Academic literature on the topic '3D food printing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '3D food printing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "3D food printing"
Ulrikh, E. V., and V. V. Verkhoturov. "Features of food design on a 3D printer. A review." Food systems 5, no. 2 (July 11, 2022): 100–106. http://dx.doi.org/10.21323/2618-9771-2022-5-2-100-106.
Full textTesikova, Karolina, Lucie Jurkova, Simona Dordevic, Hana Buchtova, Bohuslava Tremlova, and Dani Dordevic. "Acceptability Analysis of 3D-Printed Food in the Area of the Czech Republic Based on Survey." Foods 11, no. 20 (October 11, 2022): 3154. http://dx.doi.org/10.3390/foods11203154.
Full textHamilton, Allyson N., Razieh S. Mirmahdi, Ali Ubeyitogullari, Chetanjot K. Romana, Jamie I. Baum, and Kristen E. Gibson. "From bytes to bites: Advancing the food industry with three‐dimensional food printing." Comprehensive Reviews in Food Science and Food Safety 23, no. 1 (January 2024): 1–22. http://dx.doi.org/10.1111/1541-4337.13293.
Full textPereira, Tatiana, Sónia Barroso, and Maria M. Gil. "Food Texture Design by 3D Printing: A Review." Foods 10, no. 2 (February 3, 2021): 320. http://dx.doi.org/10.3390/foods10020320.
Full textZhu, Wenxi, Michèle M. Iskandar, Vahid Baeghbali, and Stan Kubow. "Three-Dimensional Printing of Foods: A Critical Review of the Present State in Healthcare Applications, and Potential Risks and Benefits." Foods 12, no. 17 (September 1, 2023): 3287. http://dx.doi.org/10.3390/foods12173287.
Full textXie, Yisha, Qingqing Liu, Wenwen Zhang, Feng Yang, Kangyu Zhao, Xiuping Dong, Sangeeta Prakash, and Yongjun Yuan. "Advances in the Potential Application of 3D Food Printing to Enhance Elderly Nutritional Dietary Intake." Foods 12, no. 9 (April 28, 2023): 1842. http://dx.doi.org/10.3390/foods12091842.
Full textFerreira, Isaac Alves, and Jorge Lino Alves. "Low-cost 3D food printing." Ciência & Tecnologia dos Materiais 29, no. 1 (January 2017): e265-e269. http://dx.doi.org/10.1016/j.ctmat.2016.04.007.
Full textM., Sylvester, Bhandari B., and Prakash S. "3D food printing as a promising tool for food fabrication: 3D printing of chocolate." Supplementary 6 4, S6 (December 27, 2020): 42–53. http://dx.doi.org/10.26656/fr.2017.4(s6).054.
Full textWen, Yaxin, Quang Tuan Che, Shaoyun Wang, Hyun Jin Park, and Hyun Woo Kim. "Elaboration of dimensional quality in 3D‐printed food: Key factors in process steps." Comprehensive Reviews in Food Science and Food Safety 23, no. 1 (December 13, 2023): 1–26. http://dx.doi.org/10.1111/1541-4337.13267.
Full textKim, Yuri, Hyun-Jung Yun, Bum-Keun Kim, Hee-Don Choi, and Yun-Sang Choi. "3D Printing Technology : Food Tech Analysis." Resources Science Research 4, no. 1 (June 2022): 1–11. http://dx.doi.org/10.52346/rsr.2022.4.1.1.
Full textDissertations / Theses on the topic "3D food printing"
PAOLILLO, MADDALENA. "3d food printing: study and applications to produce innovative food products." Doctoral thesis, Università di Foggia, 2022. https://hdl.handle.net/11369/425830.
Full text3D printing (3DP) represents an innovative and emerging technology aiming to build three-dimensional objects starting from the computer-aided model. During last years main studies showed the application of this technology to produce innovative foods. The main aim of this research was the better understanding and the implementation of 3D Printing in the food sector aiming to contribute to the creation of food with unprecedented properties. After an analysis on the temporal evolution of 3D Food Printing (3DFP) in scientific field, a variety of relevant aspects have been studied: the capability of modifying the texture properties of the end products by means of accurate design of the digital models and the printing at high speed that could open for a more practical application at industrial level. Moreover, the studies have focused on two different matrix: cereals based and starchy gels, printing geometric structures (cube, parallelepiped) and design inspired by nature (apple tissue). The thesis is structured in 8 chapters: a brief introduction (chapter 1), objects and outlines of research (chapter 2) and the other sections consists of five published papers in international peer reviewed journals ‘Drawing the scientific landscape of 3D Food Printing. Maps and interpretation of the global information in the first 13 years of detailed experiments, from 2007 to 2020’(chapter 3); ‘Rheological properties, dispensing force and printing fidelity of starchy-gels modulated by concentration, temperature and resting time’ (chapter 4). The chapters 5 and 6 has been dedicated to the creation of 3D-printed food with desired and programmable mechanical properties: ‘Programmable texture properties of cereal-based snack mediated by 3D printing technology’ (chapter 5), ‘Extending 3D food printing application. Apple tissues microstructure as CAD model to create innovative cereal-based snacks’ (chapter 6). Chapter 7 focused on speed up of 3DFP: ‘Extending the 3D food printing tests at high speed. Material deposition and effect of non-printing movements on the final quality of printed structures’. Finally chapter 8 contains the conclusions and some general discussion of the thesis.
Gràcia, Julià Alvar. "Laser cooking system applied to a 3D food printing device." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667255.
Full textAn innovative cooking system based on infrared radiation (IR) using a CO2 laser (CO2 IR Laser) has been developed considering that water absorbance of electromagnetic infrared radiation at CO2 laser wavelength is very high. The new cooking system has been adapted into a 3D food printer and has been designed with the following requirements: 1) ability to cook in a delimited area; 2) control of the cooking temperature; 3) physical dimensions that fit inside the 3D Food Printer; 4) energy consumption below the power supply limits; 5) software-controlled system; 6) versatility to cook while printing the food or to cook once the food is printed. In the present study, two CO2 IR Laser cooking systems have been used and tested. The first CO2 IR Laser cooking system studied was a laser engraver and cutter equipment in which specific conditions were applied to cook beef burgers, mashed potatoes bites and pizza dough. After, a new cooking system adapted to the 3D food printer was developed, consisting of a CO2 laser lamp, a system of galvo mirrors that direct the laser beam to the cooking area, and a software that allowed controlling the position and the frequency of movement of galvanometers. With this new system, a chosen area could be homogenously cooked, due to the rapid movement of the galvo mirrors. The food products cooked inside the 3D food printer were: beef burgers; vegetarian patties prepared with legumes, vegetables and egg as main ingredients; and pizza dough. To demonstrate that cooking had been achieved, food products were cooked with the CO2 IR laser systems and different traditional cooking systems (flat and barbeque grills; IR, convection, desk and microwave ovens). Microbiological, physico-chemical and sensory characteristics of the cooked foods were evaluated. The formation of polycyclic aromatic hydrocarbons was analyzed in beef burgers and pizzas to evaluate toxicological safety, and the thermal effect in the count reduction or survival of Salmonella Typhimurium, Salmonella Senftenberg and Escherichia coli O157:H7 inoculated in beef burgers and vegetarian patties was studied. Microbiological and toxicological analyses showed that food products cooked with the new CO2 IR Laser system were as safe as food cooked with traditional methods. Sensory analyses showed that consumers had the same, or even higher, level of preference for foods cooked with CO2 IR laser system in comparison with foods cooked with traditional methods. In addition, a numerical model based on computational fluid dynamics was developed to simulate the cooking process of beef burgers and vegetarian patties, and it was validated with experimental data of temperature evolution during the cooking process. The numerical results for temperature evolution given by the model coincide with the experimental data, except for the first minutes of cooking. The numerical simulation model is a powerful tool to optimize the cooking process of the CO2 IR Laser system. Based on the results obtained, future work will be carried out including cooking experimental studies with foods containing a significantly different composition; the simulation of the cooking process with different parametric conditions; and nutritional studies.
Dankar, Iman Talal. "Study and characterization of microstructural and physio-chemical properties of potato products for 3D food printing." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/664932.
