To see the other types of publications on this topic, follow the link: 2H-TaSe2.

Journal articles on the topic '2H-TaSe2'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic '2H-TaSe2.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yang, Lingling, Ruwei Zhao, Duanduan Wu, et al. "Metallic 2H-Tantalum Selenide Nanomaterials as Saturable Absorber for Dual-Wavelength Q-Switched Fiber Laser." Sensors 21, no. 1 (2021): 239. http://dx.doi.org/10.3390/s21010239.

Full text
Abstract:
A novel 2H-phase transition metal dichalcogenide (TMD)–tantalum selenide (TaSe2) with metallic bandgap structure is a potential photoelectric material. A band structure simulation of TaSe2 via ab initio method indicated its metallic property. An effective multilayered TaSe2 saturable absorber (SA) was fabricated using liquid-phase exfoliation and optically driven deposition. The prepared 2H–TaSe2 SA was successfully used for a dual-wavelength Q-switched fiber laser with the minimum pulse width of 2.95 μs and the maximum peak power of 64 W. The repetition rate of the maximum pulse energy of 89.
APA, Harvard, Vancouver, ISO, and other styles
2

Prikhozha, Yu O., and R. M. Balabai. "Intercalation of Li Atoms in TaSe2 Film's Anode with LiClO4/PEO Polymer Electrolyte: First Principles Calculation." Physics and Chemistry of Solid State 23, no. 1 (2022): 165–71. http://dx.doi.org/10.15330/pcss.23.1.165-171.

Full text
Abstract:
Using the methods of electron density functional and pseudopotential from the first principles, the total energy, energy reliefs and migration barriers of Li atoms in the interlayer space of layers of anode material made of 2H-TaSe2, 2H-TaSe2 with molecules of polymer electrolytes LiClO4, PEO and LiClO4/PEO, charges on Se atoms limit the interlayer space2H-TaSe2, spatial distributions of valence electron density and their cross sections.
APA, Harvard, Vancouver, ISO, and other styles
3

JOHN BOSCO BALAGURU, R., N. LAWRENCE, and S. ALFRED CECIL RAJ. "LATTICE INSTABILITY OF 2H-TaSe2." International Journal of Modern Physics B 16, no. 27 (2002): 4111–25. http://dx.doi.org/10.1142/s0217979202012153.

Full text
Abstract:
The charge density wave (CDW) in the layered compound 2H-TaSe 2 at low temperatures has a commensurate phase, which causes super lattice points to appear in the Brillöuin zone of the undistorted phase. A Born-von Karman formalism has been employed for the calculation of phonon frequency distribution curves of 2H-TaSe 2 both in the normal and in the commensurate charge density wave (CCDW) phases. A folding technique has been adopted for the calculation in the CCDW phase. The phonon distribution for both the phases have been reported. With these distributions the thermal properties such as speci
APA, Harvard, Vancouver, ISO, and other styles
4

Jakovidis, G., J. D. Riley, and R. C. G. Leckey. "Experimental bandstructure of 2H-TaSe2." Journal of Electron Spectroscopy and Related Phenomena 61, no. 1 (1992): 19–26. http://dx.doi.org/10.1016/0368-2048(92)80048-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Koyama, Yasumasa, Z. P. Zhang, and Hiroshi Sato. "Commensuration and discommensuration in 2H-TaSe2." Physical Review B 36, no. 7 (1987): 3701–11. http://dx.doi.org/10.1103/physrevb.36.3701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Benedek, G., G. Brusdeylins, C. Heimlich, et al. "Shifted surface-phonon anomaly in 2H-TaSe2." Physical Review Letters 60, no. 11 (1988): 1037–40. http://dx.doi.org/10.1103/physrevlett.60.1037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wilson, J. A. "More concerning CDW phasing in 2H-TaSe2." Journal of Physics F: Metal Physics 15, no. 3 (1985): 591–608. http://dx.doi.org/10.1088/0305-4608/15/3/013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Baek, Seung-Ho, Yeahan Sur, Kee Hoon Kim, Matthias Vojta, and Bernd Büchner. "Interplay of charge density waves, disorder, and superconductivity in 2H-TaSe2 elucidated by NMR." New Journal of Physics 24, no. 4 (2022): 043008. http://dx.doi.org/10.1088/1367-2630/ac5eec.

