Academic literature on the topic '3D Character Animation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '3D Character Animation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "3D Character Animation"

1

Waspada, Heri Priya, Ismanto Ismanto, and Firman Hidayah. "Penggunaan Hasil Motion Capture (Data Bvh) Untuk Menganimasikan Model Karakter 3d Agar Menghasilkan Animasi Yang Humanoid." JAMI: Jurnal Ahli Muda Indonesia 1, no. 2 (December 31, 2020): 94–102. http://dx.doi.org/10.46510/jami.v1i2.34.

Full text
Abstract:
Abstrak Objektif. Proses pemodelan karakter 3D memegang peranan penting dalam menghasilkan model karakter 3D yang baik. Proses ini merupakan proses awal yang harus dilalui oleh seorang desainer dalam membuat sebuah model karakter 3D. Setelah proses pemodelan dikerjakan dengan baik agar karakter tersebut bisa dibuat bergerak maka diperlukan proses rigging. Dengan proses pemodelan dan rigging tersebut model karakter 3D bisa digunakan untuk menghasilkan animasi sesuai dengan keinginan animator. Tentunya seorang animator akan memerlukan kerja keras untuk membuat suatu adegan gerakan apabila animasi yang dibuat masih manual. Untuk itu dengan memanfaatkan data BVH, animator akan lebih ringan dalam membuat adegan animasinya. Hasil animasi karakter di tunjukkan kepada 40 responden untuk menilai dan menghasilkan rata-rata tingkat humanoid animasi karakter bernilai 65%. Material and Metode. Menganimasikan model karakter 3D memanfaatkan hasil motion capture (.bvh) Hasil. Animasi karakter 3D dengan menggunakan hasil motion capture menghasilkan animasi yang humanoid. Kesimpulan. Hasil motion capture merupakan susunan tulang yang sudah dilengkapi dengan hasil perekaman gerakan sehingga untuk memproduksi animasi model karakter 3D akan lebih mudah karena animator tidak perlu menggambar tiap gerakan yang diinginkan. Abstrack Objective. The process of modeling 3D characters plays an important role in producing good 3D character models. This process is the initial process that must be passed by a designer in creating a 3D character model. After the modeling process is done well so that the character can be moved, a rigging process is needed. With the modeling and rigging process, 3D character models can be used to produce animations in accordance with the wishes of the animator. Of course, an animator will need to work hard to create a motion scene if the animation created is still manual. For this reason, by utilizing BVH data, animators will be lighter in making their animated scenes. The results of the character animation were shown to 40 respondents to rate and produce an average humanoid character animation level of 65%. Materials and Methods. Menganimasikan model karakter 3D memanfaatkan hasil motion capture (.bvh) Results. 3D character animation using the results of motion capture produces humanoid animation. Conclusion. The result of motion capture is the arrangement of bones that has been equipped with the results of recording the motion so that to produce animated 3D character models will be easier because the animator does not need to draw every desired movement.
APA, Harvard, Vancouver, ISO, and other styles
2

Jing, Yang, and Yang Song. "Application of 3D Reality Technology Combined with CAD in Animation Modeling Design." Computer-Aided Design and Applications 18, S3 (October 20, 2020): 164–75. http://dx.doi.org/10.14733/cadaps.2021.s3.164-175.

Full text
Abstract:
Computer three-dimensional animation is a new type of animation with the development of computer software and hardware technology in recent years. Three-dimensional animation should apply the software of three-dimensional animation technology to establish a virtual world in the computer. In this virtual three-dimensional world, designers build animated character models and scene models according to the shape and scale of the objects to be represented. Then set the motion trajectory of the character model, the motion of the virtual camera and other animation parameters according to the requirements, and then assign specific materials to the model and add lights to the model. Then the computer can automatically calculate and generate the final continuous picture. Under this background, the research on 3D animation character shaping in this paper is to analyze and study the market situation from the standpoint of small-scale 3D animation companies (teams) with relatively weak technology, and through the author's own creative practice, this paper summarizes some principles for the design and production of 3D animation characters, and tries to improve the education system of 3D animation character design. It promotes the production and dissemination of 3D animation and distinct 3D animation characters. Starting with the comparative research method, this paper summarizes the differences of 3D animation character shaping from the comparison of the characteristics of 3D animation and traditional animation, and then summarizes the efficient ways and methods of how to shape 3D animation characters by combining practice with theory.
APA, Harvard, Vancouver, ISO, and other styles
3

Gao, Xin Rui. "3D Character Animation and Efficiency." Applied Mechanics and Materials 421 (September 2013): 685–89. http://dx.doi.org/10.4028/www.scientific.net/amm.421.685.

