Academic literature on the topic '3-Gamma imaging'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '3-Gamma imaging.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "3-Gamma imaging"

1

Haefner, Andrew, Ross Barnowski, Paul Luke, Mark Amman, and Kai Vetter. "Handheld real-time volumetric 3-D gamma-ray imaging." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 857 (June 2017): 42–49. http://dx.doi.org/10.1016/j.nima.2016.11.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hu, Yifan, Zhenlei Lyu, Peng Fan та ін. "A Wide Energy Range and 4π-View Gamma Camera with Interspaced Position-Sensitive Scintillator Array and Embedded Heavy Metal Bars". Sensors 23, № 2 (2023): 953. http://dx.doi.org/10.3390/s23020953.

Full text
Abstract:
(1) Background: Gamma cameras have wide applications in industry, including nuclear power plant monitoring, emergency response, and homeland security. The desirable properties of a gamma camera include small weight, good resolution, large field of view (FOV), and wide imageable source energy range. Compton cameras can have a 4π FOV but have limited sensitivity at low energy. Coded-aperture gamma cameras are operatable at a wide photon energy range but typically have a limited FOV and increased weight due to the thick heavy metal collimators and shielding. In our lab, we previously proposed a 4
APA, Harvard, Vancouver, ISO, and other styles
3

Vetter, Kai, Ross Barnowksi, Andrew Haefner, Tenzing H. Y. Joshi, Ryan Pavlovsky, and Brian J. Quiter. "Gamma-Ray imaging for nuclear security and safety: Towards 3-D gamma-ray vision." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 878 (January 2018): 159–68. http://dx.doi.org/10.1016/j.nima.2017.08.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chmeissani, Mokhtar, Machiel Kolstein, Gerard Ariño-Estrada, José Gabriel Macias-Montero, Carles Puigdengoles, and Jorge García. "Tracking a moving point source using triple gamma imaging." Journal of Instrumentation 19, no. 01 (2024): P01001. http://dx.doi.org/10.1088/1748-0221/19/01/p01001.

Full text
Abstract:
Abstract With positron emission tomography (PET), the positron of a β + emitter radioisotope annihilates with a nearby electron producing a pair of back-to-back 511 keV gamma rays that can be detected in a scanner surrounding the point source. The position of the point source is somewhere along the Line of Response (LOR) that passes through the positions where the 511 keV gammas are detected. In standard PET, an image reconstruction algorithm is used to combine these LORs into a final image. This paper presents a new tomographic imaging technique to locate the position of a β + emitting point
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Jipeng, Xiong Xiao, Ye Chen, et al. "A Portable Three-Layer Compton Camera for Wide-Energy-Range Gamma-ray Imaging: Design, Simulation and Preliminary Testing." Sensors 23, no. 21 (2023): 8951. http://dx.doi.org/10.3390/s23218951.

Full text
Abstract:
(1) Background: The imaging energy range of a typical Compton camera is limited due to the fact that scattered gamma photons are seldom fully absorbed when the incident energies are above 3 MeV. Further improving the upper energy limit of gamma-ray imaging has important application significance in the active interrogation of special nuclear materials and chemical warfare agents, as well as range verification of proton therapy. (2) Methods: To realize gamma-ray imaging in a wide energy range of 0.3~7 MeV, a principle prototype, named a portable three-layer Compton camera, is developed using the
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Hui, and Wenbiao Chen. "Unintended findings: Therapeutic effects of hormones or gamma globulins on Lentiform Fork sign in 3 diabetic uremic patients: Case report/case series." Medicine 102, no. 34 (2023): e34819. http://dx.doi.org/10.1097/md.0000000000034819.

Full text
Abstract:
Introduction: The lentiform fork sign (LFS) is a unique magnetic resonance imaging (MRI) finding characterized by a bright hyperintense rim delineating the lentiform nucleus as a fork associated with metabolic acidosis in end-stage renal disease. Patient concerns: We report 3 cases of LFS in diabetic uremic patients. In one case of uremia, intensive hemodialysis treatment was not effective. Given our poor understanding of LFS, it was regarded as bilateral basal ganglia pathology, and pulse hormone and gamma globulins therapy was initiated. The patient neurological symptoms improved, and the pa
APA, Harvard, Vancouver, ISO, and other styles
7

Bower, Geoffrey C. "Millimeter VLBI Observations of the Gamma-Ray Blazar NRAO 530." International Astronomical Union Colloquium 164 (1998): 41–42. http://dx.doi.org/10.1017/s0252921100044432.

