Academic literature on the topic '+3 covariant formalism'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '+3 covariant formalism.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "+3 covariant formalism"
GOURGOULHON, E., and J. NOVAK. "COVARIANT CONFORMAL DECOMPOSITION OF EINSTEIN EQUATIONS." International Journal of Modern Physics A 17, no. 20 (August 10, 2002): 2762. http://dx.doi.org/10.1142/s0217751x02011898.
Full textMiramontes, T., and D. Sudarsky. "El formalismo 3+1 en relatividad general y la descomposición tensorial completa." Revista Mexicana de Física E 64, no. 2 (June 11, 2018): 108. http://dx.doi.org/10.31349/revmexfise.64.108.
Full textHAYASHI, MITSUO J. "SPIN-3/2 FERMIONS IN TWISTOR FORMALISM." Modern Physics Letters A 16, no. 32 (October 20, 2001): 2103–13. http://dx.doi.org/10.1142/s0217732301005412.
Full textFoussats, A., and O. Zandron. "Wess-Zumino supermultiplet coupled to supergravity in a covariant Hamiltonia formalism." Annals of Physics 189, no. 1 (January 1989): 174–89. http://dx.doi.org/10.1016/0003-4916(89)90083-3.
Full textBalachandran, A. P., Arshad Momen, and Amilcar R. de Queiroz. "Equations of motion as covariant Gauss law: The Maxwell–Chern–Simons case." Modern Physics Letters A 32, no. 25 (July 31, 2017): 1750133. http://dx.doi.org/10.1142/s0217732317501334.
Full textAHLUWALIA, D. V., and D. J. ERNST. "(j, 0) ⊕ (0, j) COVARIANT SPINORS AND CAUSAL PROPAGATORS BASED ON WEINBERG FORMALISM." International Journal of Modern Physics E 02, no. 02 (June 1993): 397–422. http://dx.doi.org/10.1142/s0218301393000145.
Full textRogalyov, R. N. "The uses of covariant formalism in analytical computation of Feynman diagrams with massive fermions." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 502, no. 2-3 (April 2003): 602–4. http://dx.doi.org/10.1016/s0168-9002(03)00516-3.
Full textShah, Mushtaq Bashir, and Prince Ahmad Ganai. "A study of 3-form gauge theories in the Lorentz violating background." International Journal of Geometric Methods in Modern Physics 15, no. 07 (May 24, 2018): 1850106. http://dx.doi.org/10.1142/s0219887818501062.
Full textSherif, Abbas, Rituparno Goswami, and Sunil D. Maharaj. "Marginally trapped surfaces in null normal foliation spacetimes: A one step generalization of LRS II spacetimes." International Journal of Geometric Methods in Modern Physics 17, no. 07 (May 26, 2020): 2050097. http://dx.doi.org/10.1142/s0219887820500978.
Full textNtahompagaze, Joseph, Amare Abebe, and Manasse Mbonye. "A study of perturbations in scalar–tensor theory using 1 + 3 covariant approach." International Journal of Modern Physics D 27, no. 03 (February 2018): 1850033. http://dx.doi.org/10.1142/s0218271818500335.
Full textDissertations / Theses on the topic "+3 covariant formalism"
Jönsson, Johan. "Non-isotropic Cosmology in 1+3-formalism." Thesis, Linköpings universitet, Matematiska institutionen, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-113269.
Full textMenadeo, Nicola. "Formalismo 3+1 ed approccio hamiltoniano alla relatività generale." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14602/.
Full textHolgersson, David. "Lanczos potentialer i kosmologiska rumtider." Thesis, Linköping University, Department of Mathematics, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2582.
Full textWe derive the equation linking the Weyl tensor with its Lanczos potential, called the Weyl-Lanczos equation, in 1+3 covariant formalism for perfect fluid Bianchi type I spacetime and find an explicit expression for a Lanczos potential of the Weyl tensor in these spacetimes. To achieve this, we first need to derive the covariant decomposition of the Lanczos potential in this formalism. We also study an example by Novello and Velloso and derive their Lanczos potential in shear-free, irrotational perfect fluid spacetimes from a particular ansatz in 1+3 covariant formalism. The existence of the Lanczos potential is in some ways analogous to the vector potential in electromagnetic theory. Therefore, we also derive the electromagnetic potential equation in 1+3 covariant formalism for a general spacetime. We give a short description of the necessary tools for these calculations and the cosmological formalism we are using.
Book chapters on the topic "+3 covariant formalism"
Rovelli, Carlo. "Dynamics without Time for Quantum Gravity: Covariant Hamiltonian Formalism and Hamilton-Jacobi Equation on the Space G." In Decoherence and Entropy in Complex Systems, 36–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-40968-7_4.
Full text