Full text
Abstract:
ntroduce the technologies of 3D character animation in 3dsMax and Maya. These technologies include making skeletons, producing muscles, skinning, and creating animation etc. Compare these technologies in 3dsMax and Maya. Discuss the efficiency of 3D character animation and suggests methods to enhance the efficiency of 3D animation.
APA, Harvard, Vancouver, ISO, and other styles
4

Song, Hyewon, Suwoong Heo, Jiwoo Kang, and Sanghoon Lee. "3D Character Animation: A Brief Review." Journal of International Society for Simulation Surgery 2, no. 2 (December 19, 2015): 52–57. http://dx.doi.org/10.18204/jissis.2015.2.2.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kim, Kyoung-Ho, and Jeongjin Lee. "3D Animation Character Development Pipeline using 3D Printing." Journal of the Korea Contents Association 13, no. 8 (August 31, 2013): 52–59. http://dx.doi.org/10.5392/jkca.2013.13.08.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liang, Ji Sheng, Xi Hong Zhou, Bo Li, Fu Hua Shang, and Wang Hui. "ADL 3D Character Animation Design Table Research and Application." Advanced Materials Research 548 (July 2012): 797–801. http://dx.doi.org/10.4028/www.scientific.net/amr.548.797.

Full text
Abstract:
3D character animation has into every aspect of our lives, How to raise the efficiency of development is still current domestic and international research one of the hot issues. This paper, based on the rehabilitation medicine ADL standard, Puts forward 3d characters ADL action based action split standards,According to the software engineering layered development and atom model thought, Design realize the ADL 3d character animation design table, Applied to the simulation training construction of action of oil field development, Effectively improve the oil workers 3d action role construction the efficiency of the development.
APA, Harvard, Vancouver, ISO, and other styles
7

Adis, Fransisca, and Yohanes Merci Widiastomo. "Designing Emotion Of Characters By Referencing From Facs In Short Animated Film “RANA”." ULTIMART Jurnal Komunikasi Visual 9, no. 2 (March 21, 2018): 31–38. http://dx.doi.org/10.31937/ultimart.v9i2.747.

Full text
Abstract:
Facial expression is one of some aspects that can deliver story and character’s emotion in 3D animation. To achieve that, we need to plan the character facial from very beginning of the production. At early stage, the character designer need to think about the expression after theu done the character design. Rigger need to create a flexible rigging to achieve the design. Animator can get the clear picture how they animate the facial. Facial Action Coding System (FACS) that originally developed by Carl-Herman Hjortsjo and adopted by Paul Ekman and Wallace V. can be used to identify emotion in a person generally. This paper is going to explain how the Writer use FACS to help designing the facial expression in 3D characters. FACS will be used to determine the basic characteristic of basic shapes of the face when show emotions, while compare with actual face reference. Keywords: animation, facial expression, non-dialog
APA, Harvard, Vancouver, ISO, and other styles
8

Riyana, Cepi. "THE DEVELOPMENT OF THREE DIMENSIONAL ANIMATION FILM FOR CHARACTER EDUCATION MEDIA IN ELEMENTARY SCHOOL." EDUTECH 14, no. 2 (June 10, 2015): 218. http://dx.doi.org/10.17509/edutech.v14i2.1379.

