptotique des champs s’obtient en résolvant le problème de Cauchy pour l’équation rééchelonnée et en considérant les traces des solutions sur ces bords. L’inversibilité des opérateurs de trace, qui associent le comportement asymptotique passé ou futur aux données initiales, s’obtient en résolvant le problème de Goursat sur le bord conforme. L’opérateur de diffusion conforme est alors obtenu par composition de l’opérateur de trace futur avec l’inverse de l’opérateur de trace passé<br>This work explores two aspects of asymptotic analysis in general relativity: peeling and conformal scattering.On the one hand, the peeling is constructed for linear and nonlinear scalar fields as well as Dirac fields on Kerr spacetime, which is non-stationary and merely axially symmetric. This generalizes the work of L. Mason and J-P. Nicolas (2009, 2012). The vector field method (geometric energy estimates) and the conformal technique are developed. They allow us to formulate the definition of the peeling at all orders and to obtain the optimal space of initial data which guarantees these behaviours. On the other hand, a conformal scattering theory for the spin-n/2 zero rest-mass equations on Minkowski spacetime is constructed. Using the conformal compactifications (full and partial), the spacetime is completed with two null hypersurfaces representing respectively the past and future end points of null geodesics. The asymptotic behaviour of fields is then obtained by solving the Cauchy problem for the rescaled equation and considering the traces of the solutions on these hypersurfaces. The invertibility of the trace operators, that to the initial data associate the future or past asymptotic behaviours, is obtained by solving the Goursat problem on the conformal boundary. The conformal scattering operator is then obtained by composing the future trace operator with the inverse of the past trace operator
APA, Harvard, Vancouver, ISO, and other styles
17

Bruso, Keith Alvin. "Existence, uniqueness and blow-up results for non-linear wave equations." 1985. http://hdl.handle.net/2097/27403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zingan, Valentin Nikolaevich. "Discontinuous Galerkin Finite Element Method for the Nonlinear Hyperbolic Problems with Entropy-Based Artificial Viscosity Stabilization." Thesis, 2012. http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-10845.

Full text
Abstract:
This work develops a discontinuous Galerkin finite element discretization of non- linear hyperbolic conservation equations with efficient and robust high order stabilization built on an entropy-based artificial viscosity approximation. The solutions of equations are represented by elementwise polynomials of an arbitrary degree p > 0 which are continuous within each element but discontinuous on the boundaries. The discretization of equations in time is done by means of high order explicit Runge-Kutta methods identified with respective Butcher tableaux. To stabilize a numerical solution in the vicinity of shock waves and simultaneously preserve the smooth parts from smearing, we add some reasonable amount of artificial viscosity in accordance with the physical principle of entropy production in the interior of shock waves. The viscosity coefficient is proportional to the local size of the residual of an entropy equation and is bounded from above by the first-order artificial viscosity defined by a local wave speed. Since the residual of an entropy equation is supposed to be vanishingly small in smooth regions (of the order of the Local Truncation Error) and arbitrarily large in shocks, the entropy viscosity is almost zero everywhere except the shocks, where it reaches the first-order upper bound. One- and two-dimensional benchmark test cases are presented for nonlinear hyperbolic scalar conservation laws and the system of compressible Euler equations. These tests demonstrate the satisfactory stability properties of the method and optimal convergence rates as well. All numerical solutions to the test problems agree well with the reference solutions found in the literature. We conclude that the new method developed in the present work is a valuable alternative to currently existing techniques of viscous stabilization.
APA, Harvard, Vancouver, ISO, and other styles
19

Kyed, Mads [Verfasser]. "Travelling wave solutions of the heat equation in an unbounded cylinder with a non-Linear boundary condition / vorgelegt von Mads Kyed." 2005. http://d-nb.info/975460145/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography