To see the other types of publications on this topic, follow the link: 3D-Convolutional Neural Network (3D-CNN).

Dissertations / Theses on the topic '3D-Convolutional Neural Network (3D-CNN)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic '3D-Convolutional Neural Network (3D-CNN).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Rochford, Matthew. "Visual Speech Recognition Using a 3D Convolutional Neural Network." DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/2109.

Full text
Abstract:
Main stream automatic speech recognition (ASR) makes use of audio data to identify spoken words, however visual speech recognition (VSR) has recently been of increased interest to researchers. VSR is used when audio data is corrupted or missing entirely and also to further enhance the accuracy of audio-based ASR systems. In this research, we present both a framework for building 3D feature cubes of lip data from videos and a 3D convolutional neural network (CNN) architecture for performing classification on a dataset of 100 spoken words, recorded in an uncontrolled envi- ronment. Our 3D-CNN ar
APA, Harvard, Vancouver, ISO, and other styles
2

Castelli, Filippo Maria. "3D CNN methods in biomedical image segmentation." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18796/.

Full text
Abstract:
A definite trend in Biomedical Imaging is the one towards the integration of increasingly complex interpretative layers to the pure data acquisition process. One of the most interesting and looked-forward goals in the field is the automatic segmentation of objects of interest in extensive acquisition data, target that would allow Biomedical Imaging to look beyond its use as a purely assistive tool to become a cornerstone in ambitious large-scale challenges like the extensive quantitative study of the Human Brain. In 2019 Convolutional Neural Networks represent the state of the art in Biomedic
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Ruixu. "Attention Based Temporal Convolutional Neural Network for Real-time 3D Human Pose Reconstruction." University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton157546836015948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Broyelle, Antoine. "Automated Pulmonary Nodule Detection on Computed Tomography Images with 3D Deep Convolutional Neural Network." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231930.

Full text
Abstract:
Object detection on natural images has become a single-stage end-to-end process thanks to recent breakthroughs on deep neural networks. By contrast, automated pulmonary nodule detection is usually a three steps method: lung segmentation, generation of nodule candidates and false positive reduction. This project tackles the nodule detection problem with a single stage modelusing a deep neural network. Pulmonary nodules have unique shapes and characteristics which are not present outside of the lungs. We expect the model to capture these characteristics and to only focus on elements inside the l
APA, Harvard, Vancouver, ISO, and other styles
5

Jackman, Simeon. "Football Shot Detection using Convolutional Neural Networks." Thesis, Linköpings universitet, Institutionen för medicinsk teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157438.

Full text
Abstract:
In this thesis, three different neural network architectures are investigated to detect the action of a shot within a football game using video data. The first architecture uses con- ventional convolution and pooling layers as feature extraction. It acts as a baseline and gives insight into the challenges faced during shot detection. The second architecture uses a pre-trained feature extractor. The last architecture uses three-dimensional convolution. All these networks are trained using short video clips extracted from football game video streams. Apart from investigating network architecture
APA, Harvard, Vancouver, ISO, and other styles
6

Pedrazzini, Filippo. "3D Position Estimation using Deep Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254876.

Full text
Abstract:
The estimation of the 3D position of an object is one of the most important topics in the computer vision field. Where the final aim is to create automated solutions that can localize and detect objects from images, new high-performing models and algorithms are needed. Due to lack of relevant information in the single 2D images, approximating the 3D position can be considered a complex problem. This thesis describes a method based on two deep learning models: the image net and the temporal net that can tackle this task. The former is a deep convolutional neural network with the intention to ex
APA, Harvard, Vancouver, ISO, and other styles
7

Fucili, Mattia. "3D object detection from point clouds with dense pose voters." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17616/.

Full text
Abstract:
Il riconoscimento di oggetti è sempre stato un compito sfidante per la Computer Vision. Trova applicazione in molti campi, principalmente nell’industria, come ad esempio per permettere ad un robot di trovare gli oggetti da afferrare. Negli ultimi decenni tali compiti hanno trovato nuovi modi di essere raggiunti grazie alla riscoperta delle Reti Neurali, in particolare le Reti Neurali Convoluzionali. Questo tipo di reti ha raggiunto ottimi risultati in molte applicazioni per il riconoscimento e la classificazione degli oggetti. La tendenza, ora, `e quella di utilizzare tali reti anche nell’indust
APA, Harvard, Vancouver, ISO, and other styles
8

Galan, Martínez Silvia 1992. "Chromatin organization : Meta-analysis for the identification and classification of structural patterns." Doctoral thesis, Universitat Pompeu Fabra, 2020. http://hdl.handle.net/10803/670278.

Full text
Abstract:
El desenvolupament de tècniques experimentals basades en la captura de la conformació genòmica (3C), han aportat informació rellevant sobre l’estructura del genoma. En particular el Hi-C, un derivat del 3C, el qual s’ha convertit en una tècnica estàndard per l’estudi de l’estructura 3D del genoma i la seva implicació biològica i funcional. Malgrat tot, existeix una manca de estàndards per el seu anàlisi i interpretació. En aquesta tesi, desenvolupem una xarxa neuronal artificial, Metawaffle, capaç de classificar patrons estructurals sense informació prèvia, que ens permet examinar la capacita
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Vladimir. "Evaluation of the CNN Based Architectures on the Problem of Wide Baseline Stereo Matching." Thesis, KTH, Datorseende och robotik, CVAP, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192476.

Full text
Abstract:
Three-dimensional information is often used in robotics and 3D-mapping. There exist several ways to obtain a three-dimensional map. However, the time of flight used in the laser scanners or the structured light utilized by Kinect-like sensors sometimes are not sufficient. In this thesis, we investigate two CNN based stereo matching methods for obtaining 3D-information from a grayscaled pair of rectified images.While the state-of-the-art stereo matching method utilize a Siamese architecture, in this project a two-channel and a two stream network are trained in an attempt to outperform the state
APA, Harvard, Vancouver, ISO, and other styles
10

Rydén, Anna, and Amanda Martinsson. "Evaluation of 3D motion capture data from a deep neural network combined with a biomechanical model." Thesis, Linköpings universitet, Institutionen för medicinsk teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176543.

Full text
Abstract:
Motion capture has in recent years grown in interest in many fields from both game industry to sport analysis. The need of reflective markers and expensive multi-camera systems limits the business since they are costly and time-consuming. One solution to this could be a deep neural network trained to extract 3D joint estimations from a 2D video captured with a smartphone. This master thesis project has investigated the accuracy of a trained convolutional neural network, MargiPose, that estimates 25 joint positions in 3D from a 2D video, against a gold standard, multi-camera Vicon-system. The p
APA, Harvard, Vancouver, ISO, and other styles
11

Slunský, Tomáš. "Vícetřídá segmentace 3D lékařských dat pomocí hlubokého učení." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400891.

Full text
Abstract:
Master's thesis deals with multiclass image segmentation using convolutional neural networks. The theoretical part of the Master's thesis focuses on image segmentation. There are basics principles of neural networks and image segmentation with more types of approaches. In practical part the Unet architecture is choosen and is described for image segmentation more. U-net was applied for medicine dataset. There is processing procedure which is more described for image proccesing of three-dimmensional data. There are also methods for data preproccessing which were applied for image multiclass seg
APA, Harvard, Vancouver, ISO, and other styles
12

Papadopoulos, Georgios. "Towards a 3D building reconstruction using spatial multisource data and computational intelligence techniques." Thesis, Limoges, 2019. http://www.theses.fr/2019LIMO0084/document.

Full text
Abstract:
La reconstruction de bâtiments à partir de photographies aériennes et d’autres données spatiales urbaines multi-sources est une tâche qui utilise une multitude de méthodes automatisées et semi-automatisées allant des processus ponctuels au traitement classique des images et au balayage laser. Dans cette thèse, un système de relaxation itératif est développé sur la base de l'examen du contexte local de chaque bord en fonction de multiples sources d'entrée spatiales (masques optiques, d'élévation, d'ombre et de feuillage ainsi que d'autres données prétraitées, décrites au chapitre 6). Toutes ces
APA, Harvard, Vancouver, ISO, and other styles
13

Skácel, Dalibor. "Navigace pomocí hlubokých konvolučních sítí." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2018. http://www.nusl.cz/ntk/nusl-386026.

