Journal articles on the topic '3D confinement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic '3D confinement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Skovoroda, A., and A. Spitsyn. "Ambipolar Confinement in 3D “Magnetic Wall”." Fusion Science and Technology 47, no. 1T (2005): 235–37. http://dx.doi.org/10.13182/fst05-a648.
Full textLiu, Haihu, Yan Ba, Lei Wu, Zhen Li, Guang Xi, and Yonghao Zhang. "A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insoluble surfactants." Journal of Fluid Mechanics 837 (December 21, 2017): 381–412. http://dx.doi.org/10.1017/jfm.2017.859.
Full textSalasnich, Luca. "3D BEC Bright Solitons under Transverse Confinement." Progress of Theoretical Physics Supplement 150 (2003): 415–18. http://dx.doi.org/10.1143/ptps.150.415.
Full textBellan, P. M. "Particle confinement in realistic 3D rotamak equilibria." Physical Review Letters 62, no. 21 (1989): 2464–67. http://dx.doi.org/10.1103/physrevlett.62.2464.
Full textBellan, P. M. "Particle Confinement in Realistic 3D Rotamak Equilibria." Physical Review Letters 62, no. 26 (1989): 3099. http://dx.doi.org/10.1103/physrevlett.62.3099.3.
Full textHiguchi, Takeshi. "Microphase-separated structures under spherical 3D confinement." Polymer Journal 49, no. 6 (2017): 467–75. http://dx.doi.org/10.1038/pj.2017.13.
Full textLin, Wenhai, Yuanhao Xu, Xiao Hong, and Stella W. Pang. "PEGylated Paclitaxel Nanomedicine Meets 3D Confinement: Cytotoxicity and Cell Behaviors." Journal of Functional Biomaterials 14, no. 6 (2023): 322. http://dx.doi.org/10.3390/jfb14060322.
Full textChin, H. T., C. H. Shih, Y. P. Hsieh, C. C. Ting, J. N. Aoh, and M. Hofmann. "How does graphene grow on complex 3D morphologies?" Physical Chemistry Chemical Physics 19, no. 34 (2017): 23357–61. http://dx.doi.org/10.1039/c7cp03207b.
Full textDemirörs, Ahmet Faik, and Jérôme J. Crassous. "Colloidal assembly and 3D shaping by dielectrophoretic confinement." Soft Matter 13, no. 17 (2017): 3182–89. http://dx.doi.org/10.1039/c7sm00422b.
Full textTenneti, Ananth, David M. Ackerman, and Baskar Ganapathysubramanian. "Equilibrium microstructures of diblock copolymers under 3D confinement." Computational Materials Science 174 (March 2020): 109453. http://dx.doi.org/10.1016/j.commatsci.2019.109453.
Full textFu, Changshuo, Meghann L. Dunn, Rachel N. Nere, Roy Varon Weinryb, and Mohamed Amine Gharbi. "Geometric Confinement of 3D Smectic Liquid Crystal Foams." Applied Sciences 13, no. 6 (2023): 3414. http://dx.doi.org/10.3390/app13063414.
Full textRodríguez-Fraticelli, Alejo E., Muriel Auzan, Miguel A. Alonso, Michel Bornens, and Fernando Martín-Belmonte. "Cell confinement controls centrosome positioning and lumen initiation during epithelial morphogenesis." Journal of Cell Biology 198, no. 6 (2012): 1011–23. http://dx.doi.org/10.1083/jcb.201203075.
Full textBoumedjane, Aissa, Saadi Mohamed, Yahiaoui Djarir, and Noureddine Lahbari. "Numerical modeling of RC column reinforced by new strategy using fiberglass tape and cloth." Journal of Engineering and Exact Sciences 10, no. 4 (2024): 18334. http://dx.doi.org/10.18540/jcecvl10iss4pp18334.
Full textYan, Nan, Yutian Zhu, and Wei Jiang. "Self-assembly of ABC triblock copolymers under 3D soft confinement: a Monte Carlo study." Soft Matter 12, no. 3 (2016): 965–72. http://dx.doi.org/10.1039/c5sm02079d.
Full textYan, Nan, Xuejie Liu, Yan Zhang, Nan Sun, Wei Jiang, and Yutian Zhu. "Confined co-assembly of AB/BC diblock copolymer blends under 3D soft confinement." Soft Matter 14, no. 23 (2018): 4679–86. http://dx.doi.org/10.1039/c8sm00486b.
Full textMiria, Jerald, and K. Kannan. "Mechanism of Geocell Reinforcement in Soft Soils-A Review." Journal of Advances in Geotechnical Engineering 4, no. 1 (2021): 1–4. https://doi.org/10.5281/zenodo.4494034.
Full textPaiè, Petra, Francesca Bragheri, Rebeca Martinez Vazquez, and Roberto Osellame. "Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels." Lab Chip 14, no. 11 (2014): 1826–33. http://dx.doi.org/10.1039/c4lc00133h.
Full textRodríguez-Romero, Jesús, Bruno Clasen Hames, Pavel Galar, et al. "Tuning optical/electrical properties of 2D/3D perovskite by the inclusion of aromatic cation." Physical Chemistry Chemical Physics 20, no. 48 (2018): 30189–99. http://dx.doi.org/10.1039/c8cp06418k.
Full textSelmke, Markus, Utsab Khadka, Andreas P. Bregulla, Frank Cichos, and Haw Yang. "Theory for controlling individual self-propelled micro-swimmers by photon nudging II: confinement." Physical Chemistry Chemical Physics 20, no. 15 (2018): 10521–32. http://dx.doi.org/10.1039/c7cp06560d.
Full textLe Merrer, Marie, Rémi Lespiat, Reinhard Höhler, and Sylvie Cohen-Addad. "Linear and non-linear wall friction of wet foams." Soft Matter 11, no. 2 (2015): 368–81. http://dx.doi.org/10.1039/c4sm01557f.
Full textKo, Jongkuk, Rüdiger Berger, Hyemin Lee, Hyunsik Yoon, Jinhan Cho, and Kookheon Char. "Electronic effects of nano-confinement in functional organic and inorganic materials for optoelectronics." Chemical Society Reviews 50, no. 5 (2021): 3585–628. http://dx.doi.org/10.1039/d0cs01501f.
Full textMa, Liangjun, Runyu Duan, Ganghui Cao, Hajinuer Bahetihan, and Weixin Kong. "Core–shell particle formation via Co-assembly of AB diblock copolymers and nanoparticles in 3D soft confinement." RSC Advances 14, no. 31 (2024): 22449–58. http://dx.doi.org/10.1039/d4ra02223h.
Full textYabu, Hiroshi, Takeshi Higuchi, and Hiroshi Jinnai. "Frustrated phases: polymeric self-assemblies in a 3D confinement." Soft Matter 10, no. 17 (2014): 2919. http://dx.doi.org/10.1039/c3sm52821a.
Full textRoth, Sophie, and Marileen Dogterom. "Dynein-Mediated Positioning of Microtubule Asters in 3D Confinement." Biophysical Journal 106, no. 2 (2014): 232a. http://dx.doi.org/10.1016/j.bpj.2013.11.1361.
Full textLin, Keng-hui, Cheng-Kuang Huang, and Giovanni Paylaga. "Spherical Microwell Arrays to Culture Cells in 3D Confinement." Biophysical Journal 118, no. 3 (2020): 604a. http://dx.doi.org/10.1016/j.bpj.2019.11.3266.
Full textDEL CASTILIO-MUSSOT, MARCELO, J. ADRIAN REYES, HONORATO A. COYOTÉCATL, and GREGORIO H. COCOLETZI. "SOLUTION TO THE EXCITONIC PROBLEM OF AN ELECTRON IN A QUANTUM WIRE AND A HOLE IN A PERPENDICULAR 2D QUANTUM LAYER." Surface Review and Letters 09, no. 05n06 (2002): 1651–54. http://dx.doi.org/10.1142/s0218625x02004153.
Full textXu, Min, Robert Geer, Pavel Kabos, and Thomas Wallis. "High Speed Signal Transmission using Through-Si Vias and Coplanar Waveguides in a 3D IC Test Structure." International Symposium on Microelectronics 2013, no. 1 (2013): 000228–32. http://dx.doi.org/10.4071/isom-2013-tp13.
Full textRoy, Amlan K. "Confinement in 3D polynomial oscillators through a generalized pseudospectral method." Modern Physics Letters A 29, no. 21 (2014): 1450104. http://dx.doi.org/10.1142/s0217732314501041.
Full textGupta, Abhishek Kumar, Rajendra Kumar Singh, and Suresh Chandra. "Crystallization kinetics behavior of ionic liquid [EMIM][BF4] confined in mesoporous silica matrices." RSC Adv. 4, no. 42 (2014): 22277–87. http://dx.doi.org/10.1039/c4ra01785d.
Full textAhmmad, Bakhtyar Saleh, Eszter Horvath-Kalman, and Kamaran Mohammed. "3D Finite Element Modelling of FRP Confined Concrete Column." YBL Journal of Built Environment 9, no. 1 (2024): 1–8. http://dx.doi.org/10.2478/jbe-2024-0001.
Full textRavaei, Shaghayegh, Juan M. Alonso-Martinez, Alberto Jimenez-Zayas, and Francisco Sendra-Portero. "Reflections about Learning Radiology inside the Multi-User Immersive Environment Second Life® during Confinement by Covid-19." Proceedings 54, no. 1 (2020): 9. http://dx.doi.org/10.3390/proceedings2020054009.
Full textLi, Wen Chao, Tao Tao, and Yu Chao Sun. "Terahertz Characteristics of Two Dimensional Photonic Crystal Cavity Based on 3D Finite-Difference Time-Domain Method." Advanced Materials Research 602-604 (December 2012): 809–12. http://dx.doi.org/10.4028/www.scientific.net/amr.602-604.809.
Full textBera, Sudipta, Jayeeta Kolay, Pallabi Pramanik, Anirban Bhattacharyya, and Rupa Mukhopadhyay. "Long-range solid-state electron transport through ferritin multilayers." Journal of Materials Chemistry C 7, no. 29 (2019): 9038–48. http://dx.doi.org/10.1039/c9tc01744e.
Full textSkovoroda, A. A. "Plasma equilibrium in 3D magnetic confinement systems and soliton theory." Plasma Physics Reports 35, no. 8 (2009): 619–27. http://dx.doi.org/10.1134/s1063780x09080017.
Full textSkovoroda, A. A. "3D toroidal geometry of currentless magnetic configurations with improved confinement." Plasma Physics and Controlled Fusion 47, no. 11 (2005): 1911–24. http://dx.doi.org/10.1088/0741-3335/47/11/004.
Full textUjjawal, K. N., H. Venkateswarlu, and A. Hegde. "Vibration isolation using 3D cellular confinement system: A numerical investigation." Soil Dynamics and Earthquake Engineering 119 (April 2019): 220–34. http://dx.doi.org/10.1016/j.soildyn.2018.12.021.
Full textQiang, Xiaolian, Steffen Franzka, Xuezhi Dai, and André H. Gröschel. "Multicompartment Microparticles of SBT Triblock Terpolymers through 3D Confinement Assembly." Macromolecules 53, no. 11 (2020): 4224–33. http://dx.doi.org/10.1021/acs.macromol.0c00806.
Full textChen, Zhaowei, and Ruogang Zhao. "Engineered Tissue Development in Biofabricated 3D Geometrical Confinement–A Review." ACS Biomaterials Science & Engineering 5, no. 8 (2019): 3688–702. http://dx.doi.org/10.1021/acsbiomaterials.8b01195.