Full text
Abstract:
AbstractWe present here 3 epochs of 3 and 7 millimeter wavelength VLBI observations and 2 epochs of lower frequency VLBA imaging of the gamma-ray blazar NRAO 530. These observations document the evolution of the parsec scale jet in this source during the brightest flare in 3 decades. New jet components were created during the flare and are probably related to an increase in gamma-ray activity. The components travel at superluminal velocities, further confirming the connection between superluminal sources and gamma-ray blazars. The rapid evolution of the source makes tracking of components diff
APA, Harvard, Vancouver, ISO, and other styles
8

Wonho Lee and D. K. Wehe. "3-D isotropic imaging of environmental sources using a compact gamma camera." IEEE Transactions on Nuclear Science 51, no. 5 (2004): 2267–72. http://dx.doi.org/10.1109/tns.2004.834714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cervantes, Hernán J., Christianne C. Cavinato, Letícia L. Campos, and Said R. Rabbani. "Gamma Knife® 3-D Dose Distribution Mapping by Magnetic Resonance Imaging." Applied Magnetic Resonance 39, no. 4 (2010): 357–64. http://dx.doi.org/10.1007/s00723-010-0166-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Son, J. M., G. Oh, J. S. Lee, et al. "Prompt-gamma tomographic imaging for range verification in pencil beam-scanning proton therapy." Journal of Instrumentation 20, no. 06 (2025): P06030. https://doi.org/10.1088/1748-0221/20/06/p06030.

Full text
Abstract:
Abstract This study aimed to develop a prompt-gamma imaging system to verify the range of proton beams. We designed an optimized collimation system and calculated the proton range using the GATE nuclear-medicine simulation toolkit (v. 9.1). An initial system, which was devised using protons without including specific equipment models, was employed to assess proton beams with energy ranges of 80, 90, 100, 110, and 120 MeV. The gamma-camera system design does not interfere with the nozzle structure of the treatment equipment. It consists of a pinhole collimator and a BGO scintillator and has a 1
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "3-Gamma imaging"

1

Paradiso, Vincenzo. "Development of a portable gamma camera for accurate 3-D localization of radioactive hotspots." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMC209.

Full text
Abstract:
Le présent travail a pour but le développement d’une caméra gamma à masque codé permettant d’estimer la position tridimensionnelle (3D) des sources radioactives. Cela est d’un intérêt considérable dans le cadre d’un grand nombre d'applications, de la reconstruction de la forme 3D des objets radioactifs aux systèmes de réalité augmentée appliqués à la radioprotection. Les caméras gamma portables actuelles ne fournissent que la position angulaire relative des sources gamma à localiser, c'est-à-dire qu'aucune information métrique concernant les sources n’est disponible, comme par exemple leur dis
APA, Harvard, Vancouver, ISO, and other styles
2

Watanabe, Shio. "Stereoscopic observations of TeV gamma-rays from the supernova remnant RX J0852.0-4622 with the CANGAROO-3 imaging air Cerenkov telescopes." 京都大学 (Kyoto University), 2007. http://hdl.handle.net/2433/136732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cai, Dingbang. "Contributions to instrumental developments for the XEMIS2 camera, on-board ionization and scintillation measurements." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0408.

Full text
Abstract:
Les travaux décrits dans cette thèse sont centrés sur l'évolution de l'imagerie médicale nucléaire, des techniques d'imagerie fondamentales aux innovations actuelles, avec un focus particulier sur la caméra XEMIS2. Cette caméra Compton au xénon liquide est conçue pour l'imagerie 3-gamma des petits animaux à faible activité. L'objectif principal de XEMIS2 est de localiser en trois dimensions un radiopharmaceutique marqué avec un radionucléide spécifique, tel que le Scandium-44, tout en réduisant l'activité administrée sans compromettre la qualité de l'image.La thèse se concentre ensuite sur le
APA, Harvard, Vancouver, ISO, and other styles
4

Lainé, Quentin. "Chaîne d’acquisition d’évènements lumineux dans une caméra 3-photon au xénon liquide." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2025. http://www.theses.fr/2025IMTA0456.