Full text
Abstract:
In this thesis I deal with the problem of navigation and autonomous driving using convolutional neural networks. I focus on the main approaches utilizing sensory inputs described in literature and the theory of neural networks, imitation and reinforcement learning. I also discuss the tools and methods applicable to driving systems. I created two deep learning models for autonomous driving in simulated environment. These models use the Dataset Aggregation and Deep Deterministic Policy Gradient algorithms. I tested the created models in the TORCS car racing simulator and compared the result with
APA, Harvard, Vancouver, ISO, and other styles
14

Pllashniku, Edlir, and Zolal Stanikzai. "Normalization of Deep and Shallow CNNs tasked with Medical 3D PET-scans : Analysis of technique applicability." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-45521.

Full text
Abstract:
There has in recent years been interdisciplinary research on utilizing machine learning for detecting and classifying neurodegenerative disorders with the sole goal of outperforming state-of-the-art models in terms of metrics such as accuracy, specificity, and sensitivity. Specifically, these studies have been conducted using existing networks on ”novel” methods of pre-processing data or by developing new convolutional neural networks. As of now, no work has looked into how different normalization techniques affect a deep or shallow convolutional neural network in terms of numerical stability,
APA, Harvard, Vancouver, ISO, and other styles
15

Ekström, Marcus. "Road Surface Preview Estimation Using a Monocular Camera." Thesis, Linköpings universitet, Datorseende, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151873.

Full text
Abstract:
Recently, sensors such as radars and cameras have been widely used in automotives, especially in Advanced Driver-Assistance Systems (ADAS), to collect information about the vehicle's surroundings. Stereo cameras are very popular as they could be used passively to construct a 3D representation of the scene in front of the car. This allowed the development of several ADAS algorithms that need 3D information to perform their tasks. One interesting application is Road Surface Preview (RSP) where the task is to estimate the road height along the future path of the vehicle. An active suspension cont
APA, Harvard, Vancouver, ISO, and other styles
16

Regia, Corte Fabiola. "Studio ed implementazione di un modello di Human Pose Estimation 3D. Analisi tecnica della posizione del corpo dell’atleta durante un match di Tennis." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Find full text
Abstract:
Al giorno d’oggi, senza esserne troppo consapevoli, il Machine Learning sta entrando a far parte dei più svariati settori, professionali o privati che siano; dalla Classificazione in ambito agricolo alle auto a guida autonoma; dal Riconoscimento del parlato in ambito didattico all’individuazione di oggetti in un paesaggio, fino a giungere all’ambito sportivo, che sia individuale o di squadra, di livello amatoriale o professionistico. Ed è proprio in quest’ultimo ambito che si colloca questo progetto: tratteremo infatti l’utilizzo delle reti convoluzionali per la stima della posa umana in ambit
APA, Harvard, Vancouver, ISO, and other styles
17

Serra, Sabina. "Deep Learning for Semantic Segmentation of 3D Point Clouds from an Airborne LiDAR." Thesis, Linköpings universitet, Datorseende, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-168367.

Full text
Abstract:
Light Detection and Ranging (LiDAR) sensors have many different application areas, from revealing archaeological structures to aiding navigation of vehicles. However, it is challenging to interpret and fully use the vast amount of unstructured data that LiDARs collect. Automatic classification of LiDAR data would ease the utilization, whether it is for examining structures or aiding vehicles. In recent years, there have been many advances in deep learning for semantic segmentation of automotive LiDAR data, but there is less research on aerial LiDAR data. This thesis investigates the current st
APA, Harvard, Vancouver, ISO, and other styles
18

Gu, Dongfeng. "3D Densely Connected Convolutional Network for the Recognition of Human Shopping Actions." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36739.

Full text
Abstract:
In recent years, deep convolutional neural networks (CNNs) have shown remarkable results in the image domain. However, most of the neural networks in action recognition do not have very deep layer compared with the CNN in the image domain. This thesis presents a 3D Densely Connected Convolutional Network (3D-DenseNet) for action recognition that can have more than 100 layers without exhibiting performance degradation or overfitting. Our network expands Densely Connected Convolutional Networks (DenseNet) [32] to 3D-DenseNet by adding the temporal dimension to all internal convolution and poolin
APA, Harvard, Vancouver, ISO, and other styles
19

Cronje, Frans. "Human action recognition with 3D convolutional neural networks." Master's thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/15482.