Full text
Abstract:
Abstract. The formation of character is one of the national education goals. Article 1 of the 2003 Education Law states that among the objectives of national education is to develop the potential of learners to have intelligence, personality and noble character. Currently karakterbangsa strengthening of the strategic priorities of national education progra, given the state of the nation must be returned to the characterization of identity bangsa.Berbagai efforts should be made to build character education, including through modeling (modeling) characters through 3D animations Fim impressions. The strength of this medium is its appeal capable mengypnosis children so charges can be internalized character education in children. The purpose of this research is to "develop Animation 3D Virtual Reality for Education Character in elementary school," This study uses the Research & Development (R & D) through the stages: (1) analysis of the needs of the Media, (2) Media Development, (3) Validation and Product dissemination. Subjects were students of primary schools, with three locations in West Java (Bandung, Cimahi, Bandung regency). The results of this study indicate that the model is designed with ABC animation (animation character building) a positive impact on habituation as a first step to the formation of character in elementary students.Keywords: Character Education, Film 3D AnimationAbstrak. Pembentukan karakter merupakan salah satu tujuan pendidikan nasional. Pasal 1 UU Sisdiknas tahun 2003 menyatakan bahwa di antara tujuan pendidikan nasional adalah mengembangkan potensi peserta didik untuk memiliki kecerdasan, kepribadian dan akhlak mulia. Saat ini penguatan terhadap karakter bangsa menjadi prioritas program strategis pendidikan nasional, mengingat kondisi bangsa harus dikembalikan pada karakterisasi jati diri bangsa. Berbagai upaya perlu dilakukan untuk membangun pendidikan karakter, diantaranya melalui pemodelan (modeling) karakter melalui tayangan Fim Animasi 3D. Kekuatan media ini adalah daya tariknya yang mampu menghipnosis anak sehingga muatan-muatan pendidikan karakter dapat diinternalisasi pada diri anak. Tujuan Penelitian ini adalah “mengembangkan Film Animasi 3D untuk Pendidikan Karater di Sekolah Dasar”, Penelitian ini menggunakan metode Research & Development (R&D) melalui tahapan : (1) Analisis kebutuhan Media, (2) Pengembangan Media , (3) Validasi dan Diseminasi Produk. Subyek penelitian adalah siswa SD, dengan lokasi di tiga wilayah Jawa Barat (Cimahi, Kabupaten Bandung Barat dan Cianjur). Hasil penelitian ini menunjukkan bahwa model animasi yang didesain dengan ABC (animation character building) berdampak pada pembiasaan positif sebagai langkah awal untuk pembentukan karakter pada siswa SD.Kata Kunci : Pendidikan Karakter, Film 3D Animasi
APA, Harvard, Vancouver, ISO, and other styles
9

Ryu, Chang-Su, and Chang-Wu Hur. "ZBrush 3D animation character modeling using ZSphere." Journal of the Korean Institute of Information and Communication Engineering 16, no. 6 (June 30, 2012): 1312–17. http://dx.doi.org/10.6109/jkiice.2012.16.6.1312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Halim, Steven, and Christine Mersiana Lukmanto. "Animating and Designing Movements for Turtle Figure in 3D Animated Short Film Entitled “TUKIK”." IMOVICCON Conference Proceeding 2, no. 1 (July 6, 2021): 111–18. http://dx.doi.org/10.37312/imoviccon.v2i1.55.

Full text
Abstract:
One of the most important elements in an animated film to convey a message to the audience is animating a character. Character movement in a scene is very necessary to show what is happening and what the character is experiencing in a scene that is being witnessed by the audience. This research will raise the animating process of the turtle character in a 3D animated short film entitled "TUKIK". There are two scenes that will be discussed; a scene when the turtle is swimming in the ocean and the movement when the turtle is trapped by the waste at the beach. In the design process, various principles of animation and movement of turtles are applied based on references. The results of this research will be applied to the movements of the turtle characters in the animated awareness film called "TUKIK".
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "3D Character Animation"

1

Anders, Jörg. "Character-Animation mit Blender." Universitätsbibliothek Chemnitz, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200800841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roussellet, Valentin. "Implicit muscle models for interactive character skinning." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30055/document.