Full text
Abstract:
La caméra Compton XEMIS2 a pour objectif de démontrer expérimentalement l’efficacité d’une chambre à projection temporelle au xénon liquide pour la détection de traceurs émettant trois photons gamma, en vue de produire des images de petits animaux. Cette nouvelle modalité d’imagerie permettrait d’obtenir une qualité d’image comparable à celle des systèmes TEP utilisés en contexte clinique, mais avec une activité injectée 100 fois plus faible. Un nouvel axe d’optimisation de la caméra XEMIS2 consiste à réduire le temps d’acquisition des images, passant de 20 minutes à seulement 2 minutes. En co
APA, Harvard, Vancouver, ISO, and other styles
5

Palmer, David M. "Gamma-ray imaging observations of Supernova 1987A." Thesis, 1992. https://thesis.library.caltech.edu/6645/3/Palmer_dm_1992.pdf.

Full text
Abstract:
The Caltech imaging γ-ray telescope has made four balloon flights from Alice Springs, Australia, to observe the hard X-ray and γ-ray emission from Supernova 1987 A as it evolved between 1987 May and 1989 April. We have detected γ-rays with the time behavior and spectral signature expected from freshly-synthesized radioisotopes embedded in a cloud of ejecta. In particular, we detect the 847 and 1238 keY γ-ray lines produced by the decay of ^(56)Co, and the continuum spectrum expected from Compton scattering of these γ-trays. The results of these observations are compared with other measurements
APA, Harvard, Vancouver, ISO, and other styles
6

Finger, Mark Harold. "The Imaging of Extra-Galactic Low-Energy Gamma-Ray Sources: Prospects, Techniques, and Instrumentation." Thesis, 1988. https://thesis.library.caltech.edu/6690/3/Finger_mh_1988.pdf.

Full text
Abstract:
<p>The handful of extra-galactic low-energy gamma-ray sources so far observed are all active galaxies, which are expected to dominate future detections. The nature of these compact, highly luminous sources is at present not clear; however, they may be powered by massive black holes. Many of these sources may produce their peak luminosity in the 0.5 to 5.0 MeV energy band, and observation in this energy range will be important in revealing the nature of their central power-house.</p> <p>Improved understanding of the nature of active galaxies will require detailed observations of 10-20 source
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "3-Gamma imaging"

1

Du, Junwei, and Krzysztof Iniewski, eds. Gamma Ray Imaging. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30666-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "3-Gamma imaging"

1

Montagnani, Giovanni Ludovico. "Development of a 3” LaBr3 SiPM-Based Detection Module for High Resolution Gamma Ray Spectroscopy and Imaging." In Special Topics in Information Technology. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62476-7_7.

Full text
Abstract:
AbstractGamma radiation detection finds many applications in different fields, including astrophysics, nuclear physics and medical diagnostics. Nowadays large Lanthanum Bromide crystals coupled to Photomultiplier Tubes (PMTs) represent the state of the art for gamma detection modules, in particular for spectroscopic measurements. Nevertheless, there is an interest in substituting photomultiplier tubes with solid state photodetectors like Silicon Photomultipliers (SiPMs), owing to the latter’s significant advantages. These include insensitivity to magnetic fields, low bias voltage, compactness,
APA, Harvard, Vancouver, ISO, and other styles
2