Full textLa impresión 3D de alimentos es un proceso digitalizado preciso que se basa en el monitoreo de las características del sustrato impreso de acuerdo con los parámetros del proceso. En esta tesis, se ha utilizado como substrato el puré de patatas mezclado con diferentes aditivos alimentarios (agar, alginato, lecitina y glicerol) a diferentes concentraciones (0,5, 1 y 1,5%) para poder comparar el efecto de cada aditivo sobre las propiedades reologicas (límite elástico, viscosidad, tixotropía), mecánicas y la microestructura interna del puré de patata. Los resultados han permitido observar que el agar y el alginato mejoraron las propiedades reológicas y mecánicas del puré al formar una estructura de interconexión más fuerte, proporcionando una mejor impresión con diversidad de formas y estables después de la deposición. Por otro lado, el uso de lecitina y glicerol disminuyeron las propiedades reológicas y mecánicas del puré y, por lo tanto, aunque la extrusión fue posible, los productos finales impresos fueron inestables y se colapsaron al instante. Adicionalmente, para validar la obtención de esos valores reológicos y mecánicos, se realizó una investigación adicional a nivel molecular aplicando FTIR y XRD. Los resultados indicaron que los aditivos glicerol y lecitina pueden penetrar en los gránulos de almidón e inducir un efecto más intenso sobre la estructura a medida que aumentan la concentración, suprimiendo (glicerol) o potenciando (lecitina) la estructura del almidón. Por el contrario, moléculas poliméricas largas como agar y alginato interactúan parcialmente a través de la superficie de los gránulos de almidón modificando parcialmente la conformación de su estructura, lo que confirmó los resultados previos de las propiedades reológicas. Además, los espectros FTIR mostraron que el esqueleto formado por la amilosa / amilopectina que esta " oculto" en las escamas de patata deshidratada, con la adición de agua vuelve a tener prácticamente el espectro original de FTIR de la patata cruda, lo que demuestra que las moléculas de agua tienen un papel central en el mantenimiento de la conformación de la estructura del almidón. Para verificar la hipótesis, de que " la reducción del agua puede alterar la conformación y estructura del almidón del tubérculo de patata" se procedió a comprobar el efecto de la eliminación de agua (liofilización) o el efecto del tratamiento térmico (cocción en microondas o hervido). Los resultados mostraron que la evaporación del agua por liofilización presentaba cambios micro-estructurales superiores a las cocinadas en microondas (MP) o hervida (BP) ya que con solo 6 horas de liofilización se obtuvo; un espectro FTIR con intensidades mucho más bajas (espectro seco) en comparación con el espectro inicial; se observó mediante SEM una transformación importante del almidón hinchado (gelatinizado) hacia un gránulo de almidón seco y se incrementó la intensidad de sus respectivos patrones de X-RD. Además, en la patata cruda (RP) se tardó alrededor de 24 horas en alcanzar la deshidratación, que se caracterizó por algunos gránulos rotos incrustados dentro de la matriz del almidón lixiviado, un espectro FTIR que se asemeja en intensidad al de BP y MP, (picos a 485 cm-1 y 620 cm-1) que fueron asignados como un distintivo para un espectro de almidón de patata deshidratada. Concluyendo que la eliminación del agua por sublimación produce efectos micro-estructurales superiores al del procesamiento térmico, siendo el agua el principal contribuyente de las modificaciones de la estructura del almidón. Para finalizar, se usaron estos dos tratamientos: cocción al microondas (MP) y hervido (BP) para las pruebas de impresión 3D. Los resultados obtenidos indicaron que todas las muestras MP mostraron mejores propiedades reológicas y mecánicas lo que nos permitió obtener productos impresos más estables
AZZOLLINI, DOMENICO. "The use of edible insects in conventional and innovative foods. Applications in extruded and 3D printed snacks." Doctoral thesis, Università di Foggia, 2017. http://hdl.handle.net/11369/363294.