Full text
Abstract:
En animation de personnages 3D, la déformation de surface, ou skinning, est une étape cruciale. Son rôle est de déformer la représentation surfacique d'un personnage pour permettre son rendu dans une succession de poses spécifiées par un animateur. La plausibilité et la qualité visuelle du résultat dépendent directement de la méthode de skinning choisie. Sa rapidité d'exécution et sa simplicité d'utilisation sont également à prendre en compte pour rendre possible son usage interactif lors des sessions de production des artistes 3D. Les différentes méthodes de skinning actuelles se divisent en trois catégories. Les méthodes géométriques sont rapides et simples d'utilisation, mais leur résultats manquent de plausibilité. Les approches s'appuyant sur des exemples produisent des résultats réalistes, elles nécessitent en revanche une base de données d'exemples volumineuse, et le contrôle de leur résultat est fastidieux. Enfin, les algorithmes de simulation physique sont capables de modéliser les phénomènes dynamiques les plus complexes au prix d'un temps de calcul souvent prohibitif pour une utilisation interactive. Les travaux décrits dans cette thèse s'appuient sur Implicit Skinning, une méthode géométrique corrective utilisant une représentation implicite des surfaces, qui permet de résoudre de nombreux problèmes rencontrés avec les méthodes géométriques classiques, tout en gardant des performances permettant son usage interactif. La contribution principale de ces travaux est un modèle d'animation qui prend en compte les effets des muscles des personnages et de leur interactions avec d'autres éléments anatomiques, tout en bénéficiant des avantages apportés par Implicit Skinning. Les muscles sont représentés par une surface d'extrusion le long d'axes centraux. Les axes des muscles sont contrôlés par une méthode de simulation physique simplifiée. Cette représentation permet de modéliser les collisions des muscles entre eux et avec les os, d'introduire des effets dynamiques tels que rebonds et secousses, tout en garantissant la conservation du volume, afin de représenter le comportement réel des muscles. Ce modèle produit des déformations plus plausibles et dynamiques que les méthodes géométriques de l'état de l'art, tout en conservant des performances suffisantes pour permettre son usage dans une session d'édition interactive. Elle offre de plus aux infographistes un contrôle intuitif sur la forme des muscles pour que les déformations obtenues se conforment à leur vision artistique
Surface deformation, or skinning is a crucial step in 3D character animation. Its role is to deform the surface representation of a character to be rendered in the succession of poses specified by an animator. The quality and plausiblity of the displayed results directly depends on the properties of the skinning method. However, speed and simplicity are also important criteria to enable their use in interactive editing sessions. Current skinning methods can be divided in three categories. Geometric methods are fast and simple to use, but their results lack plausibility. Example-based approaches produce realistic results, yet they require a large database of examples while remaining tedious to edit. Finally, physical simulations can model the most complex dynamical phenomena, but at a very high computational cost, making their interactive use impractical. The work presented in this thesis are based on, Implicit Skinning, is a corrective geometric approach using implicit surfaces to solve many issues of standard geometric skinning methods, while remaining fast enough for interactive use. The main contribution of this work is an animation model that adds anatomical plausibility to a character by representing muscle deformations and their interactions with other anatomical features, while benefiting from the advantages of Implicit Skinning. Muscles are represented by an extrusion surface along a central axis. These axes are driven by a simplified physics simulation method, introducing dynamic effects, such as jiggling. The muscle model guarantees volume conservation, a property of real-life muscles. This model adds plausibility and dynamics lacking in state-of-the-art geometric methods at a moderate computational cost, which enables its interactive use. In addition, it offers intuitive shape control to animators, enabling them to match the results with their artistic vision
APA, Harvard, Vancouver, ISO, and other styles
3

Vaillant, Rodolphe. "Implicit skinning : character skin deformation guided by 3D scalar fields." Thesis, Toulouse 3, 2015. http://hdl.handle.net/1828/7336.

Full text
Abstract:
In character animation achieving realistic deformations of the skin is a challenging task. Geometric skinning techniques, such as smooth blending or dual-quaternions, are very popular for their high performance but fail to produce convincing deformations. They look too soft compared to human skin deformation at a rigid bone joint. In addition advanced effects such as skin contacts or bulges are not taken into account. Other methods make use of physical simulation or volume control to better capture the skin behavior, yet they cannot deliver real-time feedback. We developed a novel skinning framework called implicit skinning. Our method produces visually plausible deformations in real-time by handling realistic skin contacts and bulges between limbs. Implicit skinning exploits the ability of implicit surfaces to be robustly combined as well as their efficient collision detection. By approximating the mesh by a set of implicit surfaces, we are able to guide the deformation of a mesh character. we can combine the implicit surfaces in real-time, and use the final implicit surface to adjust the position of mesh vertices at each animation step. Since collision detection is very efficient using implicit surfaces we achieve skin contacts between limbs at interactive to real-time frame rates. In this thesis we present the complete implicit skinning framework, that is, the conversion of a mesh character to implicit surfaces, the composition operators and the mesh deformation algorithm on top of the implicit surface. Two deformation algorithms are studied: a fast history dependent algorithm which acts as a post process on top of dual-quaternions skinning and a slower yet more robust history dependent algorithm.
Graduate
APA, Harvard, Vancouver, ISO, and other styles
4

Guay, Martin. "Sketching free-form poses and motions for expressive 3D character animation." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GRENM016/document.