Full text
Abstract:
Abstract Single crystals of pristine and 6% Pd-intercalated 2H‐TaSe2 have been studied by means of 77Se nuclear magnetic resonance. The temperature dependence of the 77Se spectrum, with an unexpected line narrowing upon Pd intercalation, unravels the presence of correlated local lattice distortions far above the transition temperature of the charge density wave (CDW) order, thereby supporting a strong-coupling CDW mechanism in 2H‐TaSe2. While, the Knight shift data suggest that the incommensurate CDW transition involves a partial Fermi surface gap opening. As for spin dynamics, the 77Se spin-l
APA, Harvard, Vancouver, ISO, and other styles
9

Kumakura, Tomohisa, Hiroki Tan, Tetsuya Handa, Masashi Morishita, and Hiroshi Fukuyama. "Charge density waves and superconductivity in 2H-TaSe2." Czechoslovak Journal of Physics 46, S5 (1996): 2611–12. http://dx.doi.org/10.1007/bf02570292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

LeBlanc, A., and A. Nader. "Resistivity anisotropy and charge density wave in 2H - NbSe2 and 2H - TaSe2." Solid State Communications 150, no. 29-30 (2010): 1346–49. http://dx.doi.org/10.1016/j.ssc.2010.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Li, X. C., M. H. Zhou, L. H. Yang, and C. Dong. "Significant enhancement of superconductivity in copper-doped 2H-TaSe2." Superconductor Science and Technology 30, no. 12 (2017): 125001. http://dx.doi.org/10.1088/1361-6668/aa9000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Benedek, G., L. Miglio, J. G. Skofronick, G. Brusdeylins, C. Heimlich, and J. P. Toennies. "Summary Abstract: Surface phonon dynamics of 2H–TaSe2(001)." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5, no. 4 (1987): 1093–94. http://dx.doi.org/10.1116/1.574800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Yokota, K. "Superconductivity in the quasi-two-dimensional conductor 2H-TaSe2." Physica B: Condensed Matter 284-288 (July 2000): 551–52. http://dx.doi.org/10.1016/s0921-4526(99)02166-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ribeiro Filho, A., J. F. M. Rocha, E. M. do Nascimento, and D. S. de Vasconcelos. "New Calculations of ICDW Eigenmode Frequencies of 2H-TaSe2." physica status solidi (b) 211, no. 2 (1999): 595–603. http://dx.doi.org/10.1002/(sici)1521-3951(199902)211:2<595::aid-pssb595>3.0.co;2-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Jericho, M. H., H. R. Ott, and T. M. Rice. "Effect of discommensurations on the electrical resistivity of 2H-TaSe2." Journal of Physics C: Solid State Physics 19, no. 9 (1986): 1377–87. http://dx.doi.org/10.1088/0022-3719/19/9/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Eibschutz, M., D. Salomon, and F. J. Di Salvo. "Ultra high resolution of 6.2 keV 181Ta in 2H-TaSe2." Physics Letters A 113, no. 5 (1985): 277–79. http://dx.doi.org/10.1016/0375-9601(85)90027-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Papageorgopoulos, C. A., M. Kamaratos, V. Saltas, W. Jaegermann, C. Pettenkofer, and D. Tonti. "Na and Cl2 Interaction on it and 2H–TaSe2(0001) Surfaces." Surface Review and Letters 05, no. 05 (1998): 997–1005. http://dx.doi.org/10.1142/s0218625x98001353.

Full text
Abstract:
In this paper we study the interaction of Cl 2 and Na on 1T– TaSe 2 and 2H– TaSe 2(0001) surfaces in the temperature range of 100–300 K. The experiments are performed in UHV with the use of LEED and SXPS by synchrotron radiation measurements. Deposition of Na on Cl 2-covered 1T– TaSe 2 at 100 K forms initially a [Formula: see text], which with increasing temperature to 300 K leads to NaCl formation. Adsorption of Cl 2 on Na-intercalated 1T and 2H– TaSe 2 surfaces at 100 K forms Cl 2 multilayers. The first Cl 2 layer, in contact with the substrate, interacts with the Na near the surface and for
APA, Harvard, Vancouver, ISO, and other styles
18