Manickavasagan, A., and N. Yasasvy. "Gamma-Ray Imaging." In Imaging with Electromagnetic Spectrum. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54888-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Yunyun, and Yuntao Wu. "Metal-Loaded Plastic Scintillators Toward Gamma Spectroscopy Applications." In Gamma Ray Imaging. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30666-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Xiao, Hui Liu, and Yaqiang Liu. "Cascade Gamma Emission Coincidence Tomography." In Gamma Ray Imaging. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30666-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Johns, Paul M. "Materials for Gamma Radiation Sensors." In Gamma Ray Imaging. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30666-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lucchetta, Giulio. "Concepts for Solid State Detectors in Space-Based Gamma-Ray Astrophysics." In Gamma Ray Imaging. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30666-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tandel, S. K. "Nuclear Structure Studies Using Gamma-Ray Spectroscopy and Digital Signal Processing." In Gamma Ray Imaging. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30666-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tian, Zifeng, and Zhaoheng Xie. "Toward a New Frontier in PET Image Reconstruction: A Paradigm Shift to the Learning-Based Methods." In Gamma Ray Imaging. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30666-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kitayama, Yoshiharu. "Shield-Free Directional Gamma-Ray Detector Using Small-Angle Compton Scattering." In Gamma Ray Imaging. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30666-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Konstantinou, Georgios. "Metascintillators for Ultra-Fast Gamma Detectors." In Gamma Ray Imaging. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30666-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "3-Gamma imaging"

1

Belas, E., M. Betušiak, M. Karuppaiya, R. Grill, and P. Praus. "High quality X-ray and gamma ray CsPbBr3 sensors." In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD). IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10656732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pan, L., S. Lee, D. Y. Chung, M. G. Kanatzidis, and B. J. Quiter. "Geant4 simulation of Cherenkov photons in perovskite CsPbBr3 Gamma-ray Detectors." In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD). IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10656446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ellin, J., J. Christian, H. Kim, and G. Ariño-Estrada. "Simultaneous Scintillation and Charge Induction Readouts for Gamma-Ray Detection in CsPbBr3." In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD). IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10656140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ariesanti, E., L. Matei, J. Stewart, et al. "Growth and Characterization of CsPbX3 Perovskite Semiconductor Crystals for Room Temperature Gamma-Ray Detectors." In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD). IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10658595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jin, Y., E. M. Zannoni, P. Sankar, et al. "Experimental Evaluation of DE-SPECT: A Hyperspectral SPECT System for Region-Selective 3-D Gamma-Ray Spectroscopy of Molecular Theragnostics." In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD). IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10657212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Austin, Robert A. "Gamma ray detection with a 3 × 3 virtual Frisch grid array." In 2008 IEEE Nuclear Science Symposium and Medical Imaging conference (2008 NSS/MIC). IEEE, 2008. http://dx.doi.org/10.1109/nssmic.2008.4774538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thrall, C. L., C. G. Wahl, and Zhong He. "Directional isotope identification using 3-D semiconductor gamma-ray-imaging spectrometers." In 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009). IEEE, 2009. http://dx.doi.org/10.1109/nssmic.2009.5402026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ye, Qing, Peng Fan, Qingyang Wei та ін. "Collimator-less 4π gamma imaging with 3-D position-sensitive detector". У 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD). IEEE, 2016. http://dx.doi.org/10.1109/nssmic.2016.8069729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Marin, Stefano, M. Stephan Okar, Leah M. Clark, Isabel E. Hernandez, Shaun D. Clarke, and Sara A. Pozzi. "Neutron-Gamma Correlation Analysis Using the Fission Sphere (FS-3)." In 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2021. http://dx.doi.org/10.1109/nss/mic44867.2021.9875703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

He, Z., M. A. Robbins, K. Saheb, and M. Kanatzidis. "Pixelated CsPbBr3 Semiconductor Gamma Spectrometers." In 2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors (NSS MIC RTSD). IEEE, 2023. http://dx.doi.org/10.1109/nssmicrtsd49126.2023.10338534.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "3-Gamma imaging"

1

Brand, A. D., T. J. Aucott, and D. P. Diprete. Gamma-ray imaging assay of cells 3-5 of the east cell line in the 235-F plutonium fuel form facility. Office of Scientific and Technical Information (OSTI), 2017. http://dx.doi.org/10.2172/1361663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

GammaModeler TM 3-D gamma-ray imaging technology. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/774501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gamma Ray Imaging System (GRIS) GammaCam{trademark}. Final report, January 3, 1994--May 31, 1996. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/677195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!