Full text
Abstract:
L'animation expressive permet des styles de mouvements exagerés et artistiques comme l'étirement de parties du corps ou encore l'animation de créatures imaginaires comme un dragon. Créer ce genre d'animation nécessite des outils assez flexible afin de déformer les personnages en des poses quelconques, ainsi que de pouvoir contrôler l'animation à tout moment dans le temps. L'approche acutelle pour l'animation expressive est le keyframing: une approche manuelle avec laquelle les animateurs déforment leur personnage un moment spécifique dans le temps en cliquand et glissant la souris sur une partis spécifique du corps---un à la fois. Malgré le fait que cette approche soit flexible, il est difficile de créer des animations de qualité qui suivent les principes artistiques, puisque le keyframing permet seulement qu'un contrôle local spatiallement et temporellement. Lorsqu'ils dessinent des poses ou des mouvements, les artistes s'appuient sur différentes abstractions sous forme de croquis qui facillitent la réalisation de certain principes artistiques. Par example, certains animateurs dessinent des lignes d'action afin de créer une pose plus lisible et expressive. Afin de coordonner un mouvement, les animateurs vont souvent dessiner des abstractions de mouvement comme des demi-cercles pour des sauts, ou des boucles pour des pirouettes---leur permettant de pratiquer la coordination du mouvement. Malheureusement, ces outils artistiques ne font pas partis de l'ensemble d'outils de keyframing actuelle. Le fait que l'on ne puisse pas employer les même outils artistiques pour animater des personnages 3D a une forte conséquence: les outils d'animation 3D ne sont pas employés dans le processus créatif. Aujourd'hui, les animateurs créent sur du papier et utilisent le keyframing seulement à la fin pour réaliser leur animation. La raison pour laquelle nous n'avons pas ces outils artistiques (ligne d'action, abstractions de mouvement) en animation 3D, est parce qu'il manque une compréhension formelle de ceux-ci qui nous permettrais d'exprimer la forme du personnage---potentiellement au cours du temps---en fonction de la forme de ces croquis. Ainsi la contribution principale de cette thèse est une compréhension formelle et mathématique des abstractions de forme et de mouvement courrament employées par des artistes, ainsi qu'un ensemble d'algorithme qui permet l'utilisation de ces outils artistiques pour créer des animations expressives. C'est-à-dire que les outils développés dans cette thèse permettent d'étirer des parties du corps ainsi que d'animer des personnages de différentes morphologies. J'introduis aussi plusieurs extentions à ces outils. Par example, j'explore l'idée de sculpter du mouvement en permettant à l'artiste de dessigner plusieurs couches de mouvement une par dessus l'autre, de twister en 3D les croquis, ou encore d'animer un croquis ligne comme un élastique. Les contributions principales de cette thèse, aussi résumé ci-dessous: -La ligne d'action facilitant la création de poses expressives en dessinant directement le flow complet du personnage. -La courbe spatio-temporelle qui permet de spécifier un mouvement coordoné complet avec un seul geste (en dessinant une seule courbe), applicable à n'importe quel personnage 3D. -Un algorithme de matching rapide et robuste qui permet du ``squash and stretch''. -La ligne d'action élastique avec des attachements dynamiques à la ligne permettant d'animer un personnages à plusieurs jambes (bras) avec une seule ligne 2D animée
Free-form animation allows for exaggerated and artistic styles of motions such as stretching character limbs and animating imaginary creatures such as dragons. Creating these animations requires tools flexible enough to shape characters into arbitrary poses, and control motion at any instant in time. The current approach to free-form animation is keyframing: a manual task in which animators deform characters at individual instants in time by clicking-and-dragging individual body parts one at a time. While this approach is flexible, it is challenging to create quality animations that follow high-level artistic principles---as keyframing tools only provide localized control both spatially and temporally. When drawing poses and motions, artists rely on different sketch-based abstractions that help fulfill high-level aesthetic and artistic principles. For instance, animators will draw textit{lines of action} to create more readable and textit{expressive} poses. To coordinate movements, animators will sketch textit{motion abstractions} such as semi-circles and loops to coordinate a bouncing and rolling motions. Unfortunately, these drawing tools are not part of the free-form animation tool set today. The fact that we cannot use the same artistic tools for drawing when animating 3D characters has an important consequence: 3D animation tools are not involved in the creative process. Instead, animators create by first drawing on paper, and only later are 3D animation tools used to fulfill the pose or animation. The reason we do not have these artistic tools (the line of action, and motion abstractions) in the current animation tool set is because we lack a formal understanding relating the character's shape---possible over time---to the drawn abstraction's shape. Hence the main contribution of this thesis is a formal understanding of pose and motion abstractions (line of action and motion abstractions) together with a set of algorithms that allow using these tools in a free-form setting. As a result, the techniques described in this thesis allow exaggerated poses and movements that may include squash and stretch, and can be used with various character morphologies. These pose and animation drafting tools can be extended. For instance, an animator can sketch and compose different layers of motion on top of one another, add twist around strokes, or turning the strokes into elastic ribbons. The main contributions of this thesis are summarized as follows: -The line of action facilitating expressive posing by directly sketching the overall flow of the character's pose. -The space-time curve allowing to draft full coordinated movements with a single stroke---applicable to arbitrary characters. -A fast and robust skeletal line matching algorithm that supports squash-and-stretch. -Elastic lines of action with dynamically constrained bones for driving the motion of a multi-legged character with a single moving 2D line
APA, Harvard, Vancouver, ISO, and other styles
5