Lee, Martin, Makars Šiškins, Samuel Mañas-Valero, Eugenio Coronado, Peter G. Steeneken, and Herre S. J. van der Zant. "Study of charge density waves in suspended 2H-TaS2 and 2H-TaSe2 by nanomechanical resonance." Applied Physics Letters 118, no. 19 (2021): 193105. http://dx.doi.org/10.1063/5.0051112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Vescoli, V., L. Degiorgi, H. Berger, and L. Forro'. "The optical properties of the correlated two-dimensional 2h-tase2 system." Synthetic Metals 103, no. 1-3 (1999): 2655–57. http://dx.doi.org/10.1016/s0379-6779(98)00685-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sharma, Sangeeta, S. Auluck, and M. A. Khan. "Optical properties of 1T and 2H phase of TaS2 and TaSe2." Pramana 54, no. 3 (2000): 431–40. http://dx.doi.org/10.1007/s12043-000-0135-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bird, D. M., and R. L. Withers. "Landau theory interpretation of the commensurate superlattice structure of 2H-TaSe2." Journal of Physics C: Solid State Physics 18, no. 3 (1985): 519–31. http://dx.doi.org/10.1088/0022-3719/18/3/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Nohara, Shin-ichi, Hirofumi Namatame, Hideki Matsubara, et al. "Angle-Resolved Inverse Photoemission Spectra of Layered1T-VSe2, 1T-TiS2, 1T-TaS2, 2H-NbSe2and 2H-TaSe2." Journal of the Physical Society of Japan 60, no. 11 (1991): 3882–92. http://dx.doi.org/10.1143/jpsj.60.3882.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Luo, Huixia, Weiwei Xie, Jing Tao, et al. "Polytypism, polymorphism, and superconductivity in TaSe2−xTex." Proceedings of the National Academy of Sciences 112, no. 11 (2015): E1174—E1180. http://dx.doi.org/10.1073/pnas.1502460112.

Full text
Abstract:
Polymorphism in materials often leads to significantly different physical properties—the rutile and anatase polymorphs of TiO2 are a prime example. Polytypism is a special type of polymorphism, occurring in layered materials when the geometry of a repeating structural layer is maintained but the layer-stacking sequence of the overall crystal structure can be varied; SiC is an example of a material with many polytypes. Although polymorphs can have radically different physical properties, it is much rarer for polytypism to impact physical properties in a dramatic fashion. Here we study the effec
APA, Harvard, Vancouver, ISO, and other styles
24

Saint-Paul, M., and P. Monceau. "Survey of the Thermodynamic Properties of the Charge Density Wave Systems." Advances in Condensed Matter Physics 2019 (March 3, 2019): 1–14. http://dx.doi.org/10.1155/2019/2138264.

Full text
Abstract:
We reexamine the thermodynamic properties such as specific heat, thermal expansion, and elastic constants at the charge density wave (CDW) phase transition in several one- and two-dimensional materials. The amplitude of the specific heat anomaly at the CDW phase transition TCDW increases with increasing TCDW and a tendency to a lineal temperature dependence is verified. The Ehrenfest mean field theory relationships are approximately satisfied by several compounds such as the rare earth tritelluride compound TbTe3, transition metal dichalcogenide compound 2H-NbSe2, and quasi-one-dimensional con
APA, Harvard, Vancouver, ISO, and other styles
25