Full text
Abstract:
Convolutional neural networks (CNNs) adapt the regular fully-connected neural network (NN) algorithm to facilitate image classification. Recently, CNNs have been demonstrated to provide superior performance across numerous image classification databases including large natural images (Krizhevsky et al., 2012). Furthermore, CNNs are more readily transferable between different image classification problems when compared to common alternatives. The extension of CNNs to video classification is simple and the rationale behind the components of the model are still applicable due to the similarity be
APA, Harvard, Vancouver, ISO, and other styles
20

Matteo, Lionel. "De l’image optique "multi-stéréo" à la topographie très haute résolution et la cartographie automatique des failles par apprentissage profond." Thesis, Université Côte d'Azur, 2020. http://www.theses.fr/2020COAZ4099.

Full text
Abstract:
Les failles sismogéniques sont la source des séismes. L'étude de leurs propriétés nous informe donc sur les caractéristiques des forts séismes qu'elles peuvent produire. Les failles sont des objets 3D qui forment des réseaux complexes incluant une faille principale et une multitude de failles et fractures secondaires qui "découpent" la roche environnante à la faille principale. Mon objectif dans cette thèse a été de développer des approches pour aider à étudier cette fracturation secondaire intense. Pour identifier, cartographier et mesurer les fractures et les failles dans ces réseaux, j'ai a
APA, Harvard, Vancouver, ISO, and other styles
21

Christopoulos, Charitos Andreas. "Brain disease classification using multi-channel 3D convolutional neural networks." Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-174329.

Full text
Abstract:
Functional magnetic resonance imaging (fMRI) technology has been used in the investigation of human brain functionality and assist in brain disease diagnosis. While fMRI can be used to model both spatial and temporal brain functionality, the analysis of the fMRI images and the discovery of patterns for certain brain diseases is still a challenging task in medical imaging. Deep learning has been used more and more in medical field in an effort to further improve disease diagnosis due to its effectiveness in discovering high-level features in images. Convolutional neural networks (CNNs) is a cla
APA, Harvard, Vancouver, ISO, and other styles
22

Chen, Tairui. "Going Deeper with Convolutional Neural Network for Intelligent Transportation." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/144.

Full text
Abstract:
Over last several decades, computer vision researchers have been devoted to find good feature to solve different tasks, object recognition, object detection, object segmentation, activity recognition and so forth. Ideal features transform raw pixel intensity values to a representation in which these computer vision problems are easier to solve. Recently, deep feature from covolutional neural network(CNN) have attracted many researchers to solve many problems in computer vision. In the supervised setting, these hierarchies are trained to solve specific problems by minimizing an objective functi
APA, Harvard, Vancouver, ISO, and other styles
23

Hossain, Md Tahmid. "Towards robust convolutional neural networks in challenging environments." Thesis, Federation University Australia, 2021. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/181882.

Full text
Abstract:
Image classification is one of the fundamental tasks in the field of computer vision. Although Artificial Neural Network (ANN) showed a lot of promise in this field, the lack of efficient computer hardware subdued its potential to a great extent. In the early 2000s, advances in hardware coupled with better network design saw the dramatic rise of Convolutional Neural Network (CNN). Deep CNNs pushed the State-of-The-Art (SOTA) in a number of vision tasks, including image classification, object detection, and segmentation. Presently, CNNs dominate these tasks. Although CNNs exhibit impressive cla
APA, Harvard, Vancouver, ISO, and other styles
24

Sällqvist, Jessica. "Real-time 3D Semantic Segmentation of Timber Loads with Convolutional Neural Networks." Thesis, Linköpings universitet, Datorseende, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-148862.