Fonseca, Jose Antonio dos Santos. "Character body expression in 3D computer animation : a new posing approach." Thesis, Bournemouth University, 2015. http://eprints.bournemouth.ac.uk/24898/.

Full text
Abstract:
Creation of 3D character animations is a complex and time-consuming process, and the character animator has to simultaneously consider a multitude of factors in order to create high quality expressive animation. The 12 Principles of Animation are traditionally considered as the main guidelines for creating high-grade character animation. The main focus of this research is the process of animating the 3D character’s body expression and the animator’s practice, particularly the Posing phase of the animation process. Although posing is not one of the 12 Principles of Animation, it can be considered as the superposition of a subset of those principles that the animator has to keep in mind, while creating key-poses for any specific movement of an animated character. Additional factors that should be considered by the animator during the Posing stage are body language and acting, along with the technicalities of the 3D character manipulation. Hence, Posing is regarded as an intricate process, making it rather challenging for the animator to avoid involuntary neglect of the large number of the aforementioned characteristics. This aspect of the 3D animation process is extremely important for the final creative result of the animation, in terms of character's expression, because if the key-poses are not well defined, the computer may not be able to generate sufficiently expressive animation. This would often result in work that may be subjectively judged as lower quality animations. This research developed the hypothesis that the key to create more expressive 3D character animation is located within Posing, in the Animation Blocking phase of the process. This thesis proposes that a systematisation of the Posing procedure taking advantage of certain Traditional Animation, Fine Arts and Acting concepts and their underlying rationale, can greatly benefit the animator. This thesis presents a new posing approach to 3D character animation, as a conceptual guideline which promotes the arrangement of the body parts into naturalistic patterns of expression. This is achieved by combining the concepts of Power Centre, Line of Action, Contrapposto and Serpentine Line in a systematic way, around a conceptual flow of force. These comprehensible high-level concepts make Posing and the animation process less complicated and more accessible. This allows animators of different levels to create more believable character body expressions in an easier and less time-consuming fashion, introducing better methods of more efficient workflows resulting in improved creative results over shorter periods of time. It is also demonstrated how the aforementioned concepts can be applied to a variety of animation styles – ranging from the more realistic to the more cartoonish ones. A prototype of a 3D Pose Tool was also developed, based on the rationale of the proposed approach, with the objective of being used as a visual guide for generation of new poses to be included in the case studies. Additionally, this tool produces visual evidence in the analysis of specific good and bad examples of character posing. This thesis, therefore, makes the argument that the proposed solution – whether accompanied with the complementary 3D Pose Tool or not – gives the animator the possibility to work the character body expression as a whole. Thus, avoiding stiffness and ensuring that the essential steps of posing are not neglected in the process. This was demonstrated with several cases, which give evidence of the usefulness of the approach as a contribution to create more expressive character animation and to produce it in a more efficient way.
APA, Harvard, Vancouver, ISO, and other styles
6

Arjunan, Dorai Raj. "3D Animation: Creating an Experiential Environment." [Johnson City, Tenn. : East Tennessee State University], 2004. http://etd-submit.etsu.edu/etd/theses/available/etd-0719104-174201/unrestricted/Arj%20with%20animation%2017KB.pdf.