Full textEdible insects have been recognized as a sustainable source of high-value animal especially proteins, bearing the potential to help satisfying the raising demand of meat products. Globally, over 1900 species of insects are part of the diet of about 2 billion people in Asia, Africa and South America. Yet, in parts of the world where their consumption is not traditional, such as Europe and North America, consumer negative perception is identified as a significant barrier to their widespread adoption. Strategies to overcome the disgust of Western consumers focus on rational promotion through ethical and nutritional arguments, identification of psychological individual traits, the development of sensory appealing and appropriate food products. For the latter, recent research revealed that presenting insects invisibly into familiar food carriers favours their acceptability by Western consumers. Therefore, this thesis aims at building knowledge for supporting the introduction of insects in Western diet by means of conventional and innovative food processing technologies. Herewith, the conversion of insects such as Yellow mealworms (Tenebrio molitor) in a dry and ground form and its use in snack foods has been identified as a major opportunity to this end. The first step towards understanding how pre-treatments affect technological and nutritional attributes of larvae of Y. mealworms are initially explored, delivering essential knowledge for obtaining a dry and stable insect powder necessary for any industrial application. Blanching of larvae of Yellow mealworms allowed to obtain a semi-finished product stable in colour and suitable for drying. Dry larvae of Yellow mealworms presented a type II sorption isotherm, typical of hygroscopic foods high protein food, which allowed to estimate a product stability at 5% moisture (d.b.). Successively, the potential of Y. mealworms as a valuable source of protein in extruded cereal snacks was investigated to support their immediate industrial use. Herewith, processing variables and formulation were proved to play a major role in quality attributes of end products, including microstructure, texture and nutritional characteristics. When wheat flour was substituted by 10% of ground Y. mealworm, protein content increased by 35%, and provided more than 16% energy of the formulation, enough to claim the snack as “source of protein” according to current European food law. Besides, a strong relationship between the microstructure and mechanical and nutrient digestibility (starch and protein) was identified, and high shear forces in extrusion cooking improved the digestibility of larvae protein. As a result, this outcome is expected to open horizons in designing innovative food microstructures with tailored mechanical and nutritional characteristics. The fourth chapter of this thesis explored 3D printing as a technology to develop a computer controlled foods with innovative shapes. In summary, the combined effect of printing variables and internal shape design are investigated by following the printing performance, microstructure and mechanical properties of such snacks. Cylindrical objects of specific dimensions and different degree of porosity were designed and realized by depositing a wheatbased dough through a fused deposition modelling printer. As a result, this technology showed high accuracy in reproducing external and internal morphological features of snacks, which were ultimately correlated to mechanical features. Successively, the 3D printing was further adopted to develop a cereal snack containing ground larvae of Y. mealworms. In this study, the effects of formulation and processing conditions on microstructure, nutritional profile and quality attributes of snacks were investigated. A significant improvement of the amino acid profile of wheat flour was observed when snacks were enriched with different levels of ground larvae, validating the rational promotion of insects based on nutritional arguments.
Portanguen, Stéphane. "Texturation d'une matrice protéique en vue de la conception d'un aliment fonctionnel par impression 3D." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2023. http://www.theses.fr/2023UCFA0143.
Full textThis thesis is part of a rapidly changing of worldwide demographic context. Indeed, nutritional solutions need to be developed to offset the ageing of the population, one of the consequences of which is the growing number of people with masticatory deficiencies. The texturing of foods, rich in proteins of good nutritional quality, is essential for good mastication and optimal assimilation of nutrients, but also for the act and pleasure of eating.3D food printing is one of the possible research ways for designing new functional foods for frail people. To meet current societal challenges, these foods need to be healthy, personalized and socially acceptable. To meet these ambitious specifications, a four-stage approach was used in this thesis work:1) The development of a 3D printer perfectly suited to the use of meat matrices. By controlling the printing parameters, we can now avoid the use of texturizing agents, enabling us to design foods with simpler and more natural formulations;2) In order to potentiate the structure of printed foods and extend the range of possible textures, the glycation reaction was studied and applied to a gelatin-based model medium. This raw material revealed all its complexity when the reaction was implemented, necessitating a study to elucidate the mechanisms involved. It was shown that the initial water content and Bloom index of the gelatin, by significantly influencing the secondary structure of the gelatin, strongly conditioned the fate of the glycation reaction;3) People with masticatory deficiencies may also suffer from salivary deficiencies. This third part of the thesis therefore involved studying the rheological properties of matrices rich in animal proteins, as well as how to incorporate a natural saliva substitute directly into the food in order to optimize the extrusion properties of the matrices. This functional food, based on flax protein and mucilage, will lubricate the oral cavity, reducing pain and the risk of wrong way during chewing and swallowing in people suffering from xerostomia, hyposialia and dysphagia;4) Coupling the design of a new functional food with a disruptive process such as 3D printing can lead to neophobia, or even rejection, on the part of consumers. The fourth part of this work aims to initiate a sociological approach designed to assess the social acceptability of this new process, drawing on new collaborations between the Life Sciences and the Human and Social Sciences.Future work will focus on determining the post-processing method best suited to respecting the food's properties, characterizing its nutritional properties, and defining and applying the methods needed to guarantee the sanitary and organoleptic qualities of functional foods
Uribe, Wandurraga Zaida Natalia. "Microalgae as novel ingredients for the formulation of food products." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/158743.