Full text
Abstract:
Volume measurements of timber loads is done in conjunction with timber trade. When dealing with goods of major economic values such as these, it is important to achieve an impartial and fair assessment when determining price-based volumes. With the help of Saab’s missile targeting technology, CIND AB develops products for digital volume measurement of timber loads. Currently there is a system in operation that automatically reconstructs timber trucks in motion to create measurable images of them. Future iterations of the system is expected to fully automate the scaling by generating a volumetr
APA, Harvard, Vancouver, ISO, and other styles
25

Wiklander, Marcus. "Classification of tree species from 3D point clouds using convolutional neural networks." Thesis, Umeå universitet, Institutionen för fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-174662.

Full text
Abstract:
In forest management, knowledge about a forest's distribution of tree species is key. Being able to automate tree species classification for large forest areas is of great interest, since it is tedious and costly labour doing it manually. In this project, the aim was to investigate the efficiency of classifying individual tree species (pine, spruce and deciduous forest) from 3D point clouds acquired by airborne laser scanning (ALS), using convolutional neural networks. Raw data consisted of 3D point clouds and photographic images of forests in northern Sweden, collected from a helicopter flyin
APA, Harvard, Vancouver, ISO, and other styles
26

Martell, Patrick Keith. "Hierarchical Auto-Associative Polynomial Convolutional Neural Networks." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1513164029518038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Svensson, Göran, and Jonas Westlund. "Intravenous bag monitoring with Convolutional Neural Networks." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-148449.

Full text
Abstract:
Drip bags are used in hospital environments to administerdrugs and nutrition to patients. Ensuring that they are usedcorrectly and are refilled in time are important for the safetyof patients. This study examines the use of a ConvolutionalNeural Network (CNN) to monitor the fluid levels of drip bagsvia image recognition to potentially form the base of an earlywarning system, and assisting in making medical care moreefficient. Videos of drip bags were recorded as they wereemptying their contents in a controlled environment and fromdifferent angles. A CNN was built to analyze the recordeddata in
APA, Harvard, Vancouver, ISO, and other styles
28

Khasgiwala, Anuj. "Word Recognition in Nutrition Labels with Convolutional Neural Network." DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7101.

Full text
Abstract:
Nowadays, everyone is very busy and running around trying to maintain a balance between their work life and family, as the working hours are increasing day by day. In such hassled life people either ignore or do not give enough attention to a healthy diet. An imperative part of a healthy eating routine is the cognizance and maintenance of nourishing data and comprehension of how extraordinary sustenance and nutritious constituents influence our bodies. Besides in the USA, in many other countries, nutritional information is fundamentally passed on to consumers through nutrition labels (NLs) whi
APA, Harvard, Vancouver, ISO, and other styles
29

Wang, Run Fen. "Semantic Text Matching Using Convolutional Neural Networks." Thesis, Uppsala universitet, Institutionen för lingvistik och filologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-362134.

Full text
Abstract:
Semantic text matching is a fundamental task for many applications in NaturalLanguage Processing (NLP). Traditional methods using term frequencyinversedocument frequency (TF-IDF) to match exact words in documentshave one strong drawback which is TF-IDF is unable to capture semanticrelations between closely-related words which will lead to a disappointingmatching result. Neural networks have recently been used for various applicationsin NLP, and achieved state-of-the-art performances on many tasks.Recurrent Neural Networks (RNN) have been tested on text classificationand text matching, but it d
APA, Harvard, Vancouver, ISO, and other styles
30

Reiling, Anthony J. "Convolutional Neural Network Optimization Using Genetic Algorithms." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1512662981172387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Andersson, Viktor. "Semantic Segmentation : Using Convolutional Neural Networks and Sparse dictionaries." Thesis, Linköpings universitet, Datorseende, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139367.

Full text
Abstract:
The two main bottlenecks using deep neural networks are data dependency and training time. This thesis proposes a novel method for weight initialization of the convolutional layers in a convolutional neural network. This thesis introduces the usage of sparse dictionaries. A sparse dictionary optimized on domain specific data can be seen as a set of intelligent feature extracting filters. This thesis investigates the effect of using such filters as kernels in the convolutional layers in the neural network. How do they affect the training time and final performance? The dataset used here is the
APA, Harvard, Vancouver, ISO, and other styles
32

Andriolo, Stefano. "Convolutional Neural Networks in Tomographic Image Enhancement." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22843/.