Full text
Abstract:
Thesis (M.F.A.)--East Tennessee State University, 2004.
Title from electronic submission form. ETSU ETD database URN: etd-0719104-174201 Includes bibliographical references. Also available via Internet at the UMI web site.
APA, Harvard, Vancouver, ISO, and other styles
7

Ali, Ahmad, and Svensson Marcus. "Animation through Body Language : A study using the fictional character Mokhtar." Thesis, Uppsala universitet, Institutionen för speldesign, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-297660.

Full text
Abstract:
Learning to read body language is something we do throughout our whole life. It is a complex non-verbal language that can express more than words. In this study we investigate the possibility to use only body language to portray emotions to the viewer. In a background of a game project we have used a character that has his face covered, therefore, facial expression is not visible during the online survey, which we used as a method for our investigation. As a foundation we have created four character animations to portray anger, frustration, exhaustion and hurt. To find the answer if it is possible to recognize those five emotions in the character animations survey, participants were obligated to name the emotion expressed on each of the video clips. The results of this study show that the characters body language could be sufficient to portray those five emotions. However, it was concluded that body language could be enough to represent the character's emotional state to the viewer; but by including facial expressions we could help to portray the emotion even further.
APA, Harvard, Vancouver, ISO, and other styles
8

Borodulina, A. (Anastasiia). "Application of 3D human pose estimation for motion capture and character animation." Master's thesis, University of Oulu, 2019. http://jultika.oulu.fi/Record/nbnfioulu-201906262670.

Full text
Abstract:
Abstract. Interest in motion capture (mocap) technology is growing every day, and the number of possible applications is multiplying. But such systems are very expensive and are not affordable for personal use. Based on that, this thesis presents the framework that can produce mocap data from regular RGB video and then use it to animate a 3D character according to the movement of the person in the original video. To extract the mocap data from the input video, one of the three 3D pose estimation (PE) methods that are available within the scope of the project is used to determine where the joints of the person in each video frame are located in the 3D space. The 3D positions of the joints are used as mocap data and are imported to Blender which contains a simple 3D character. The data is assigned to the corresponding joints of the character to animate it. To test how the created animation will be working in a different environment, it was imported to the Unity game engine and applied to the native 3D character. The evaluation of the produced animations from Blender and Unity showed that even though the quality of the animation might be not perfect, the test subjects found this approach to animation promising. In addition, during the evaluation, a few issues were discovered and considered for future framework development.
APA, Harvard, Vancouver, ISO, and other styles
9

Miller, Louis James. "Combining Media Processes for Ideation in 3D Character Design for Computer Animation." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1243947806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bailey, Shasta. "Building and Using a Character in 3D Space." Digital Commons @ East Tennessee State University, 2014. https://dc.etsu.edu/honors/214.

Full text
Abstract:
The goal of this thesis was to take a character from concept to creation and animation. A variety of skills in 2D and 3D computer graphics were used in order to design and build the character for a 3D space. The character was taken from flat concept to 3D model, and then rigged with a skeleton in the 3D program Maya so that the character could be animated. The focus of the animation is a walk cycle.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "3D Character Animation"

1

Roberts, Steve. Character Animation in 3D. San Diego: Elsevier Science & Technology, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Albee, Timothy. Lightwave 3D character animation. Plano, Tex: Wordware Pub., 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Albee, Timothy. LightWave 3D 8 character animation. Plano, Tex: Wordware Pub., 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Character animation with 3D Studio MAX. Scottsdale, Ariz: Coriolis Group Books, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pardew, Les. Character emotion in 2d and 3d animation. Boston, MA: Thomson Course Technology, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1941-, Roberts Steve, ed. Character animation: 2D skills for better 3D. 2nd ed. Oxford: Focal Press, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kelly, Doug. Lightwave 3D 5 character animation f/x. Research Triangle Park, NC: Ventana, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gorden, Jonny. Lightwave 3D 8 cartoon character creation: Rigging & animation. Plano, Tex: Wordware, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Roberts, Steve. Character animation in 3D: Use traditional drawing techniques to produce stunning CGI animation. Oxford: Focal, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gorden, Jonny. Lightwave 3D 8 cartoon character creation: Modeling & texturing. Plano, Tex: Wordware, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "3D Character Animation"