Renteria, J., R. Samnakay, C. Jiang, et al. "All-metallic electrically gated 2H-TaSe2 thin-film switches and logic circuits." Journal of Applied Physics 115, no. 3 (2014): 034305. http://dx.doi.org/10.1063/1.4862336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Seifarth, O., S. Gliemann, M. Skibowski, and L. Kipp. "On the charge-density-wave mechanism of layered 2H-TaSe2: photoemission results." Journal of Electron Spectroscopy and Related Phenomena 137-140 (July 2004): 675–79. http://dx.doi.org/10.1016/j.elspec.2004.02.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Rajora, Onkar. "Thermally activated diffusion of indium into layered materials 2H-TaSe2, and TaS2." physica status solidi (a) 203, no. 3 (2006): 493–96. http://dx.doi.org/10.1002/pssa.200521041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Dai, Z., Q. Xue, Y. Gong, C. G. Slough, and R. V. Coleman. "Scanning-probe-microscopy studies of superlattice structures and density-wave structures in 2H-NbSe2, 2H-TaSe2, and 2H-TaS2induced by Fe doping." Physical Review B 48, no. 19 (1993): 14543–55. http://dx.doi.org/10.1103/physrevb.48.14543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Valla, T., A. V. Fedorov, P. D. Johnson, J. Xue, K. E. Smith, and F. J. DiSalvo. "Charge-Density-Wave-Induced Modifications to the Quasiparticle Self-Energy in 2H-TaSe2." Physical Review Letters 85, no. 22 (2000): 4759–62. http://dx.doi.org/10.1103/physrevlett.85.4759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kanno, T., T. Matsumoto, K. Ichimura, T. Matsuura, and S. Tanda. "Metal–insulator transition in iron doped 2H-TaSe2: Suggestion of chiral unitary localization." Physica B: Condensed Matter 460 (March 2015): 165–67. http://dx.doi.org/10.1016/j.physb.2014.11.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Okuda, Taichi, Kan Nakatsuji, Shigemasa Suga, Yasuhisa Tezuka, Shik Shin, and Hiroshi Daimon. "Two-dimensional band mapping of 2H-TaSe2 using a display-type photoelectron spectrometer." Journal of Electron Spectroscopy and Related Phenomena 101-103 (June 1999): 355–60. http://dx.doi.org/10.1016/s0368-2048(98)00387-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Li, Man, Nan Xu, Jianfeng Zhang, et al. "Quantization of the band at the surface of charge density wave material 2H-TaSe2 *." Chinese Physics B 30, no. 4 (2021): 047305. http://dx.doi.org/10.1088/1674-1056/abe9a8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Pettenkofer, C., W. Jaegermann, A. Schellenberger, et al. "Cs deposition on layered 2H TaSe2 (0 0 0 1) surfaces: Adsorption or intercalation?" Solid State Communications 84, no. 9 (1992): 921–26. http://dx.doi.org/10.1016/0038-1098(92)90459-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Eibschutz, M., D. Salomon, D. W. Murphy, S. Zahurak, and J. V. Waszczak. "Direct observation of charge transfer in lithium-intercalated 2H-Tase2 by 181Ta Mössbauer spectroscopy." Chemical Physics Letters 135, no. 6 (1987): 591–93. http://dx.doi.org/10.1016/0009-2614(87)85217-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Wang, Pengdong, Rashid Khan, Zhanfeng Liu, et al. "A non-rigid shift of band dispersions induced by Cu intercalation in 2H-TaSe2." Nano Research 13, no. 2 (2020): 353–57. http://dx.doi.org/10.1007/s12274-020-2613-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lim, Seongjoon, Jaewook Kim, Choongjae Won, and Sang-Wook Cheong. "Atomic-Scale Observation of Topological Vortices in the Incommensurate Charge Density Wave of 2H-TaSe2." Nano Letters 20, no. 7 (2020): 4801–8. http://dx.doi.org/10.1021/acs.nanolett.0c00539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Dardel, B., M. Grioni, D. Malterre, P. Weibel, Y. Baer, and F. Levy. "Spectroscopic observation of charge-density-wave-induced changes in the electronic structure of 2H-TaSe2." Journal of Physics: Condensed Matter 5, no. 33 (1993): 6111–19. http://dx.doi.org/10.1088/0953-8984/5/33/020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wu, Yueshen, Jiaming He, Jinyu Liu, Hui Xing, Zhiqiang Mao, and Ying Liu. "Dimensional reduction and ionic gating induced enhancement of superconductivity in atomically thin crystals of 2H-TaSe2." Nanotechnology 30, no. 3 (2018): 035702. http://dx.doi.org/10.1088/1361-6528/aaea3b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Maclean, D., and M. H. Jericho. "Effect of the charge-density-wave transition on the thermal expansion of 2H-TaSe2,NbSe3, ando-TaS3." Physical Review B 47, no. 24 (1993): 16169–77. http://dx.doi.org/10.1103/physrevb.47.16169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Reshak, Ali Hussain, and S. Auluck. "Full-potential calculations of the electronic and optical properties for 1T and 2H phases of TaS2 and TaSe2." Physica B: Condensed Matter 358, no. 1-4 (2005): 158–65. http://dx.doi.org/10.1016/j.physb.2005.01.051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Garnaes, J. "Atomic force microscopy of charge density waves and atoms on 1T–TaSe2, 1T–TaS2, 1T–TiSe2, and 2H–NbSe2." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 9, no. 2 (1991): 1032. http://dx.doi.org/10.1116/1.585253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Chowdhury, Sugata, Heather M. Hill, Albert F. Rigosi, et al. "Examining Experimental Raman Mode Behavior in Mono- and Bilayer 2H-TaSe2 via Density Functional Theory: Implications for Quantum Information Science." ACS Applied Nano Materials 4, no. 2 (2021): 1810–16. http://dx.doi.org/10.1021/acsanm.0c03222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zhu, Pengfei, J. Cao, Y. Zhu, et al. "Dynamic separation of electron excitation and lattice heating during the photoinduced melting of the periodic lattice distortion in 2H-TaSe2." Applied Physics Letters 103, no. 7 (2013): 071914. http://dx.doi.org/10.1063/1.4818460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Brusdeylins, G., C. Heimlich, J. G. Skofronick, et al. "He-atom scattering study of the temperature-dependent charge-density-wave surface structure and lattice dynamics of 2H-TaSe2(001)." Physical Review B 41, no. 9 (1990): 5707–16. http://dx.doi.org/10.1103/physrevb.41.5707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Bird, D. M. "Higher-order Laue zone diffraction from zone axes containing zigzagged strings: Theory and application to the commensurate superlattice state of 2H-TaSe2." Journal of Physics C: Solid State Physics 18, no. 3 (1985): 481–98. http://dx.doi.org/10.1088/0022-3719/18/3/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Butz, T., S. Saibene, and A. Lerf. "Orientation, asymmetry and strength of the electric field gradient tensor at tantalum sites in the charge-density-wave phases of 2H-TaSe2." Journal of Physics C: Solid State Physics 19, no. 15 (1986): 2675–88. http://dx.doi.org/10.1088/0022-3719/19/15/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