Full text
Abstract:
Convolutional Neural Networks have seen a huge rise in popularity in image applications. They have been used in medical imaging contexts to enhance the overall quality of the digital representation of the patient's scanned body region and have been very useful when dealing with limited-angle tomographic data. In this thesis, a particular type of convolutional neural network called Unet will be used as the starting point to explore the effectiveness of different networks in enhancing tomographic image reconstructions. We will first make minor tweaks to the 2-dimensional convolutional network an
APA, Harvard, Vancouver, ISO, and other styles
33

Li, Xile. "Real-time Multi-face Tracking with Labels based on Convolutional Neural Networks." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36707.

Full text
Abstract:
This thesis presents a real-time multi-face tracking system, which is able to track multiple faces for live videos, broadcast, real-time conference recording, etc. The real-time output is one of the most significant advantages. Our proposed tracking system is comprised of three parts: face detection, feature extraction and tracking. We deploy a three-layer Convolutional Neural Network (CNN) to detect a face, a one-layer CNN to extract the features of a detected face and a shallow network for face tracking based on the extracted feature maps of the face. The performance of our multi-face
APA, Harvard, Vancouver, ISO, and other styles
34

Nikzad, Dehaji Mohammad. "Structural Improvements of Convolutional Neural Networks." Thesis, Griffith University, 2021. http://hdl.handle.net/10072/410448.

Full text
Abstract:
Over the last decade, deep learning has demonstrated outstanding performance in almost every application domain. Among different types of deep frameworks, convolutional neural networks (CNNs), inspired by the biological process of the visual system, can learn to extract discriminative features from raw inputs without any prior manipulation. However, efficient information circulation and the ability to explore effective new features are still two key and challenging factors for a successful deep neural network. In this thesis, we aim at presenting novel structural improvements of the CNN framew
APA, Harvard, Vancouver, ISO, and other styles
35

Sure, Venkata Leela. "Enhanced Approach for the Classification of Ulcerative Colitis Severity in Colonoscopy Videos Using CNN." Thesis, University of North Texas, 2019. https://digital.library.unt.edu/ark:/67531/metadc1538703/.

Full text
Abstract:
Ulcerative colitis (UC) is a chronic inflammatory disease characterized by periods of relapses and remissions affecting more than 500,000 people in the United States. To achieve the therapeutic goals of UC, which are to first induce and then maintain disease remission, doctors need to evaluate the severity of UC of a patient. However, it is very difficult to evaluate the severity of UC objectively because of non-uniform nature of symptoms and large variations in their patterns. To address this, in our previous works, we developed two different approaches in which one is using the image texture
APA, Harvard, Vancouver, ISO, and other styles
36

Singh, Vineeta. "Understanding convolutional networks and semantic similarity." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1593269596368388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

LEONARDI, MARCO. "Image Collection Management using Convolutional Neural Networks." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/365014.

Full text
Abstract:
Al giorno d’oggi ormai quasi chiunque possiede uno smartphone dotato di una telecamera ad alta risoluzione. Negli ultimi decenni, i contenuti multimediali (immagini e video) stanno sempre più spesso diventando il principale mezzo di comunicazione. Dato il continuo calo dei prezzi dei dispositivi di archiviazione, il numero totale di immagini salvate sta aumentando notevolmente, andando così a creare collezioni di immagini sempre più grandi, a tal punto da essere una problema per chi vuole le vuole esplorare. Data una libreria di immagini, il processo di selezione di un gruppo di foto che rap
APA, Harvard, Vancouver, ISO, and other styles
38

Buratti, Luca. "Visualisation of Convolutional Neural Networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
Le Reti Neurali, e in particolare le Reti Neurali Convoluzionali, hanno recentemente dimostrato risultati straordinari in vari campi. Purtroppo, comunque, non vi è ancora una chiara comprensione del perchè queste architetture funzionino così bene e soprattutto è difficile spiegare il comportamento nel caso di fallimenti. Questa mancanza di chiarezza è quello che separa questi modelli dall’essere applicati in scenari concreti e critici della vita reale, come la sanità o le auto a guida autonoma. Per questa ragione, durante gli ultimi anni sono stati portati avanti diversi studi in modo tale d
APA, Harvard, Vancouver, ISO, and other styles
39

Moukari, Michel. "Estimation de profondeur à partir d'images monoculaires par apprentissage profond." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC211/document.

Full text
Abstract:
La vision par ordinateur est une branche de l'intelligence artificielle dont le but est de permettre à une machine d'analyser, de traiter et de comprendre le contenu d'images numériques. La compréhension de scène en particulier est un enjeu majeur en vision par ordinateur. Elle passe par une caractérisation à la fois sémantique et structurelle de l'image, permettant d'une part d'en décrire le contenu et, d'autre part, d'en comprendre la géométrie. Cependant tandis que l'espace réel est de nature tridimensionnelle, l'image qui le représente, elle, est bidimensionnelle. Une partie de l'informati
APA, Harvard, Vancouver, ISO, and other styles
40

Carpani, Valerio. "CNN-based video analytics." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
The content of this thesis illustrates the six months work done during my internship at TKH Security Solutions - Siqura B.V. in Gouda, Netherlands. The aim of this thesis is to investigate on convolutional neural networks possible usage, from two different point of view: first we propose a novel algorithm for person re-identification, second we propose a deployment chain, for bringing research concepts to product ready solutions. In existing works, the person re-identification task is assumed to be independent of the person detection task. In this thesis instead, we consider the two ta
APA, Harvard, Vancouver, ISO, and other styles
41

Saxena, Shreyas. "Apprentissage de représentations pour la reconnaissance visuelle." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM080/document.

Full text
Abstract:
Dans cette dissertation, nous proposons des méthodes d’apprentissage automa-tique aptes à bénéficier de la récente explosion des volumes de données digitales.Premièrement nous considérons l’amélioration de l’efficacité des méthodes derécupération d’image. Nous proposons une approche d’apprentissage de métriques locales coordonnées (Coordinated Local Metric Learning, CLML) qui apprends des métriques locales de Mahalanobis, puis les intègre dans une représentation globale où la distance l2 peut être utilisée. Ceci permet de visualiser les données avec une unique représentation 2D, et l’utilisati
APA, Harvard, Vancouver, ISO, and other styles
42

Ahlin, Björn, and Marcus Gärdin. "Automated Classification of Steel Samples : An investigation using Convolutional Neural Networks." Thesis, KTH, Materialvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209669.

Full text
Abstract:
Automated image recognition software has earlier been used for various analyses in the steel making industry. In this study, the possibility to apply such software to classify Scanning Electron Microscope (SEM) images of two steel samples was investigated. The two steel samples were of the same steel grade but with the difference that they had been treated with calcium for a different length of time.  To enable automated image recognition, a Convolutional Neural Network (CNN) was built. The construction of the software was performed with open source code provided by Keras Documentation, thus e
APA, Harvard, Vancouver, ISO, and other styles
43

Li, Chao. "WELD PENETRATION IDENTIFICATION BASED ON CONVOLUTIONAL NEURAL NETWORK." UKnowledge, 2019. https://uknowledge.uky.edu/ece_etds/133.

Full text
Abstract:
Weld joint penetration determination is the key factor in welding process control area. Not only has it directly affected the weld joint mechanical properties, like fatigue for example. It also requires much of human intelligence, which either complex modeling or rich of welding experience. Therefore, weld penetration status identification has become the obstacle for intelligent welding system. In this dissertation, an innovative method has been proposed to detect the weld joint penetration status using machine-learning algorithms. A GTAW welding system is firstly built. Project a dot-structur
APA, Harvard, Vancouver, ISO, and other styles
44

Capuzzo, Davide. "3D StixelNet Deep Neural Network for 3D object detection stixel-based." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/22017/.

Full text
Abstract:
In this thesis it has been presented an algorithm of deep learning for 3D object detection from the point cloud in an outdoor environment. This algorithm is feed with stixel, a medium-type data generates starting from a point cloud or depth map. A stixel can be think as a small rectangle that start form the base of the road and then rises until the top of the obstacle summarizing the vertical surface of an object. The goal of stixel is to compress the data coming from sensors in order to have a fast transmission without losing information. The algorithm to generate stixel is a novel algorithm
APA, Harvard, Vancouver, ISO, and other styles
45

Habrman, David. "Face Recognition with Preprocessing and Neural Networks." Thesis, Linköpings universitet, Datorseende, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-128704.