Full textHe, Lijuan, Weitong Chen, Pei-Hsun Wu, et al. "Local 3D matrix confinement determines division axis through cell shape." Oncotarget 7, no. 6 (2015): 6994–7011. http://dx.doi.org/10.18632/oncotarget.5848.
Full textLi, Le, Kazuyuki Matsunaga, Jintao Zhu, et al. "Solvent-Driven Evolution of Block Copolymer Morphology under 3D Confinement." Macromolecules 43, no. 18 (2010): 7807–12. http://dx.doi.org/10.1021/ma101529b.
Full textHasnat, A. "Vortex Configurations of a Nano-sized Superconducting 3D Pyramidal Confinement." Journal of Superconductivity and Novel Magnetism 33, no. 3 (2020): 575–82. http://dx.doi.org/10.1007/s10948-019-05391-3.
Full textRichter, Nils, Zongping Chen, Marie-Luise Braatz, et al. "Dimensional Confinement in Carbon-based Structures - From 3D to 1D." Annalen der Physik 529, no. 11 (2017): 1700051. http://dx.doi.org/10.1002/andp.201700051.
Full textMartínez-Tong, Daniel E., Jing Cui, Michelina Soccio, Carolina García, Tiberio A. Ezquerra, and Aurora Nogales. "Does the Glass Transition of Polymers Change Upon 3D Confinement?" Macromolecular Chemistry and Physics 215, no. 17 (2014): 1620–24. http://dx.doi.org/10.1002/macp.201400244.
Full textZhong, Guyue, Q. Xie, and Gang Xu. "Confinement Effect Driven Quantum Spin Hall Effect in Monolayer AuTe2Cl." SPIN 09, no. 04 (2019): 1940014. http://dx.doi.org/10.1142/s2010324719400149.
Full textPandey, Devashish, Xavier Oriols, and Guillermo Albareda. "Effective 1D Time-Dependent Schrödinger Equations for 3D Geometrically Correlated Systems." Materials 13, no. 13 (2020): 3033. http://dx.doi.org/10.3390/ma13133033.
Full textLiu, Jing, Wen-jun Wang, Fa-xing Ding, et al. "Behavior of Axially Loaded Stirrup Confinement Rectangular Concrete-Filled Steel Tubular Stub Columns." Advances in Civil Engineering 2019 (December 2, 2019): 1–8. http://dx.doi.org/10.1155/2019/2712091.
Full textWoo, K. M., R. Betti, C. A. Thomas, et al. "Analysis of core asymmetries in inertial confinement fusion implosions using three-dimensional hot-spot reconstruction." Physics of Plasmas 29, no. 8 (2022): 082705. http://dx.doi.org/10.1063/5.0102167.
Full textJin, Seon-Mi, Jun Ho Hwang, Ke Wang, et al. "Symmetry breaking of Au nanospheres confined in 1D nanocylinders: exploring helical assembly by 3D transmission electron microscopy." Materials Chemistry Frontiers 4, no. 10 (2020): 3032–39. http://dx.doi.org/10.1039/d0qm00374c.
Full textEdwin, Privita Edwina Rayappan George, Sumeet Kumar, Srestha Roy, Basudev Roy, and Saumendra Kumar Bajpai. "Anisotropic 3D confinement of MCF-7 cells induces directed cell-migration and viscoelastic anisotropy of cell-membrane." Physical Biology 20, no. 1 (2022): 016003. http://dx.doi.org/10.1088/1478-3975/ac9bc1.
Full textKrause, Marina, Feng Wei Yang, Mariska te Lindert, et al. "Cell migration through three-dimensional confining pores: speed accelerations by deformation and recoil of the nucleus." Philosophical Transactions of the Royal Society B: Biological Sciences 374, no. 1779 (2019): 20180225. http://dx.doi.org/10.1098/rstb.2018.0225.
Full text