KAMARATOS, M., C. A. PAPAGEORGOPOULOS, D. C. PAPAGEORGOPOULOS, D. TONTI, C. PETTENKOFER, and W. JAEGERMANN. "INTERACTION BETWEEN Li AND Na INTERCALATED INTO 1T-TaSe2 LAYER COMPOUNDS." Surface Review and Letters 06, no. 02 (1999): 205–11. http://dx.doi.org/10.1142/s0218625x99000238.

Full text
Abstract:
In this work we study the adsorption of Li on a Na-intercalated TaSe 2(0001) and, reversibly, the deposition of Na on a Li-intercalated TaSe 2(0001) surface. The intercalation occurred by deposition of the alkali elements onto the basal plane of the TaSe 2. The experiment was performed in UHV by soft X-ray photoelectron spectroscopy, using synchrotron radiation as excitation source. Lithium intercalation into 1T-TaSe 2 leads to a phase transition of the substrate from 1T to 2H polytypism. Lithium and sodium appear to compete in the intercalation process. Sodium pushes the preintercalated Li de
APA, Harvard, Vancouver, ISO, and other styles
48

De Hosson, J. Th M., and G. P. E. M. Van Bakel. "Scanning Tunneling Microscopy on Charge Density Waves in Layered Compounds." MRS Proceedings 295 (1992). http://dx.doi.org/10.1557/proc-295-15.

Full text
Abstract:
AbstractDifferent layered transition metal dichalcogenides were subjected to scanning tunneling microscopy to reveal the electronic charge distribution associated with the charge density wave (CDW) part of the superstructure, in addition to the atomic corrugation. The observations presented display three regimes ranging from localized CDW centred around defects/impurities in the case of lT-TiS2, via an intermediate regime governed by overlapping envelope functions in 2H-NbSe2, to a fully developed CDW system in 1T-TaSe2 (as well in a large number of other compounds). The fact that these observ
APA, Harvard, Vancouver, ISO, and other styles
49

Chowdhury, Sugata, Jeffrey R. Simpson, T. L. Einstein, and Angela R. Hight Walker. "Strain-controlled magnetic and optical properties of monolayer 2H−TaSe2." Physical Review Materials 3, no. 8 (2019). http://dx.doi.org/10.1103/physrevmaterials.3.084004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Melnikov, Nikolai B., and Boris I. Reser. "Treatment of symmetry in the tight-binding method for crystals with several atoms per unit cell." Physica Scripta, April 14, 2023. http://dx.doi.org/10.1088/1402-4896/accd29.

Full text
Abstract:
Abstract Consistent treatment of symmetry in the tight-binding method, developed by Egorov et al. [phys. stat. sol. 26, 391 (1968)] for crystals with two atoms per unit cell, is generalized to crystals with several atoms per unit cell. A method is presented for expressing the matrix components of the tight-binding Hamiltonian in terms of independent parameters using group-theoretical techniques. The method is demonstrated by obtaining an analytical form for the low-dimensional effective Hamiltonian describing the electronic structure of the 2H-TaSe2 conduction band with quasi 2D hexagonal cryst
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!