Full text
Abstract:
Face recognition is the problem of identifying individuals in images. This thesis evaluates two methods used to determine if pairs of face images belong to the same individual or not. The first method is a combination of principal component analysis and a neural network and the second method is based on state-of-the-art convolutional neural networks. They are trained and evaluated using two different data sets. The first set contains many images with large variations in, for example, illumination and facial expression. The second consists of fewer images with small variations. Principal compon
APA, Harvard, Vancouver, ISO, and other styles
46

Stigeborn, Patrik. "Generating 3D-objects using neural networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230668.

Full text
Abstract:
Enabling a 2D- to 3D-reconstruction is an interesting future service for Mutate AB, where this thesis is conducted. Convolutional neural networks (CNNs) is examined in different aspects, in order to give a realistic perception of what this technology is capable of. The task conducted, is the creation of a CNN that can be used to predict how an object from a 2D image would look in 3D. The main areas that this CNN is optimized for are Quality, Speed, and Simplicity. Where Quality is the output resolution of the 3D object, Speed is measured by the number of seconds it takes to complete a reconstr
APA, Harvard, Vancouver, ISO, and other styles
47

Norén, Gustav. "Noise Robustness of Convolutional Autoencoders and Neural Networks for LPI Radar Classification." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273604.

Full text
Abstract:
This study evaluates noise robustness of convolutional autoencoders and neural networks for classification of Low Probability of Intercept (LPI) radar modulation type. Specifically, a number of different neural network architectures are tested in four different synthetic noise environments. Tests in Gaussian noise show that performance is decreasing with decreasing Signal to Noise Ratio (SNR). Training a network on all SNRs in the dataset achieved a peak performance of 70.8 % at SNR=-6 dB with a denoising autoencoder and convolutional classifier setup. Tests indicate that the models have a dif
APA, Harvard, Vancouver, ISO, and other styles
48

Tunell, John. "Classification of offensive game-emblem drawings using CNN (convolutional neural networks) and transfer learning." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-348944.

Full text
Abstract:
Convolutional neural networks (CNN) has become an important tool to solve many computer vision tasks of today. The technique is though costly, and training a network from scratch requires both a large dataset and adequate hardware. A solution to these shortcomings is to instead use a pre-trained network, an approach called transfer learning. Several studies have shown promising results applying transfer learning, but the technique requires further studies. This thesis explores the capabilities of transfer learning when applied to the task of filtering out offensive cartoon drawings in the game
APA, Harvard, Vancouver, ISO, and other styles
49

Khlif, Wafa. "Multi-lingual scene text detection based on convolutional neural networks." Thesis, La Rochelle, 2022. http://www.theses.fr/2022LAROS022.

Full text
Abstract:
Cette thèse propose des approches de détection de texte par des techniques d'apprentissage profond pour explorer et récupérer des contenus faiblement structurés dans des images de scène naturelles. Ces travaux proposent, dans un premier temps, une méthode de détection de texte dans des images de scène naturelle basée sur une analyse multi-niveaux des composantes connexes (CC) et l'apprentissage des caractéristiques du texte par un réseau de neurones convolutionnel (CNN), suivie d'un regroupement des zones de texte détectées par une méthode à base de graphes. Les caractéristiques des composante
APA, Harvard, Vancouver, ISO, and other styles
50

Strömberg, Lucas. "Optimizing Convolutional Neural Networks for Inference on Embedded Systems." Thesis, Uppsala universitet, Signaler och system, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444802.

Full text
Abstract:
Convolutional neural networks (CNN) are state of the art machine learning models used for various computer vision problems, such as image recognition. As these networks normally need a vast amount of parameters they can be computationally expensive, which complicates deployment on embedded hardware, especially if there are contraints on for instance latency, memory or power consumption. This thesis examines the CNN optimization methods pruning and quantization, in order to explore how they affect not only model accuracy, but also possible inference latency speedup. Four baseline CNN models, ba
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!