Full text[CAT] Les microalgues són organismes unicellulars fotosintètics microscòpics. Són molt eficients a l'hora de transformar l'energia solar en biomassa. Els estudis realitzats fins ara fan referència a possibles beneficis de la incorporació de microalgues en la dieta per produir una millora del sistema cardiovascular, per presentar propietats per aprimar i donar energia, per mostrar capacitat antioxidant o per afavorir una reducció del colesterol i els triglicèrids. La forma més habitual de consumir microalgues és com a suplement dietètic en forma de tauleta, càpsula o en pols. La incorporació de biomassa de microalgues en productes tradicionals s'ha afrontat al repte de l'aparició d'un color verd fosc i d'una consistència polsosa que pot afectar a la textura i, per tant, a la percepció del producte. Aquests aspectes constituïxen les principals àrees de millora per aconseguir un major grau d'acceptació de productes amb microalgues i són la base del repte d'aquest projecte. L'objectiu d'aquesta tesi doctoral és el desenvolupament de nous productes alimentaris que incorporen les propietats nutricionals de la biomassa de microalgues, de manera que s'incrementen o es milloren les propietats nutricionals de l'aliment original. Per aconseguir aquest objectiu s'avaluaren a escala fisicoquímica, reològica i de textura la incorporació de diferents espècies de microalgues (Arthrospira platensis (Spirulina), Chlorella vulgaris, Dunaliella salina i Nannochloropsis gaditana) en diferents matrius alimentàries (productes fornejats, emulsions i extrudits). D'altra banda, s'avaluà i caracteritzà la incorporació de les microalgues utilitzant diferents tecnologies com la impressió en 3D o l'extrusió. A banda de valorar com afecta la incorporació de microalgues als productes elaborats, s'avaluaren els aspectes nutricionals, pel que fa a l'aportació i biodisponibilitat de minerals. Les propietats reològiques de les masses i emulsions enriquides amb microalgues (Spirulina, Chlorella i Dunaliella) indicaren que el seu comportament viscoelàstic fou modificat i millorat, de tal manera que mostrà característiques aptes per aquest tipus de productes. L'addició de microalgues (Spirulina i Chlorella) en les masses utilitzades per a la impressió 3D de galetes i snacks permeté una millor impressió, ja que s'obtingueren mostres impreses de forma cilíndrica amb unes dimensions més precises respecte a l'estructura cilíndrica dissenyada. A més, les mostres impreses presentaren una major estabilitat i resistència abans i després del procés de fornejat en comparació amb la mostra control. Respecte als productes fornejats, l'addició de microalgues (Spirulina i Chlorella) a les rosquilletes i els snacks impresos en 3D permeté una major estabilitat en termes de textura. Lleugers canvis als paràmetres fisicoquímics i d'expansió es produïren per l'addició d'Spirulina i Chlorella en els productes extrudits. A més, els extrudits que foren enriquits amb Nannochloropsis mostraren paràmetres similars als de la mostra control. Tots els productes presentaren colors lluminosos i aparences innovadores i atractives. Pel que fa als minerals, s'observà un augment de P, K, Ca, Na, Mg, Fe i Se quan s'afegí Spirulina i Chlorella, directament relacionat amb l'augment de la concentració de microalgues. Seguint la normativa sobre etiquetatge nutricional dels aliments, l'enriquiment amb microalgues en rosquilletes ens permet classificar-les com a aliment "ric en ferro (Fe)". De la mateixa manera, les rosquilletes i galetes enriquides amb microalgues poden considerar-se un aliment "alt en seleni (Se)". A més a més, la incorporació de Spirulina i Chlorella en les formulacions de galetes, permeté una major bioaccessibiltat del contingut de P, K, Ca, Mg, Fe, Zn i Se comparat amb les mostres control.
[EN] Microalgae are microscopic unicellular and photosynthetic organisms that can be found in a wide variety of environments. These microorganisms are very efficient when transforming solar energy into biomass, due to their cellular structure, which is completely submerged in an aqueous medium, forming an adequate surface for the exchange of nutrients and gases. Microalgae compounds are now known to exhibit cardioprotective, immunomodulatory, anti-proliferative, anti-inflammatory, cognitive, neurobehavioral and antimicrobial properties, amongst others. Researchers have shown possible benefits of the incorporation of microalgae in the diet so far. The most common way to consume microalgae is as a dietary supplement in the form of tablets, capsules or powder. The incorporation of microalgae biomass in traditional products has faced the challenge of the appearance of strong green colours, as well as its powdery consistency that can affect the texture and perception of the product. All these aspects constitute the main areas for improvement the development of microalgae-based products, and they are the challenges faced of this project. The main objective of this PhD Thesis was the development of novel food products incorporating the nutritional properties of microalgae biomass, thereby increasing or improving the nutritional properties of the original food matrix. To achieve this goal, the effect of the addition of different species of microalgae (Arthrospira platensis (Spirulina), Chlorella vulgaris, Dunaliella salina and Nannochloropsis gaditana) on the physicochemical, rheological and textural properties of different food matrices (baked products, emulsions and extrudates) was evaluated. Furthermore, the effect of the incorporation of microalgae using different technologies such as 3D printing or extrusion to obtain food products was studied. In addition, how the incorporation of microalgae affects the nutritional aspects of the food products in terms of the contribution of minerals and their bioavailability was also evaluated. The rheological properties of doughs, batters and emulsions enriched with microalgae (Spirulina, Chlorella and Dunaliella) indicated that their viscoelastic behaviour was modified and improved, showing characteristics suitable for this type of products. The addition of microalgae (Spirulina and Chlorella) to the doughs and batters used for the 3D printing of cookies and snacks, allowed a better extrusion or printing behaviour. This allowed obtaining cylindrical 3D printed samples, more precise in terms of their dimensions with respect to the designed cylindrical structure. In addition, the 3D microalgae-printed sample structures presented greater stability and resistance, before and after the baking process compared to the control sample. For baked products, both for breadsticks and 3D printed snacks, the addition of microalgae (Spirulina and Chlorella) allowed greater stability in terms of texture. Slight changes in the physicochemical and expansion parameters were produced by the addition of Spirulina and Chlorella in the extruded products. In addition, the extrudates enriched with Nannochloropsis, showed similar parameters to those of the control sample. Microalgae-enriched obtained products showed bright colours with appealing appearances. Regarding minerals, an increase in P, K, Ca, Na, Mg, Fe and Se was observed with the addition of Spirulina and Chlorella, along the increase of concentration of microalgae addition. Following the regulations on nutrition labelling for food stuffs, breadstick enrichment with microalgae are a food "high in iron (Fe)" In the same way, breadsticks and cookies enriched with microalgae can be considered a "high in selenium (Se)" food. Going a step further, Spirulina and Chlorella vulgaris incorporation in cookie formulations allowed for greater bioaccessibility of P, K, Ca, Mg, Fe, Zn, and Se content for absorption in the body than control cookies.
Uribe Wandurraga, ZN. (2020). Microalgae as novel ingredients for the formulation of food products [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/158743
TESIS
Greenwood, Taylor Eugene. "Silicone 3D Printing Processes for Fabricating Synthetic, Self-Oscillating Vocal Fold Models." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8395.
Full textRomero, Ryan Gregory. "Development and Analysis of 3D-Printed Synthetic Vocal Fold Models." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7727.
Full textWojciechowski, Elizabeth. "Personalised orthotic therapy using 3D printing in children with Charcot-Marie-Tooth disease." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23718.
Full textTURSI, Alessandra. "DESIGN FOR PEOPLE AFFECTED BY DUCHENNE MUSCULAR DYSTROPHY. Proposal for a new type of night AFO, Ankle Foot Orthosis, based on 3D indirect survey and 3D printing." Doctoral thesis, Università degli studi di Ferrara, 2015. http://hdl.handle.net/11392/2389024.
Full textBooks on the topic "3D food printing"
Sandhu, Kamalpreet, and Sunpreet Singh, eds. Food Printing: 3D Printing in Food Industry. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8121-9.
Full textSingh, Sunpreet, and Kamalpreet Sandhu. Food Printing: 3D Printing in Food Industry. Springer Singapore Pte. Limited, 2022.
Find full textSeverini, Carla, and Antonio Derossi. Making Food Personalized by 3D Printing Technology. Elsevier Science & Technology Books, 2022.
Find full textFundamentals of 3D Food Printing and Applications. Elsevier, 2019. http://dx.doi.org/10.1016/c2017-0-01591-4.
Full textSeverini, Carla, and Antonio Derossi. Making Food Personalized by 3D Printing Technology. Elsevier Science & Technology, 2022.
Find full textZhang, Min, Sangeeta Prakash, Fernanda C. Godoi, and Bhesh R. Bhandari. Fundamentals of 3D Food Printing and Applications. Elsevier Science & Technology, 2018.
Find full textZhang, Min, Bhesh Bhandari, Sangeeta Prakash, and Fernanda C. Godoi. Fundamentals of 3D Food Printing and Applications. Elsevier Science & Technology Books, 2018.
Find full textChua, Chee Kai. Digital Gastronomy: From 3D Food Printing to Personalized Nutrition. World Scientific Publishing Co Pte Ltd, 2022.
Find full textChua, Chee Kai. Digital Gastronomy: From 3D Food Printing to Personalized Nutrition. World Scientific Publishing Co Pte Ltd, 2022.
Find full textHasson, Justine F. Characterising mechanical and thermal behavior of food-grade gels for 3D printing simulated anatomy. 2014.
Find full textBook chapters on the topic "3D food printing"
Guedes, Jaqueline Souza, Bruna Sousa Bitencourt, Pedro Augusto Invernizzi Sponchiado, Pedro Esteves Duarte Auguston, Ana Paula Ramos, and Bianca Chieregato Maniglia. "3D Food Printing." In Smart Food Industry: The Blockchain for Sustainable Engineering, 185–207. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003231172-13.
Full textPaesano, Antonio. "3D Food Printing." In Handbook of Sustainable Polymers for Additive Manufacturing, 507–25. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003221210-14.
Full textAkhila, Plachikkattu Parambil, Basheer Aaliya, Muhammed Navaf, Kundukulangara Pulissery Sudheer, Shabir Ahmad Mir, and Kappat Valiyapeediyekkal Sunooj. "3D Food Printing." In Cereal-Based Food Products, 313–41. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-40308-8_14.
Full textSun, Jie, Weibiao Zhou, Dejian Huang, and Liangkun Yan. "3D Food Printing: Perspectives." In Polymers for Food Applications, 725–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94625-2_26.
Full textRoss, Megan M., Róisín M. Burke, and Alan L. Kelly. "3D Printing of Food." In Handbook of Molecular Gastronomy, 605–18. First edition. | Boca Raton: CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9780429168703-93.
Full textMorya, Sonia, Jaysi Kumari, Devendra Kumar, Ashikujaman Syed, and Chinaza Godswill Awuchi. "Three-Dimensional (3D) Printing Technology: 3D Printers, Technologies, and Application Insights in the Food Diligence." In Food Printing: 3D Printing in Food Industry, 81–100. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8121-9_6.
Full textSingh, Harmanpreet, and Sagarika Bhattacharjee. "Fundamentals of Food Printing." In Food Printing: 3D Printing in Food Industry, 19–34. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8121-9_2.
Full textKaur, Jaspreet, Vishesh Bhadariya, Jyoti Singh, Prerna Gupta, Kartik Sharma, and Prasad Rasane. "Materials for Food Printing." In Food Printing: 3D Printing in Food Industry, 1–18. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8121-9_1.
Full textGunjal, Mahendra, Prasad Rasane, Jyoti Singh, Sawinder Kaur, and Jaspreet Kaur. "Three-Dimensional (3D) Food Printing: Methods, Processing and Nutritional Aspects." In Food Printing: 3D Printing in Food Industry, 65–80. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8121-9_5.
Full textKour, Rasleen, and Harmanpreet Singh. "Food Printing: Unfolding a New Paradigm for Designer and User." In Food Printing: 3D Printing in Food Industry, 47–63. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8121-9_4.
Full textConference papers on the topic "3D food printing"
Steenhuis, Harm-Jan, Xin Fang, and Tolga Ulusemre. "Strategy in 3D Printing of Food." In 2018 Portland International Conference on Management of Engineering and Technology (PICMET). IEEE, 2018. http://dx.doi.org/10.23919/picmet.2018.8481817.
Full textLin, Ying-Ju, Parinya Punpongsanon, Xin Wen, Daisuke Iwai, Kosuke Sato, Marianna Obrist, and Stefanie Mueller. "FoodFab: Creating Food Perception Illusions using Food 3D Printing." In CHI '20: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3313831.3376421.
Full textRamundo, Lucia, Gulsen Bedia Otcu, and Sergio Terzi. "Sustainability Model for 3D Food Printing Adoption." In 2020 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC). IEEE, 2020. http://dx.doi.org/10.1109/ice/itmc49519.2020.9198402.
Full textGayler, Thomas David, Corina Sas, and Vaiva Kalnikaitē. "User Perceptions of 3D Food Printing Technologies." In CHI '18: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3170427.3188529.
Full textTerfansky, Michelle L., and Madhu Thangavelu. "3D Printing of Food for Space Missions." In AIAA SPACE 2013 Conference and Exposition. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-5346.
Full textPunpongsanon, Parinya, Ying-Ju Lin, Xin Wen, Daisuke Iwai, Kosuke Sato, Marianna Obrist, and Stefanie Mueller. "Demonstration of FoodFab: Creating Food Perceptual Illusions using Food 3D Printing." In CHI '20: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3334480.3383144.
Full textMiyatake, Yamato, Parinya Punpongsanon, Daisuke Iwai, and Kosuke Sato. "interiqr: Unobtrusive Edible Tags using Food 3D Printing." In UIST '22: The 35th Annual ACM Symposium on User Interface Software and Technology. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3526113.3545669.
Full textMakino, Masato, Daisuke Fukuzawa, Takahiro Murashima, and Hidemitsu Furukawa. "Simulation of 3D food printing extrusion and deposition." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Vijay K. Varadan. SPIE, 2017. http://dx.doi.org/10.1117/12.2261409.
Full textMatas, Adrián, María del Carmen Molina-Montero, Marta Igual, Purificación García-Segovia, and Javier Martínez-Monzó. "Printability Prediction of Three Gels for 3D Food Printing." In Foods 2022. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/foods2022-12986.
Full textBarrios-Rodríguez, Yeison Fernando, Marta Igual-Ramo, Javier Martínez-Monzó, and Purificación García-Segovia. "Effect of Food 3D Printing Process on the Rheological Properties of Rice Protein Printing Inks." In Foods 2023. Basel Switzerland: MDPI, 2023. http://dx.doi.org/10.3390/foods2023-15061.
Full textReports on the topic "3D food printing"
Strauss, Bernhard, Britta Kleinsorge, and Pantea Lotfian. 3D printing technologies in the food system for food production and packaging. Food Standards Agency, March 2023. http://dx.doi.org/10.46756/sci.fsa.suv860.
Full textShort, Samuel, Bernhard Strauss, and Pantea Lotfian. Emerging technologies that will impact on the UK Food System. Food Standards Agency, June 2021. http://dx.doi.org/10.46756/sci.fsa.srf852.
Full text