1

Giorgetti, Daniela, and Patrizia Palamidese. "Manipulating 3D character animation media objects." In Eurographics, 103–12. Vienna: Springer Vienna, 2000. http://dx.doi.org/10.1007/978-3-7091-6771-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zheng, Jie. "Design of 3D Character Animation Engine Framework." In Lecture Notes in Electrical Engineering, 281–87. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4796-1_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Obradović, Ratko, Miloš Vujanović, and Igor Kekeljević. "Teaching 3D Character Animation Through Four Related Tasks." In Advances in Intelligent Systems and Computing, 1671–81. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95588-9_150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Guindy, Mary, and Rimon Elias. "Character Animation: An Automated Gait Cycle for 3D Characters Using Mathematical Equations." In Advances in Visual Computing, 212–22. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50832-0_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

de Alencar Carvalho, Mauro Cesar Gurgel, Bruno Martins Carvalho, Felipe Leal de Paiva Carvalho, Heidi Dias Oliveira Junior, Gerson Gomes Cunha, Luiz Landau, and Estélio Henrique Martin Dantas. "Discussing Validation of 3D Character Animation Demonstrating Ushiro-Ukemi Pedagogical Progression." In Communications in Computer and Information Science, 320–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22095-1_65.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Ling, Gengdai Liu, Mingmin Zhang, Zhigeng Pan, and Edwin Song. "BAAP: A Behavioral Animation Authoring Platform for Emotion Driven 3D Virtual Characters." In Lecture Notes in Computer Science, 350–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15399-0_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Character Animation." In 3D Graphics for Game Programming, 268–303. Chapman and Hall/CRC, 2011. http://dx.doi.org/10.1201/9781439827383-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

O'Hailey, Tina. "3D Character leads 2D character." In Hybrid Animation, 49–86. Elsevier, 2010. http://dx.doi.org/10.1016/b978-0-240-81205-2.00003-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"3D Character Leads 2D Character." In Hybrid Animation, 61–98. Routledge, 2012. http://dx.doi.org/10.4324/9780080958422-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Roberts, Steve. "animation of birds." In Character Animation in 3D, 151–58. Elsevier, 2004. http://dx.doi.org/10.1016/b978-0-240-51665-3.50012-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "3D Character Animation"

1

Cooper, Doug. "2D/3D hybrid character animation on "Spirit"." In ACM SIGGRAPH 2002 conference abstracts and applications. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/1242073.1242146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, Yi. "3D character animation synthesis from 2D sketches." In the 4th international conference. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1174429.1174444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barbieri, Simone, Tao Jiang, Ben Cawthorne, Zhidong Xiao, and Xiaosong Yang. "3D content creation exploiting 2D character animation." In SIGGRAPH '18: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3230744.3230769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ying, Gao, Lu Xuqing, Wang Xiuliang, Fei Yi, and Guo Shuxia. "Design and realization of 3D character animation engine." In Multimedia Technology (IC-BNMT). IEEE, 2009. http://dx.doi.org/10.1109/icbnmt.2009.5347860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Xin, Qing Ma, and Wanliang Wang. "Kinect driven 3D character animation using semantical skeleton." In 2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems (CCIS). IEEE, 2012. http://dx.doi.org/10.1109/ccis.2012.6664388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wihardi, Yaya, Eka Rahman, and Fadhil H.N. "Kinect Based Motion Capture for 3D Character Animation." In Proceedings of the 7th Mathematics, Science, and Computer Science Education International Seminar, MSCEIS 2019, 12 October 2019, Bandung, West Java, Indonesia. EAI, 2020. http://dx.doi.org/10.4108/eai.12-10-2019.2296516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Huang, Peng, and Adrian Hilton. "Surface motion graphs for character animation from 3D video." In SIGGRAPH 2009: Talks. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1597990.1598046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ghyme, Sang-Won, Ki-Hong Kim, and Hyun-Bin Kim. "A simplified deformation for real-time 3D character animation." In the ACM symposium. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/502390.502423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pantuwong, Natapon, and Masanori Sugimoto. "A fully automatic rigging algorithm for 3D character animation." In SIGGRAPH Asia 2011 Posters. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2073304.2073337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Weng, Chung-Yi, Brian Curless, and Ira Kemelmacher-Shlizerman. "Photo Wake-Up: 3D Character Animation From a Single Photo." In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019. http://dx.doi.org/10.1109/cvpr.2019.00606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography